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Abstract: Selective estrogen receptor modulators (SERMs) are a diverse group of  nonsteroidal 

compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target 

gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression 

of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying 

ER conformational changes induced by ligand binding. To date, the major clinical applications 

of SERMs are their use in the prevention and treatment of breast cancer, the prevention of 

osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. 

However, SERMs have also been found to promote adverse effects, including thromboembolic 

events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical 

utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the 

therapeutic application of well-known and emergent SERMs.
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Introduction
Estrogens play critical roles in development, reproduction, cognition, and growth 

and maintenance of the skeleton. Research suggests that estrogens and their intracel-

lular receptors (ERs), ERα and ERβ, may also influence pathophysiologic states of 

multiple tissues by contributing to diseases including cancer (eg, breast, endometrial, 

prostate, and colorectal), cardiovascular and metabolic diseases, cognitive diseases 

such as Alzheimer’s, and osteoporosis.1,2 Estrogens have been effective in their clini-

cal use as oral contraception, fertility treatment, and hormone therapy in menopause. 

However, they are contraindicated in some patients due to their multiple effects on 

various target tissues and implication as a risk factor in the development of breast 

and uterine cancers. 

Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal 

compounds that function as ligands for ERs. However, unlike estrogens that func-

tion as ER agonists differing primarily in potency, SERMs have the unique ability 

to selectively act as agonists or antagonists in a target gene and in a tissue-specific 

fashion.3–5 Thus, the pharmacological advantage of SERMs lies in this mixed agonism/

antagonism profile that affords the beneficial estrogenic actions in target tissues and 

avoids adverse, off-target effects. This mixed agonism/antagonism profile is the result 

of differentially expressed ER, ligand-dependent receptor conformational changes, 

and various interactions with co-activators and co-repressors expressed or recruited 

in a tissue-specific fashion.6 Thus each SERM has a distinctive biological effect on 

its target tissue and since no class effect is associated with their function, each must 

be evaluated individually.7 The development of SERMs has extended the application 

of estrogen-related therapy and positively impacted how estrogen-related diseases are 
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treated. To date, the major clinical applications of SERMs 

are their use in the prevention and treatment of breast cancer, 

the prevention of osteoporosis, and maintenance of beneficial 

serum lipid profiles in postmenopausal women. However, 

SERMs have also been found to promote adverse effects, 

mainly thromboembolic events and, in some cases, carcino-

genesis. These adverse effects present a major obstacle in 

treatment with SERMs, especially in cases where long-term 

treatment (ie, osteoporosis) would be most desirable. This 

has led to the production of new-generation SERMs that 

are structurally distinct from their predecessors. The ideal 

SERM would have strong anti-estrogenic effects on breast 

cancer and endometrial cancers while stimulating the forma-

tion of bone in an estrogenic manner. The ability to design 

a drug that encompasses all of these qualities has proven 

difficult, as each drug produced seems to lack one of these 

important characteristics. Therefore, a clearer understanding 

of SERM’s tissue dependent mechanism and signaling are 

needed to provide insight into developing SERMs with fewer 

negative side effects. This review will present the mechanistic 

approaches utilized by SERMs to achieve tissue specificity 

and highlight the therapeutic application of well-known and 

emergent SERMs.

SERMs: mechanism of tissue 
specificity 
SERM tissue specificity is the culmination of several factors, 

mainly tissue-specific expression of ER subtypes (ie, ERα 

and ERβ), differential expression of co-regulatory proteins 

in various tissues (ie, co-activators and co-repressors), and 

varying ER conformational changes induced by ligand 

binding6 (Figure 1). These factors result in the ability of the 

therapeutic application of SERMs that can have discrete 

effects depending on the target tissue. However, these fac-

tors also complicate the understanding of individual SERM 

mechanisms of action and add to the challenge of designing 

new SERMs.

For decades it was generally accepted that there was 

only one ER gene coding for ERα which bound estrogen 

with high affinity. However, with the discovery of ERβ,8 the 
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Figure 1 Model for SERM tissue specificity.
Notes: SeRM tissue specificity depends on numerous factors: 1) SERMs have differential and specific affinity for ER subtypes; 2) ER subtypes are differentially expressed in 
target tissues and can be heterogeneously expressed in a particular tissue; 3) SERM binding induces specific conformational changes in ER that influence dimerization and 
binding to various co-factors that can determine resultant target gene (X) activation or repression; 4) Co-factors (ie, activators and repressors) are differentially expressed in 
target tissues; and 5) ER-SERM complexes can bind directly to an ERE or be directed to bind other transcriptional motifs as a result of binding to various co-factors.
Abbreviations: eR, estrogen receptor; ERE, estrogen response element; SERM, selective estrogen receptor modulators.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Interventions in Aging 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1439

SERMs: tissue specificity and clinical utility

possibility that any selective effect of estrogen could be due 

to the differential expression of these two ER genes caused a 

paradigm shift in our understanding of the estrogen signaling 

system, and made understanding the differential expression 

of these genes in estrogen-sensitive tissues a major focus 

of research.8–12 The relative tissue expression of ERα and 

ERβ are important determinants of a tissue’s response to 

estrogen. ERα and ERβ exert differential effects on growth 

and differentiation in tissues, including bone, colon, uterus, 

liver, brain, and mammary gland.13–19 For example, ERα is 

believed to have a proliferative role, whereas ERβ has an 

anti-proliferative role in transfected breast cancer cells.20 

Certain tissues, such as hepatocytes in the liver and neural 

cells in the hippocampus, express high levels of ERα, while 

in tissues like prostate, ovary, and lung, ERβ is expressed at 

high levels and ERα at low levels.21,22 Yet, in mammary gland, 

bone, uterus, the central nervous system, and the cardiovas-

cular system, both ERα and ERβ show equally significant 

levels of expression and, additionally, can influence each 

other’s functions.23–25 In certain tissues, such as testes and 

mammary glands, both the ERα and ERβ are expressed, but 

their cellular distribution is distinct. For example, in mam-

mary glands, ERβ is mostly present in epithelial cell nuclei. 

In testis, ERα is reported to be localized in the nuclei of the 

Leydig cells, while ERβ is found in germ cells, Sertoli cells, 

and fetal Leydig cells.26 Thus the mechanism of action of 

estrogens and SERMs due to the contributions of either ERα 

and/or ERβ receptor has been difficult to determine. 

