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ABSTRACT The time integrals of  the responses of dark-adapted Limulu~ ventral 
photoreceptors to flashes exhibit a supralinear dependence on intensity at 
intermediate intensities. By decomposing the responses into their elementary 
single-photon components ("bumps"), we are able to calculate the overall quantum 
efficiency and to display the time courses of the bump amplitude and rate of  
appearance. Since the time course of  the flash response is not slow compared with 
that of  the bump, it was necessary, in order to carry out the decomposition, to 
develop a new technique for noise analysis of  dynamic signals. This new technique 
should have wide applications. Our main finding is that the supralinearity of  the 
flash responses corresponds to an increase in bump amplitude, with little change in 
bump duration or quantum efficiency. The time courses of  the bump rate and of 
the change in bump amplitude are peaked and have widths similar to that of the 
response itself. The peaks of  the time courses of the bump rate and amplitude 
displayed against the starting times of the bumps do not coincide and occur ~80 and 
~40 ms, respectively, before the peak of the response. The time from the start of a 
bump to its centroid is ~70 ms, which means that the time at which the bump 
centroid reaches its maximum follows the response peak by 30 ms. These results 
impose constraints on possible mechanisms for the amplitude enhancement. 

I N T R O D U C T I O N  

Many photoreceptor  cells respond to dim illumination with isolated slow potentials or  
"bumps ,"  which can be identified as the responses to single photons (Fuortes and 
Yeandle, 1964; Lillywhite, 1977). These responses have been seen in the inverte- 
brates Liraulus (Yeandle, 1958; Millecchia and Mauro, 1969), locust (Scholes, 1965), 
fly (Kirschfeld, 1965; Wu and Pak, 1975), leech (Walther, 1965), spider (DeVoe, 
1972), and Hermissenda (Takeda, 1982), and in the vertebrate toad (Baylor et al., 
1979). 

At very low light intensities, the rate of  appearance of  the bumps  increases in 
propor t ion to light intensity (Fuortes, 1959; Adolph, 1964). At higher intensities, the 
bumps appear  to merge, which suggests that the general receptor  potential is a 
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summation of  these bumps (Rushton, 1961). I f  one assumes that the bumps are not 
so grossly modified by interaction as to lose their identity, one can decompose the 
signal into its elements by techniques of noise analysis (for a review, see Neher and 
Stevens, 1977). These techniques have been applied to the steady state responses of  
photoreceptors. When applied to species where individual bumps have not been 
seen, the analysis indicates the presence of  bumps too small to be directly recorded by 
standard electrophysiological methods (Mauro et al., 1982). Thus, bumps appear to 
be fundamental to the process of  phototransduction. The analysis also shows that the 
sublinear dependence of response amplitude on intensity, which is associated with 
light adaptation, arises primarily from a reduction in the bump amplitude, with 
relatively little change in the bump quantum efficiency or time course (Dodge et al., 
1968; Wu and Pak, 1978; Wong and Knight, 1980; Wong et al., 1982). 

Light adaptation is not the only nonlinearity that appears at physiological levels of 
light intensity. A cell sensitization that manifests itself as an enhancement of the 
amplitude of the response to flashes of light can appear as a consequence of  prior or 
simultaneous conditioning light. This phenomenon has been seen in the invertebrates 
barnacle (Hanani and Hillman, 1976; Ventura and Puglia, 1977) and Limulu.~ (Fein 
and Charlton, 1977), and, in the presence of phosphodiesterase inhibitors, in the 
vertebrate toad (Capovilla et al., 1983). At very low intensities, where individual 
bumps can be examined, Stieve and Bruns (1980, 1983) observed in Limu lus  a 

light-induced increase in bump amplitude and quantum efficiency. This sensitization 
may be related to the supralinear dependence on intensity of  the amplitude of  the 
responses of  dark-adapted cells to flashes, in Limu lus  (Brown and Coles, 1979) and in 
toad (Yau et al., 1981; Capovilla et al., 1983). 

In this article, we will concentrate on the supralinearity phenomenon in Limulus .  
Because this phenomenon has been seen only in transient signals, it could not be 
analyzed by standard stochastic noise-analysis techniques. Sigworth (1980, 1981 a, b) 
generalized the steady state techniques to transient signals whose noisy nature is due 
to the random opening and closing of  ionic channels. His methods are appropriate 
for rectangular unitary signals. In the present article, we develop a method for 
handling more general unitary time courses. We have applied this methodology to 
appropriate experiments in order to determine the quantal correlates of  the 
supralinearity in Limulus .  