The ligand-dependent molecular mechanism of SERMs 

is similar to that of 17β-estradiol and involves binding to 

its ligand-dependent nuclear ER. ERs have a large and 

flexible binding pocket that allows for multiple ligands to 

bind, including steroids, phytoestrogens, and xenobiotics.27 

Ligand-bound ERs undergo a conformational change in 

their hormone binding domain that promotes dimeriza-

tion and activation of the receptor which can then exert its 

effects either by binding directly to the estrogen response 

element (EREs), usually located in the promoter region of 

target genes, or by binding to co-regulator proteins at their 

respective promoter sites.28–31 The association of the ER with 

DNA can either positively or negatively regulate target gene 

transcription. ERα and ERβ, including its various isoforms 

(β1, β2, β4, and β5), are homologous members of the nuclear 

receptor superfamily that possess a modular structure and are 

composed of three major functional domains – the N-terminal 

domain (NTD), the DNA binding domain (DBD), and the 

ligand binding domain (LBD) – that serve specific roles.32 

In terms of sequence homology, ERβ shows a high homology 

to ERα in the DBD and in the LBD;11,12 however, the NTD 

of ERβ is shorter than that of ERα
 
with very poor sequence 

homology to that of ERα. It is believed that full transcrip-

tional activity of the ERs occurs through synergism between 

the two activation function (AF) domains, AF1 and AF2, 

located in the NTD and LBD respectively,33 and activity of 

the AFs occurs in a tissue and promoter specific fashion.34,35 

AF1 functions in a hormone-independent manner, whereas 

AF2 function requires the presence of a ligand.36 In addition 

to the NTD, DBD, and LBD, the ERs consist of “hinge and 

F” regions. The “hinge” region contains a nuclear localization 

signal and serves as a flexible region connecting the DBD 

and LBD. The “F” region, which contains 42 amino acids, is 

located towards the C-terminal end of the LBD and possesses 

specific modulation capabilities of gene transcription in a 

ligand-, promoter-, and tissue-specific manner.37–39 

The differences in ligand-induced transcriptional acti-

vation of target genes by ERα and ERβ may be a result of 

independent activation of the AF1 and AF2 (LBD) domains.31 

AF1 and AF2, working together or independently, are able to 

recruit transcriptional co-regulator proteins following recep-

tor stimulation.31 Co-regulator proteins are able to physically 

interact with the liganded or unliganded ER and modulate 

transcription of a gene. The recruitment of co-activator pro-

teins such as SRC1 and SRC3, or co-repressor proteins such 

as nuclear receptor co-repressor (NCoR) or thyroid hormone 

receptor (SMRT), can either activate or repress transcriptional 

activity, respectively.31,40–43 Furthermore, it appears that regu-

latory proteins are selectively activated depending on both 

ER subtype and ligand binding activity. Using phage display, 

it was determined that ligand binding appears to place the 

ER in a unique position that alters the biological activity of 

co-regulatory proteins.44 For example, co-crystallization stud-

ies with various ligands determined that ERs that are bound 

to antagonists undergo a three-dimensional repositioning of 

helix 12 that can interfere with the receptor-co-regulatory 

protein interaction.45,46 There have currently been over 300 

regulator proteins identified, and their interactions within 

ER transcriptional regulation are complex.47,48 Furthermore, 

the recruitment of co-regulator proteins is dependent on 

the specific ER ligand eliciting a unique receptor confir-

mation.49 This recruitment is thought to occur through an 

ordered, cyclical, and combinatorial process, and therefore, 

transcriptional activation by ERs can occur through coopera-

tion between both AFs or through each AF independently.50 

The activity of co-regulator proteins is also influenced by 

post-translational modification, such as phosphorylation, 

sumoylation, ubiquitination, and acetylation, which affect 
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their ability to influence ER signaling.51–53 Therefore, the 

differential actions seen between ERα and ERβ may par-

tially be a result of the structural difference between AF1 

and AF2, and tissue dependent activities may be dependent 

on the expression of co-regulator proteins.40 

The high degree of sequence homology within the DBD 

of ERα and ERβ results in the ability for both receptors 

to bind EREs with high affinity40,54,55 as either an ERα/

ERα homodimer, ERβ/ERβ homodimer, or an ERα/ERβ 

heterodimer.55–57 Each composition of dimer that is formed 

is believed to mediate distinct hormonal responses, and 

different tissues express varying degrees of ER subtypes. 

Therefore, the ability for SERMs to display a selective affin-

ity for ER subtypes based on affinity for a particular AF2 

(LBD) may partially explain the tissue specificity of SERMs. 

Furthermore, it also appears that a single ligand bound recep-

tor is capable of forming a homo- or heterodimer.58 This 

indicates that a SERM having an affinity for one of the ER 

subtypes may still be able to form an ERα/ERβ heterodimer, 

and as a result, alter response to ligand binding; although, the 

exact impact of heterodimerization is still unclear.58 In some 

situations, response to estrogen stimulation depended on the 

co-presence of both ERα and ERβ, suggesting that receptor 

heterodimerization may alter receptor signaling, possibly by 

allowing access to new chromatin regions.56 Moreover, the 

discovery of multiple ERβ various isoforms (β1, β2, β4, and 

β5) with differing tissue distribution and function further adds 

to the alternative results of ER stimulation.58 

Triphenylethylene SERMs
Tamoxifen
Tamoxifen is a nonsteroidal triphenylethylene compound 

that was the first SERM to be used successfully to prevent 

and treat breast cancer. It quickly became the treatment of 

choice for ERα positive breast cancer and to reduce the risk 

of breast cancer in high-risk patients.59,60 Tamoxifen was first 

developed as an ER antagonist for breast cancer treatment. 

However the subsequent discovery of its agonist role in bone 

and the uterus spawned efforts to create SERMs with precise 

functions depending on tissue61,62 (Figure 2). Tamoxifen is 

routinely used to treat all stages of breast cancer. Adjuvant 

breast cancer trials have shown that tamoxifen’s use reduced 

both breast cancer reoccurrence and contralateral breast cancer 

by 40%–50%.63 Tamoxifen efficacy was further investigated 

Antagonist

Breast Breast
Estrogen

Uterus

Uterus Bone

Agonist

Estrogen
Tamoxifen –

Toremifene
Droloxifene –
Idoxifene –
Arzoxifene

Minimal effects.

Induces endometrial cell growth,61,62

associated with endometrial cancer.31

Limited agonistic activity.117

Estrogen
Tamoxifen –
Toremifene
Droloxifene –
Idoxifene –
Raloxifene –
Arzoxifene –

Lasofoxifene –

Bazedoxifene –

Partical agonism.

Similar to endogenous estrogen.116,117
Full ERα agonist.101

Treatment of postmenopausal osteoporosis.98

As effective as estrogen in anti-absorptive
effects on bone.134

Reduction in non-vertebral (24%) and vertebral
fractures (42%).156

Effective in preventing and treating
osteoporosis.45

Tamoxifen –

Toremifene –

Droloxifene –

Idoxifene
Raloxifene –

Arzoxifene –
Lasofoxifene –

Bazedoxifene –

First ER antagonist for breast cancer treatment.
Overall breast cancer reduced 16%–49%,65

ER-positive breast cancer reduced 31%–69%.66 
Similar efficacy and safety for breast cancer
as tamoxifen.
Full ERα antagonist, 10–60x greater ER affinity
than tamoxifen.101

No activity in tamoxifen resistant breast cancer,98

but effective at preventing breast cancer.54

Less effective then tamoxifen for breast cancer.134

Overall reduction in all breast cancer (79%) and 
ER-positive breast cancer (81%).156

No activity on breast tissue.171

Raloxifene –
Arzoxifene – Inhibits agonistic effects of estrogen.135,136

Lasofoxifene
Bazedoxifene –

LY2066948

May prevent endometrial cancer.128,129

No changes in endometrial thickness,169,171

no activity on endometrial tissue.172

Figure 2 SeRM tissue activity and clinical action in breast, uterus, and bone.
Abbreviations: eR, estrogen receptor; SERM, selective estrogen receptor modulators.
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in four major Phase III trials where it reduced overall breast 

cancer incidence between 16% and 49% and ER-positive 

breast cancer incidence between 31% and 69%.64,65 Tamox-

ifen has also been determined to have a luteotropic effect if 

used by women in mid luteal phase and therefore is effective 

in reducing premenstrual mastalgia.66,67 

The ability of tamoxifen to inhibit ERα positive breast 

cancer cell proliferation may be due to interaction with co-

repressors. Tamoxifen, similar to endogenous estrogens, 

requires metabolic activation by cytochrome P450 enzymes 

to form its active metabolites, 4-hydroxytamoxifen (4-OHT) 

and endoxifen.68 NCoR and SMRT are co-repressor proteins 

that 4-OHT, a potent anti-estrogen, is known to recruit.49 Fur-

thermore, in vivo inhibition of NCoR or SMRT and in vitro 

studies using fibroblasts from NCoR knockout mice, dem-

onstrated an increase in antagonistic activity of 4-OHT.69,70 

Additionally, the ability of 4-OHT to inhibit ERα breast 

cancer cell proliferation is impaired in NCoR and SMRT 

deficient cells.71 It is important to note that cells deficient in 

NCoR and SMRT do not show an activation of all estrogen 

dependent response genes, indicating that there are factors 

influencing SERM-induced repression that are important in 

this complex signaling. The mechanism of co-repression due 

to NCoR and SMRT is still being fully determined, but it 

appears that histone de-acetylase activity may be involved 

in this transcriptional repression.72,73 Repressor of estrogen 

action is another co-repressor potentiated by 4-OHT. When 

stimulated, resveratrol competes with the co-activator for 

binding to the estrogen bound ER and therefore potentiates 

4-OHT as an estrogen antagonist.74,75 

In uterine cells, tamoxifen acts as an estrogen agonist and 

induces growth of endometrial cells.61,62 In addition, tamoxifen 

can display beneficial partial agonistic effects on bones and 

the cardiovascular system in postmenopausal women.76 The 

difference in tamoxifen activity in each tissue is thought to 

be due to the expression of the co-regulator proteins such as 

SRC1, NCoR, or SMRT. SRC1, a co-activator promoted by 

tamoxifen, is highly expressed in uterine cells, but has low 

expression in breast cancer cells.72 This suggests that the stimu-

latory effect tamoxifen has on uterine cells may partially be 

explained by the distribution of co-activator proteins such as 

SRC1. This mechanism may also be contingent on the associa-

tion of intrinsic histone acetyl transferase activity associated 

with SRC1 which helps activate transcriptional activity.77 

Despite clinical success with tamoxifen, long-term 

tamoxifen use has been associated with an increased 

risk of endometrial cancer, as well as other side effects 

such as hot flashes, ocular changes, an increased risk of 

stroke, and pulmonary embolism.29,78–82 In endometrial 

tissue, tamoxifen has partial estrogen-agonist properties 

and unopposed exogenous estrogens are known to be 

carcinogenic in the endometrium.83,84 Some of the adverse 

effects associated with tamoxifen have been attributed 

to its genotoxic metabolites. The increased incidence of 

endometrial cancer observed during tamoxifen administra-

tion are believed to be due to the formation of major DNA 

adducts. Tamoxifen may also mediate hepatocarcinogen-

esis by the formation of these DNA adducts.85–87 Tamoxifen 

resistance is also possible and can be achieved through 

either intrinsic resistance, where ER-positive breast cancer 

either never responds to treatment, or ER-positive breast 

cancer initially responds to treatment but subsequently 

acquires resistance.29 

Toremifene (chlorotamoxifen)
Toremifene (TOR) is a nonsteroidal triphenylethylene SERM 

that is similar to tamoxifen in both structure and function. 