T H E O R Y  

The development of the noise-analysis procedure for transient signals is parallel to 
that for the steady state, as presented, for example, by Wong and Knight (1980). The 
model has four assumptions: (a) that the signalJ(t) recorded at time t arises from a 
summation of elementary events that have begun at times t' prior to t; (b) that the 
appearance of  the elementary events is a random Poisson process with a mean rate 
X(t'); (c) that the elementary events have a common normalized waveform g(t  - t ' )  
(zero for t - t '  _< 0); and (d) that their amplitude h(t ' )  can change with time but that 
the temporal dependence of  the amplitude is deterministic, and that the amplitude of 
an elementary event is a random variable whose probability density is determined 
only by its beginning time. 

The first two assumptions are common in photoreception studies, but the other 
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two merit some inspection. Assumption c was made because steady state noise analysis 
shows a very weak dependence of  the bump time course on light intensity over 5 log 
units of  intensity. However, although the bump time course in fact does not change 
appreciably in the steady state, it might change in transient responses. Our  
experimental results give two lines of  evidence that support  the assumption that the 
bump time course in fact does not change very much. The first is the similarity of  the 
bump calculated from noise analysis to the isolated bump observed in dim 
illumination. The second is the result of  a method, to be described below, that shows 
that there are indeed no appreciable changes in the bump time course during the 
response. 

In assumption d, the change in the amplitude h reflects a possible interaction 
among the chemical processes leading to the bump formation. Past fluctuation in the 
response could make the temporal behavior of  h nondeterministic. Our  assumption 
that h is deterministic to a good approximation conforms to the steady state analysis 
of  the response of  the ventral photoreceptor  of  Limulus (Wong et al., 1982). Wong et 
al. showed that in the steady state the bump amplitude depends strongly on the mean 
level of  the preceding response but  hardly at all on previous shot-noise fluctuations of  
the response. 

An additional argument that can be brought  against assumption d is that the size of  
the bump itself is a random variable (see Grzywacz and Hillman, 1985, and Laughlin 
and Lillywhite, 1982, for  earlier references). We take into account the effects of  the 
random nature of  the bump amplitude by making deterministic the temporal 
behavior of  the mean of  the bump amplitude distribution. Grzywacz and Hillman 
(1985) found the bump area distribution to be exponential in continuous low- 
intensity light. Since the flash intensities used here are quite low, we have assumed the 
same distribution to be applicable. With the assumption of  a common normalized 
waveform g, this implies an exponential amplitude distribution as well. 

Finally, assumption d states that the amplitude of  the bump is determined only by 
its starting time. This is equivalent to assuming that the stage of  the amplification 
process in which the bump amplitude is determined precedes the stages in which the 
time course is determined. This is a plausible but  arbitrary assumption, and an 
analysis of  the possible alternatives will be made in a future article. 

In this article, we shall use a set of  conventional normalizations that have proven 
convenient in past work. If  a bump is described by the waveform B(t) (with the 
physical dimension of  nanoamperes), then we choose its amplitude h (in nanoam- 
peres) as 

f dt[B(t)] 2 
h 

f dt[B(t)] 

It is convenient to define the bump duration, T (milliseconds), as 

[ f  dtB(t)] ~ 
T =  

f dt [B(t)] 2'  

which in turn leads to a normalized bump waveform, g(t) (dimensionless), 

B(t) 
g(t) = T f dtB(t-----)" 
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We note that for a rectangular waveform, h is in fact the physical height and T is the 
physical duration, while g(t) has physical height unity. Given the four  above 
assumptions, the mean, R(t), and the variance, V(t), over repetitions of  the random 
response, J(t), can be evaluated by straightforward generalization of  the method of  
Rice (1944): 

n(t) = f t| g(t - t')dt', (1) 

V(t)  = 2 - t') dr'. (2) 

(Here the factor of  2 follows f rom the assumed exponential amplitude distribution, 
for  which (h 2 ) = 2 (h)  2.) For a derivation of  all the important  equations in this article, 
see the Appendix. 

One  can note the similarity of  these results to the steady state Eqs. 1 and 2 in Wong 
and Knight (1980), where the difference is that there X is constant and can be taken 
outside the integral. Recognizing the relationship of  the mean and variance to the 
propert ies of  the basic components  of  the signal (Campbell 's theorem) is usually the 
first step in the standard techniques of  noise analysis. The second step is to show that 
if one knows the time course, g, the variables X and h can be determined f rom the 
noise. In the steady state case, this is easily seen. Here,  ~, and h are constant, and Eqs. 
1 and 2 reduce to: 

R = AhT, (3) 

V = 2kh2T, (4) 

which are Eqs. 5 and 6 in Wong and Knight (1980). Now we see that if we have an 
estimate of  g, measurement  of  R and Vyields values o f h  and X. Similarly, Eqs. 1 and 2 
are a pair of  integral equations that can be solved for  X(t) and h(t). To illustrate with a 
simple example, if g is an exponential shot with time constant r, direct calculation 
f rom Eqs. 1 and 2 yields: 

1 (R~t) dR(t)l=~(t)h(t) ' (5) + -g / - /  

1 (v(t) 1 ev(t) I -~ - -~  + ~ ~ / =  k(t)h~(t). (6) 

In this case, if one has an estimate of  r and values for the mean, the variance, and 
their time derivatives, which can be readily derived f rom the data, one can easily solve 
for X(t) and h (t). 