TOR differs from tamoxifen’s structure in only a single 

chloride atom on its side group; a chloride atom substituted 

for a hydrogen atom in the ethyl group attached to part of the 

ethylene bond.88 TOR functions in a similar way to other Type 

I SERMs, displaying a higher affinity for ERα (about 5% of 

that of estradiol) than ERβ.89 It is an effective SERM for the 

treatment of breast cancer in postmenopausal women and 

may be therapeutically applicable in preventing fracture risk 

during hormone therapy. TOR may be a suitable alternative 

treatment for tamoxifen in hormone receptor-positive breast 

cancer in premenopausal women. A retrospective study 

comparing the efficacy and safety of TOR and tamoxifen in 

the treatment of operable hormone receptor-positive breast 

cancer in premenopausal women (n=1,847) found that the 

TOR group (n=396) and the tamoxifen group (n=1,451) 

were similar in efficacy and safety.90 Furthermore, TOR 

lacks the DNA adduct-forming ability of tamoxifen and 

the genotoxicity of tamoxifen, suggesting that TOR has a 

lesser uterotrophic effect than tamoxifen, and it appears that 

TOR is not associated with an increased risk of endometrial 

cancer.91–95 Overall, TOR has been found to have similar effi-

cacy to tamoxifen in treating advanced ERα positive breast 

cancer, with a similar side effect profile. TOR has also been 

determined to have a luteotropic effect if used by women 

mid-luteal phase, and therefore is effective in reducing cyclic 

breast pain compared to placebo.67,96 Not surprisingly, due 

to the similarities between TOR and tamoxifen in structure 

and function, the two drugs are cross-reactive. In a double-

blind, cross over trial, 66 postmenopausal women were 
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started on either TOR (140 mg/day) or tamoxifen (40 mg/

day). Forty-four of the women were then crossed over to the 

alternative treatment, and no response was achieved from 

either of the second line treatments.97 Additionally, in an 

international Phase III study evaluating TOR use in prevent-

ing vertebral fractures in men with non-metastatic prostate 

cancer being treated with androgen deprivation therapy, it 

was determined that TOR was associated with a reduced risk 

of vertebral fractures compared to placebo. However, in this 

investigation, TOR was also associated with an increased rate 

of venous thromboembolic events and therefore has not been 

approved for fracture prevention in men receiving androgen 

deprivation therapy.98 There have been reports that the dif-

ferences in the actions of tamoxifen compared to TOR may 

be due to a lower estrogenic to antiestrogenic effect.99 

Droloxifene
The goal in the production of droloxifene (3-[1-[4-

(2-Dimethylaminoethoxy)phenyl]-2-phenyl-but-1-enyl]

phenol) was to make a version of tamoxifen that was more 

potent but had fewer side effects, such as liver tumors or 

the formation of DNA adducts.100 The differences between 

droloxifene and tamoxifen are the removal of methyl on 

the amino group and the addition of an alcohol at the third 

position. As a result of these changes, the drug has a 10–60× 

greater affinity for the ER and a shorter serum half-life 

than its parent molecule tamoxifen. With the greater level 

of affinity for the ERα receptor, it was thought that dosing 

periods could be shortened with droloxifene.100 Droloxifene 

is a full ERα antagonist in the breast and a full ERα agonist 

in bone. Similar to tamoxifen, droloxifene blocks cells in the 

G1 phase of the cell cycle thereby inhibiting their growth.101 

Also similar to tamoxifen, it was shown to cause an increase 

in TGF-β which in bone causes an increase in pre-osteoclast 

apoptosis and MCF-7 breast cancer cell apoptosis.102 Based 

on this finding, it can be hypothesized that droloxifene also 

causes an inhibition of insulin-like growth factor (IGF)-1 

stimulated cell growth and prevents expression of estrogen 

stimulated oncogene c-myc, as these represent the mechanism 

of tamoxifen. In addition to being active in bone and breast, 

droloxifene was shown to have increased anti-estrogenic 

activity and lowered estrogenic activity in the immature rat 

uterus compared to tamoxifen.100 Through its preclinical tri-

als, droloxifene showed promise in treating both breast and 

bone cancers while having minimal activity on uterine and 

endometrial tissues. In a Phase I trial conducted by Buzdar 

et al 30 patients were enrolled and received doses of 20, 40, 

100, 200, or 300 mg. No patients noted objective responses, 

only four showed moderate responses and droloxifene was 

very well tolerated by the patients, even at the higher doses.103 

Given that all the patients in the trial had previously failed 

tamoxifen therapy and had very few negative side effects 

from treatment, droloxifene was pursued in Phase II trials. 

In a randomized Phase II trial consisting of 369 postmeno-

pausal women who were either ER positive or had unknown 

ER status, doses of 20, 40, or 100 mg of droloxifene showed 

no significant differences. The average objective response 

across all doses was 39.3%.104 These positive results led to 

the Phase III trial for droloxifene. The major side effects 

noted for droloxifene were hot flashes, nausea, fatigue, 

headache, backpain, and dyspnea.103,105 The Phase III trial 

of droloxifene consisted of 1,354 patients across multiple 

countries. The trial once randomized had 673 patients in the 

tamoxifen group and 681 patients in the droloxifene group. 

The objective response rate was 18% for droloxifene and 

23% for tamoxifen, indicating that droloxifene was not sig-

nificantly better than tamoxifen in responses. Interestingly, 

both drugs were more efficacious in postmenopausal than 

premenopausal woman. In women younger than 65 years, 

the tumor response rates for droloxifene and tamoxifen were 

15% and 23% respectively. In women older than 65 years, the 

response rate was 38% for both tamoxifen and droloxifene.106 

The possible short comings of droloxifene in this trial for 

premenopausal women could have been due to the short 

half-life of droloxifene (1 day) leading to greater fluctuation 

in serum concentration.107,108 It is thought that this could be 

avoided with higher doses, as shown by several studies that 

show serum levels of sex hormones and binding proteins 

are concentration-dependent between 40 and 100 mg.107,108 

This suggests that at higher doses, the drug is able to reach 

higher concentrations and even with equivalent excretion 

rates, maintain therapeutic levels for an extended period of 

time. In spite of this theory, the Phase III trial of droloxifene 

was closed at its second interim analysis as it was deemed to 

be ineffective in comparison to tamoxifen. 

Idoxifene
Idoxifene ((E)-1-(2-(4-(1-(4-Iodophenyl)-2-phenylbut-1-en-

1-yl)phenoxy)ethyl)pyrrolidine) was developed as an anti-

estrogen with lower estrogenic effects on endometrial growth 

with greater estrogenic activity than the current standard, 

tamoxifen.109,110 The developers of idoxifene tried to mini-

mize the negative side effects of tamoxifen by substituting the 

dimethylamino group found on tamoxifen with a pyrrolidino 

group to avoid the production of a desmethyl metabolite and 

formaldehyde after metabolism in the liver.111 The second 
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structural difference in idoxifene was the addition of an 

iodine at the 4th position to reduce the estrogenic activity in 

addition to inhibiting glucoronidation and 4-hydroxylation 

allowing for a longer duration of action.112,113 In initial trials 

and testing, the modifications were very successful, as idox-

ifene was found to have a 2.5× slower rate of metabolism 

compared to tamoxifen which resulted in a terminal half-life 

that was about double that of tamoxifen.114 The peak plasma 

level was achieved after 2–8 hours post administration, and 

the drug had linear pharmacokinetics. The slower metabolism 

and longer half-life gave idoxifene a steady state concentra-

tion that was 50% higher than that of tamoxifen. Elimination 

of the drug was in a biphasic manner with linear kinetics over 

the dose range tested (10–60 mg).111

Functionally, idoxifene was determined to work through 

the estrogen response element.115 Compared to its parent drug, 

tamoxifen, idoxifene displayed 2–2.5× greater affinity for the 

ERα receptor110,112 and displayed desired effects in breast, 

bone, uterus, and endometrium.115–117 In breast tissue, idox-

ifene was found to have similar effects to that of tamoxifen 

indicating that it acted as an ERα antagonist.117 In MCF-7 

cells, idoxifene was 1.5× more effective in inhibiting estrogen 

dependent cell growth compared to tamoxifen. On a gross 

level, idoxifene caused overall reduction in tumor size which 

indicated efficacy in breast cancer.117 In the endometrium and 

uterus, idoxifene was determined to have limited agonistic 

activity and blocked gene expression in endometrial cells, 

possibly indicating antagonistic behavior.116 This low level 

of activity in the uterus is lower than that of tamoxifen and 

was shown to decrease the risk of uterine cancer develop-

ment posttreatment, which is typically elevated in tamox-

ifen, posttherapy.112 In bone, idoxifene functioned as an ER 

agonist, acting in a similar way to endogenous estrogen in 

that it promoted the activity of osteoblasts while promoting 

apoptosis of osteoclasts.115,116 The effects of idoxifene on 

bone included a suppression of urinary pyridium cross link 

expression and a serum osteocalcin level increase that is typi-

cally seen in estrogen withdrawal-based bone turn over. In 

addition, alkaline phosphatase levels were increased, suggest-

ing increased bone formation.116 The combinations of these 

promising results led to a Phase I trial for idoxifene. This 

trial, conducted by Coombes et al treated 14 patients with 

idoxifene who had previously received tamoxifen therapy 

and showed that four of the 14 had tumor stabilization for 

14, 8, 8, and 1.5 months, while two of the 14 showed a partial 

response to the new drug.111 Endocrine changes for idoxifene 

were identical to tamoxifen for the luteinizing hormone (LH) 

and follicle stimulating hormone (FSH), in that patients saw 

a decrease in both. However, in contrast to tamoxifen, there 

was no change in sex hormone binding globulin (SHBG) 

when the patients were treated with idoxifene. This suggested 

a slightly different mechanism for idoxifene compared to its 

parent tamoxifen, as tamoxifen typically causes an increase 

in SHBG. This study proved promising which led to Phase II 

trials for idoxifene. 

In Phase II trials for idoxifene, clinical data showed that 

of the 25 patients who received idoxifene, two had a partial 

response (PR) and two had steady disease for greater than 

6 months. The PR duration was for 30 months and 5 months. 

In the patients who had steady disease, they had demon-

strated resistance, as they had a PR or complete response to 

tamoxifen in prior treatments 2 and 7 years prior. In addition, 

in the Phase II trial, the endocrine changes were identical 

to that of tamoxifen, suggesting that the Phase I trial was 

underpowered. The clinical data for idoxifene proved to be 

not significantly different than tamoxifen, but the drug was 

further tested in Phase III trials.118

During Phase III trials for idoxifene, it was determined that 

patient outcomes for idoxifene were not significantly  different 

than those for tamoxifen. Complete response, PR, and steady 

disease groups were not significantly different and neither was 

long-term survival. Due to these findings, Phase III enroll-

ment was cut before the study was completed by the sponsor, 

SmithKline Beecham, due to limited potential for profit. Some 

of the side effects reported during the study included nausea, 

anorexia, vomiting, increased urinary incontinence, increased 

risk of pelvic organ prolapse, increased endometrial thick-

ness, and increased risk of leucorrhea.119,120 It is important 

to note that deaths due to treatment were not significantly 

different in treatment with either idoxifene and tamoxifen, 

indicating that idoxifene is a safe but not significantly safer 

treatment option than tamoxifen.120 

Benzothiophene SERMs
Raloxifene
A second generation SERM (formally called keoxifene) is 

a chemically distinct polyhydroxy phenol benzothiophene 

series SERM that has different tissue-specific effects com-

pared to tamoxifen. Raloxifene was first developed for breast 

cancer therapy, however it was determined that raloxifene did 

not have activity in tamoxifen resistant breast cancer patients. 

It soon became apparent that raloxifene may prevent bone 

loss and prevent breast cancer, which led to clinical trials and 

eventually raloxifene became the first SERM to be approved 

by the Food and Drug Administration for the treatment and 

prevention of postmenopausal osteoporosis.97,121–124 Although 
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the exact mechanism of raloxifene’s effects has yet to be 

determined, its metabolism is not reported to proceed through 

the P450 pathway like tamoxifen. 

Raloxifene is extensively metabolized though glucuroni-

dation pathways and may proceed through oxidation by the 

liver to electrophilic diquinone methide and o-quinones.125 

Although both of these metabolites may potentially be 

destructive, either their short half-life or stable minor produc-

tion decreases their clinical toxicity. 