Eqs. 5 and 6 help us to see the first major  difference between the steady state 
techniques of  noise analysis and the transient techniques. In the steady state case, the 
statistical moments  can be determined f rom values of  the signal at different instants 
o f  a single extended trial. However,  the distribution of  a transient signal is time 
dependent  and so are the statistical moments  in Eqs. 5 and 6. Thus, in order  to obtain 
statistical propert ies of  the signal at a particular time, one must use many repeated 
trials (Wong et al., 1974; Sigworth, 1980). 

We now set out a procedure  for  estimating g(t) f rom the ensemble of  flash 
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responses. The data are decomposed in such a way as to determine an equivalent 
power spectrum, the "decompound  power spectrum," which is identical in shape to 
that o f  a t ime-homogeneous shot noise generated by bumps  of  the same shape as 
those comprising the flash responses. 

For this purpose,  one measures the t ime-dependent  autocovariance, K(tl, t9), of  the 
signal, which is the product  o f  the differences between the actual values of  the signal, 
J(t  3 and J(ts), and its mean values, R(h)  and R(ts), averaged over the different 
trials: 

K(q,  ts) = (J ( t3  - R(t~))(J(ts) - R(ts)). (7) 

By using methods similar to those employed by Rice (1944) (see Appendix), one 
obtains: 

K(t~, t~) = 2 f ~ X(t')hS(t')g(t~ - t ')g(ts - t') dt'. (8) 

A double Fourier t ransformation of  Eq. 8 now leads to a function of  two temporal  
angular velocities, F(~0, 0). Concentrat ing on the pathway 0 = - w ,  however, one 
obtains: 

F(~0, -00) = 2~hS(0)l~(w)I s, (9) 

where the tilde indicates a Fourier  transform. This equation is parallel to that for  the 
steady state system: 

r ( r  = 2XhSlR(~0) l ~. (10) 
(This is Eq. 16 in Wong and Knight, 1980.) Note the similarity of  F i n  Eqs. 9 and 10, 
both being proport ional  to Igl ~. Now F(w, - w ) ,  which we call the decompound  power 
spectrum ofJ(t) ,  can be calculated directly f rom the data. A practical means of  doing 
so is provided by the double Fourier t ransform of  Eq. 7 in pathway 0 = -r which 
gives: 

F(0:, - w )  = I](*:)is _ I/~(00 ) is. (11) 

That  is, the power in the noise at each frequency is the average, over  the trials, o f  the 
power, minus the power of  the average of  the signal at that frequency. With the result 
o f  this measurement,  Eq. 9 determines the normalized g(t) by use of  Wong and 
Knight's methods. 

METHODS 

The preparation used in this investigation was the ventral photoreceptor of Limulus. The 
experiments were performed in full in four cells. The morphology of this cell is well known 
(Caiman and Chamberlain, 1982) and the methods for its isolation have been described (Clark 
et al., 1969). The lateral olfactory nerve was dissected out, and its enclosing blood vessel was 
removed. The connective tissue remaining in the cell was digested with 0.7-0.9% protease 
P5130 (Sigma Chemical Co., St. Louis, MO). After this treatment, the nerve was washed four 
times, mounted in a small Perspex chamber, and perfused with artificial seawater. The 
composition of the seawater was similar to that used by Bayer and Barlow (1978): 430 mM 
NaCl, 10 mM KCI, 10 mM CaCl~, 20 mM MgCl~, and 27 mM MgSO4. It was buffered to pH 7.3 
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with 0.5 mM HEPES, 0.5 mM Tes (Sigma Chemical Co.), and a titration of  NaOH (from a 3-M 
solution). The experiments were performed at room temperature (17-21"C). 

The light source was a green light-emitting diode (LED) solid-state lamp (4958, Hewlett- 
Packard Co., Palo Alto, CA). This particular LED was chosen because of  its high brightness and 
the fact that its peak wavelength, 565 nm, is near the maximum of  the Liraulus ventral eye 
action spectrum (Graham and Hartline, 1935; Adolph, 1968). The electronic control system 
for the LED was built by us according to Nygaard and Frumkes (1982). The control voltage for 
the LED was supplied by a computer (Apple II Europlus, Apple Computer Inc., Cupertino, 
CA) through an eight-bit A/D and D/A card (Mountain Computer Inc., Scotts Valley, CA). The 
timing was done either by the internal clock of  the computer or  by a digital timer (ES-8, AMP 
Instruments, Jerusalem). The light from the LED was carried into a shielded cage through a 
0.5-mm fiber optic bundle (American Optical Co., Buffalo, NY). The tip of  the optic bundle 
was placed near the impaled cell. The intensity of  the light source was attenuated by means of  
neutral-density filters. The unattenuated light intensity elicited -105 bumps/s in sensitive 
photoreceptors. 