Raloxifene is mostly known for its therapeutic use in 

osteoporosis, and while it failed as a breast cancer treatment, 

it is still effective at preventing breast cancer.49 Raloxifene’s 

effectiveness as a long-term therapeutic for reducing the 

occurrence of invasive breast cancer was examined in the 

MORE trial (multiple outcomes of raloxifene evaluation) 

where it was determined that it reduced the incidence 

of osteoporosis and breast cancer in postmenopausal 

women.126,127 Furthermore, unlike tamoxifen, raloxifene is 

not associated with, and may even be effective at, prevent-

ing endometrial cancer.127,128 The realization that raloxifene 

has fewer estrogen-like effects than tamoxifen in laboratory 

rats resulted in a clinical trial to compare tamoxifen and 

raloxifene’s efficacy as a breast cancer preventive and their 

effect in the uterus. In the Study of Tamoxifen and Raloxifene 

(STAR) trial, a Phase II, randomized double-blind evalua-

tion of the efficacy of raloxifene (60 mg oral) compared to 

tamoxifen (20 mg oral), it was determined that tamoxifen 

and raloxifene are equally effective at preventing breast 

cancer progression over a 5-year period. Furthermore, in 

81 months, raloxifene is 75% as effective as tamoxifen, and 

there were less thromboembolic events and fewer cataracts 

in the raloxifene group.62 In trials assessing raloxifene’s 

effect on the endometrium, it has been determined that, com-

pared to placebo, there was no difference, and compared to 

tamoxifen, raloxifene reduced the incidence of endometrial 

cancer.62,129 The observation that raloxifene does not increase 

the incidence of endometrial cancer, may be a result of its 

inability to stimulate the co-activator protein SRC1 in both 

uterine cells and breast cancer cell lines.72 Raloxifene also has 

no effect on vaginal lubrication,130 and similar to tamoxifen, 

raloxifene is associated with an increase in hot flashes, an 

increased risk of blood clots, and resistance.29

Arzoxifene
Arzoxifene is a third generation SERM that is a roloxifene 

analogue with the replacement of the carbonyl functional 

group with an ether linkage and the addition of a methyl 

group to the 4′ phenolic hydroxyl group.131,132 After raloxifene 

failed to show effects as a therapeutic in metastatic breast 

cancer, arzoxifene was developed to show that benzothio-

phenes were still a viable drug option in the treatment of 

breast cancer. During initial trials, it showed promise as 

being the “ideal SERM.” However, during late Phase II 

testing and Phase III trials, it was proven to be less effective 

than tamoxifen, destroying its efforts to be used as a breast 

cancer therapeutic.133 Arzoxifene uses a raloxifene base and 

then replaces the carbonyl group found on raloxifene with 

oxygen which results in a substantial increase in estrogen 

antagonistic potency compared to raloxifene. By doing this, 

bioavailability was also increased.134,135 Supporting this was 

the 10-fold improvement in IC50 values from raloxifene to 

arzoxifene.134 Arzoxifene is metabolized by the P450 sys-

tem to produce its active metabolite, desmethylarzoxifene, 

which has 8× greater affinity for ERα than arzoxifene and 

approximately 24× greater affinity for ERα than the active 

metabolite of tamoxifen, 4-OHT ligand.135–137 Additionally, 

like raloxifene, desmethylarzoxifene can be further oxidized 

to diquinone methide.138–140 

The primary goal for the development of arzoxifene was 

for it to be used for metastatic breast cancer. In initial stud-

ies, it was shown that arzoxifene caused inhibition of growth 

in breast epithelial cells while also inhibiting the growth of 

basal cells in the absence of estrogen. This differed from 

tamoxifen, which inhibited the growth of epithelial cells 

and caused the stimulation of basal cell proliferation.135 

In addition to its effect in breast cancers, arzoxifene also 

inhibited the agonistic effects of estrogen in the uterus and 

on endometrial cell growth.134,135 The combinations of these 

effects led to the exploration of arzoxifene in Phase I trials. 

In a Phase I trial of 32 women with metastatic breast cancer 

(all of which had received prior hormone therapy or chemo-

therapy), arzoxifene was given. None of the women saw an 

objective response and 19% had steady disease for greater 

than 6 months (6–34 months; median 7.7 months).141 It also 

proved itself to be as effective as estrogen in anti-absorptive 

effects on bone in postmenopausal women. Like tamoxifen, 

arzoxifene was found to decrease FSH and LH levels and 

increase SHBG.133 In addition, during other Phase I trials, it 

was found that arzoxifene caused decreases in proliferating 

cell nuclear antigen, IGF-1, and IGF binding protein 3.142 

Though no objective response was seen, the hormonal data 

and results on endometrium prompted Phase II trials. In these 

trials, results showed that lower doses (20 mg versus 50 mg) 

of arzoxifene showed better objective response rates, with 

hormone panels for FSH, LH, and SHBG confirming Phase I 

results.143 With regards to bone mineral density (BMD), the 
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study for Phase II was underpowered so there were not 

enough premenopausal women enrolled to make reliable 

inferences.144 Initial reports of the drug showed possible 

efficacy in endometrial cancer treatment. During Phase II 

trials, the drug was given to 34 patients and overall response 

rate was reported to be 31% (one complete response and 

eight PR). Results were comparable or better than previous 

treatments with progesterone with or without tamoxifen. In 

spite of supportive results, the drug was not pursued further 

by the manufacturer.141 

Though the drug was pulled after Phase II trials, some 

Phase III trials had begun and showed the drug had efficacy 

in the treatment of breast cancer. However, when compared 

head to head with tamoxifen, the results were disappointing. 

Tamoxifen proved superior in progression-free survival, 

time to treatment failure, and on study progression-free 

survival. However, it is important to note that there were 

no significant differences in overall response rate, clinical 

benefit rate, median response duration, or overall survival.141 

The major side effects reported throughout the trials included 

hot flashes (non-dose dependent), nausea, cutaneous side 

effects, neuromotor toxicity, and weight gain.133,141 However, 

as stated earlier, the drug was not pursued further by the 

manufacturer in the treatment of breast cancer. There still 

remains potential for this drug in the treatment of uterine 

cancers and postmenopausal bone density loss. 

Indole, tetrahydronaphthalene, 
and naphthol SERMs
Lasofoxifene
Lasofoxifene, similar to other SERMs, selectively binds 

human ERα and ERβ with an affinity similar to estradiol.145–147 

This SERM has been shown to function as a skeletal agonist 

and a breast and uterine antagonist.44,148–152 Lasofoxifene’s 

structure is similar to that of endogenous estrogens, with a 

polyaromatic phenol scaffold that may be oxidized to cat-

echols153 which may cause toxicity. Lasofoxifene is a third 

generation nonsteroidal SERM with a similar structure to 

idoxifene. The osteoporosis prevention and lipid lowering 

and Postmenopausal Evaluation and Risk Reduction with 

Lasofoxifene (PEARL) studies were aimed at evaluating the 

efficacy of lasofoxifene use in the treatment of osteoporosis. 

The results of the osteoporosis prevention and lipid lower-

ing, which assessed vaginal and bone effect of lasofoxifene 

in non-osteoporotic women, indicated that changes in BMD 

were significantly reduced in the lasofoxifene group com-

pared to placebo. It was also determined that there was an 

improvement in vaginal pH after 2 years of therapy.154 The 

PEARL trials showed that in postmenopausal women with 

low bone density, lasofoxifene therapy was associated with 

reductions in all breast cancer (79%) and ER-positive breast 

cancer (81%), as well as the reduction in non-vertebral (24%) 

and vertebral fractures (42%), coronary heart disease (32%), 

and stroke (36%) compared to placebo.155 Furthermore, the 

Comparison of Raloxifene and Lasofoxifene (CORAL) 

trial compared the effects of lasofoxifene, raloxifene, and 

placebo on BMD in postmenopausal women and found that 

after 2 years of treatment, lasofoxifene was associated with 

an improved lumbar spine BMD and reduced low-density 

lipoprotein cholesterol levels compared to placebo.151 In rat 

models, lasofoxifene, like most SERMs (including tamox-

ifen), also acted as an estrogen agonist in serum cholesterol156 

and had the effect of reducing total serum cholesterol and 

low-density lipoproteins. This suggests that there may be 

potential cardiovascular advantages associated with the treat-

ment of osteoporosis with SERMs. Compared to placebo, 

lasofoxifene was associated with leg cramps, hot flashes, 

endometrial hypertrophy, uterine polyps, and vaginal can-

didiasis.155 Furthermore, in rat models, lasofoxifene has no 

effect in the prostate.145 The absence of effect in the prostate 

indicates that lasofoxifene may also be a useful therapeutic 

for men with some degree of hypogonadism. 

Bazedoxifene
Bazedoxifene is a third generation SERM created as an 

indole-based ER ligand that was specifically designed to 

prevent and treat postmenopausal osteoporosis with reduced 

negative effects compared to previous SERMs, and can be 

given with conjugated equine estrogens for menopausal 

symptoms.157 Bazedoxifene design differed from its pre-

decessors in its core binding domain, which consists of a 

2-phenyl-3-methyl indole, a side chain effector region con-

nected to the core binding region via a methylene hinge, and 

a hexamethylenediamine ring at the side chain terminus.44 

Part of bazedoxifene’s design was to prevent effects on the 

uterus such as those seen with levormeloxifene, idoxifene, 

and droloxifene. Bazedoxifene’s binding affinity is slightly 

higher for ERα compared to ERβ.158,159 The metabolism of 

bazedoxifene involves P450 glucuronidation at the indole 5 

and 4′ hydroxyl positions.160 

In general, bazedoxifene’s estrogenic effects are agonist 

in bone and lipid metabolism and antagonistic in breast and 

endometrium.44,161,162 Bazedoxifene acetate is effective in 

preventing and treating osteoporosis, and improving lipid 

profile.44 A 2-year, double blind study designed to assess the 

effects of bazedoxifene on BMD determined that BMD was 
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improved at all skeletal sites compared to placebo, which was 

similar to a 60 mg raloxifene (positive control) treatment. 

Furthermore, the incidence of new vertebral fractures was 

significantly lower in the bazedoxifene group compared to 

placebo. There was no difference in the incidence of vertebral 

fractures or breast or endometrial carcinoma between treat-

ment groups.163–165 The SMART-1 trial investigated the use of 

bazedoxifene and conjugated estrogens compared to placebo 

on the effects of endometrial lining and BMD. The results 

indicated that the bazedoxifene plus conjugated estrogens 

group had reduced incidence of endometrial hyperplasia over 

placebo at 2 years and a significantly increased BMD in the 

lumbar spine and hip.166,167 In a separate 5-year international, 

double blind, randomized, trial (n=7,492) it was determined 

that bazedoxifene reduced the risk of new vertebral fractures 

at both a dose of 10 mg and 40 mg compared to raloxifene 

(60 mg) and placebo. Additionally, the risk of non-vertebral 

fracture risk was reduced by 44% with bazedoxifene (20 mg) 

compared to raloxifene. In the same sample, it was deter-

mined that bazedoxifene (20 mg) decreased the risk of new 

vertebral fracture by 50% in those who were at a higher frac-

ture risk or had a previous vertebral fracture (n=1,771).163 The 

most common adverse effects observed with bazedoxifene 

use are hot flashes and leg cramps, and the rates of endome-

trial hyperplasia, cancer, and polyps were low in these trials. 

The most serious negative effect was an increased risk of 

venous thromboembolism.163,168,169 Furthermore, transvaginal 

ultrasonography and mammography were administered to a 

subset (n=753) of patients taking bazedoxifene, raloxifene, 

and placebo in order to assess endometrial safety and breast 

density. The results showed that there was no between group 

differences in mean endometrial thickness or change from 

baseline in endometrial thickness associated with the use 

of either bazedoxifene or raloxifene.168,170 This finding was 

supported by a randomized, double blind, placebo and active 

controlled study that found that bazedoxifene had no activity 

on endometrial or breast tissue.171 

LY20266948
The goal in the development of LY2066948 was to develop 

the ideal SERM that did not have the toxic effects of 

tamoxifen or its other derivatives. The ligand binds both 

ERα and ERβ with high affinity Ki 0.51 nm and 1.36 nm, 

respectively.172 LY2066948 shows potent uterine antagonistic 

effects.173 This was demonstrated through both in vitro and 

in vivo studies. In in vivo studies following treatment with 

estrogen in immature female rats (3 weeks), a significant 

(3–4×) increase in uterine weight was seen. Treatment with 

LY2066948 showed significant inhibitory effects on the 

estrogen stimulated uterine growth at a dose of 10 mg/kg.173 

The ED50 value for LY2066948 was determined to be 0.07+ 
-0.02 mg/kg.172 With estrogen stimulus, potency compares 

well with tamoxifen and raloxifene.134 Additionally, overall 

results show no significant ovarian stimulation.172 In vitro 

studies of LY2066948 in uterine tissues showed 87.5% 

inhibition of E2 stimulated response at 1 nM and IC50 of 

10.7 nM. The IC50 of tamoxifen was 421 nm with only 

53.4% inhibition.172 LY2066948 is similar in structure to 

raloxifene, and undergoes metabolism through the P-450 

pathway in the liver. This metabolism leads to the eventual 

formation of the metabolite 3,4-o-quinone174,175 and, based on 

its structure, this metabolite is not as toxic as those produced 

by other SERMs.176

Tamoxifen versus raloxifene
Raloxifene is used to reduce the risk of breast cancer 

in postmenopausal women with osteoporosis, and both 

tamoxifen and raloxifene are used to decrease the risk of 

breast cancer in high-risk women. In general, raloxifene has 

less estrogen-like effects compared to tamoxifen. The most 

notable distinction between these two drugs is that raloxifene 

does not share the pro-estrogenic effects of tamoxifen on 

the endometrium, which corresponds to an increased risk 

of endometrial cancer.128 A potential mechanism for the 

difference in actions of these drugs is based on differential 

actions within the ligand binding domain (AF-2 domain) 

of ERα. ERα has an amino acid Asp-351 present within 

the ligand binding domain whose relationship to the anti-

estrogenic side chain and the AF-2 site profoundly affects 

the nature of the estrogen-like outcome. In the case of ral-

oxifene, removing the neutralizing change of the piperidine 

by substituting a cyclohexane resulted in increased estrogen-

like actions, and moving the side chain of 4-OHT further 

away from Asp-351 also resulted in enhanced estrogen-like 

activity.177,178 Similarly, the effect of raloxifene is altered by 

changing the distance between the piperidine nitrogen and 

the negatively charged amino acid Asp-351. It is believed 

that the sidechain of raloxifene shields and neutralizes the 

Asp-351 to produce an anti-estrogenic ERα complex within 

the uterus.178 

Tamoxifen toxicity
Tamoxifen and TOR are both nonsteroidal triphenylethylene 

derivatives, differing only in the substitution of a chloride 

atom for hydrogen in an ethyl chain of TOR.85 One major dif-

ference between the two drugs is that tamoxifen is associated 
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with an increased risk of endometrial cancer, and TOR has 

less genotoxic potential and may not have an association 

with endometrial cancer. Endogenous estrogen alone is 

known to be an endometrial carcinogenic,84 and tamoxifen is 

a partial agonist of estrogen in endometrial tissue. However, 

estrogen-like activity is unlikely to be the only mechanism 

resulting in tamoxifen’s effects on the endometrium since 

the tumors caused by endogenous estrogens are usually low 

stage and grade,179 and tamoxifen associated tumors are more 

aggressive.180,181 

The increased incidence of endometrial cancer observed 

during tamoxifen administration are believed to be due to 

the formation of major DNA adducts primarily formed via 

sulfonation of α-hydroxylated tamoxifen metabolites such as 

α-OHTAM and hydroxyl-N-desmethyltamoxifen.81,91,182–184 

As previously noted, tamoxifen’s activity is dependent on 

its metabolism by P-450 enzymes within the liver. Endog-

enous estrogens, which are also known as carcinogens, are 

also metabolized to form 2, and 4-hydroxy catechols.185 It is 

believed that estrogens 4-hydroxy catechol metabolites dis-

play the most genotoxicity due to o-quinones’, a 4-hydroxy 

catechol metabolite, ability to react with DNA to form 

genotoxic DNA adducts.185 Metabolism of tamoxifen pro-

duces reactive carbocation, o-quinone, and quinone methide 

intermediates.186–189 It appears that these metabolites have the 

potential to form genotoxic DNA adducts. 

These DNA adducts generate primarily guanine-to-thymine 

transversions in mammalian cells that have a large mutagenic 

potential and have been detected in the endometrium of 

women treated with tamoxifen.190–193 If not repaired, these 

adducts may cause mutations that can lead to endometrial 

cancer.194 Conversely, TOR lacks the DNA adduct-forming 

ability and the genotoxicity of tamoxifen and has not been 

associated with the increased risk of endometrial cancer.91–95 

Similarly, tamoxifen has been confirmed to function as a 

potent hepatocarcinogen, which may be a result of its DNA 

adduct-forming ability, and the lack of hepatocarcinogen 

ability of TOR may again result from its inability to form 

DNA adducts.85 Supporting genotoxicity and hepatocarcino-

genesis associated with tamoxifen, it was determined that 

tamoxifen increases point mutations and deletion mutation 

in the liver of gpt delta rats, and this effect was not found 

with TOR administration.195 Both tamoxifen and 4-OHT can 

be metabolized by P450 to 3,4,dihydroxytamoxifen that can 

proceed to o-quinones via oxidation, and this metabolite was 

determined to have an extended half-life and the potential 

to cause genotoxicity, and may cause alkylation of amino 

acid residues on proteins.196 Another potentially more 

carcinogenic metabolite of tamoxifen are the carbocations, 

which are produced from sulfonation, and the subsequent 

loss of a sulfate group following hydroxylation of tamoxifen 

by P450 at the α-position.188 This creates a highly reactive 

electrophilic carbocation that has a high affinity for bind-

ing the exocyclic amino group of quinine in DNA, leading 

to DNA adduct formation and potentially, mutagenesis.197 

Lastly, quinone methides, which differ from quinones due 

to a methylene group replacing the carbonyl oxygen, are 

formed following a two-electron oxidation of 4-OHT.174,187 

It appears that quinone methides have the ability to form 

benzylic adducts of macromolecules and therefore may con-

tribute to DNA adduct formation,198,199 although their extent 

of involvement has not been determined. 

Metabolites of the benzothiophene 
SeRMs
Raloxifene is extensively metabolized though glucuronida-

tion pathways, and may proceed through oxidation by the 

liver to electrophilic diquinone methide and o-quinones.125 

Diquinone methide, which is also a metabolite of arzoxifene, 

is an electrophilic, active intermediate that may be a P450 

3A4 inhibitor in human liver microsomes and may result in 

adduct formation with apoprotein.138–140 However, the half-

life of diquinone methide is less than 1 second, suggesting 

that it does not significantly contribute to the toxicity profile 

of raloxifene. The other metabolite of raloxifene, a relatively 

stable o-quinone, is a known toxin; however, it is the minor 

product of raloxifene metabolism.125

Conclusion
ER ligands have historically been classified by their actions, 

either as an agonist or an antagonist, but in reality, it appears 

that each falls somewhere within a continuum of agonist and 

antagonist and is dependent on multiple aspects of each tissue 

and drug. The ideal SERM would regulate menopausal symp-

toms, protect the skeleton, and prevent breast cancer without 

the negative effects associated with hormone therapy. 
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