The ventral photoreceptor of  Limulus has regenerative properties (Millecchia and Mauro, 
1969). These properties are a consequence of  voltage-dependent currents that appear when 
the cell is depolarized (Fain and Lisman, 1981; Lisman et al., 1982). In order  to avoid this 
complication, the experiments were performed with the cells voltage-clamped at their resting 
potentials ( - 4 0  to - 6 5  mV). We used the classic two-electrode voltage-clamp technique (Katz 
and Schwartz, 1974; Smith et al., 1980). Under voltage clamp, the cell could be considered 
isopotential (Brown et al., 1979). The microelectrodes were filled with 4 M KCI (DC resistance, 
20-40 Mfl) and connected to the voltage-clamp system with Ag/AgCl electrodes. 

The voltage-clamp system had two modes of  operation. In the first, the two electrodes 
recorded the membrane potential with respect to the bathing solution, whose potential was 
held at virtual ground. The cells that were accepted for study showed the same resting potential 
in both electrodes, the same response amplitude (to within 1 mV) to bright light, and 
completely correlated bumps. 

The second mode of  operation was the voltage-clamp mode. In this mode, the clamping 
amplifier supplied to one of  the electrodes the current necessary to keep the membrane 
potential equal to the controlling level. The current was measured by a virtual-ground 
operational amplifier that worked in a current-to-voltage converter mode (1 nA/1 mV). The 
system could supply up to 1.5 #A. Tested on an artificial cell with passive electrical 
characteristics similar to those of  the photoreceptor cells (an input resistance of 10 Ml2 and a 
capacitance of 1 nF; Brown and Coles, 1979), the system responded to a 10-mV step change in 
the command voltage by reaching its final state (within noise) in <50 #s. The capacitive 
coupling between the two microelectrodes was reduced by connecting to ground an aluminum 
shield around the current microelectrode, connecting an aluminum shield around the voltage 
electrode to the feedback control signal through a large capacitor, using only a minimum depth 
of  solution covering the cell, and spacing the two microelectrodes as far apart as possible 
(Smith et al., 1980). 

The signal out of  the voltage-clamp system was first amplified by an oscilloscope (RM 502A, 
Tektronix, Inc., Beaverton, OR) and then filtered. The major frequency components of 
interest in the biological signal lie below 20 Hz. The high-frequency components of  the 
instrumental noise were filtered out with a two-pole Bessel low-pass filter with half-power point 
at 70 Hz, and by a band-rejection filter at 50 Hz, with a quality factor of  3. The half-power 
point of  the total filter system was ~40 Hz. In Fig. 1, one can compare the residual 
instrumental noise from the artificial cell cited above with the biological noise typical in the 
experiments. The trace shows the instrumental noise. The lines indicate the size of  the smallest 
digitizing bin used in this work. Practically all the instrumental noise falls within this lowest bin. 
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The graph shows the smallest biological variance recorded in the present work as a function of 
time after a flash at t = 0. Clearly, the instrumental noise in the present work is small and can be 
neglected. 

The data were collected by the same Apple computer that controlled the stimulus. The A/D 
system could accept _+ 5 V, and a limiter for these voltages was installed at the input of the 
computer, preventing crosstalk between the A/D and D/A channels, which appeared when the 
input exceeded _+8 V. The computer sampled the signals at 39.1-#s intervals, and the average 
of 128 such consecutive samples was stored on a floppy disk. This procedure corresponds to a 
sampling rate of 200 Hz and was chosen to minimize the problem of aliasing as well as to 
provide further high-frequency filtering. 
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FIGURE 1. The instrumental noise. 
In the upper part of the figure is an 
example of the instrumental noise. 
This noise was recorded in an artifi- 
cial (PC) cell with parameters R = 10 
Mfl and C = 1 nF, similar to those of 
the biological cell. The trace is from a 
pen recorder (model 2200, Gould 
Inc., Cleveland, OH). The lines above 
and below the trace mark the smallest 
bin used in the computer during the 
course of this research, showing that 
the instrumental noise fails entirely 
within one bin. The dots in the lower 
figure are the logarithms of the small- 
est biological variance recorded after 
a short flash of light at t = 0 in cell 1 at 
intensity I1 (cell numbers refer to Fig. 
9). For comparison, the instrumental 
variance is shown as a horizontal 
straight line. Note that the biological 
variance is much higher than the 
instrumental, the difference reaching 
almost five decades at its maximal 
point. 

After successful cell penetration, the photoreceptor was allowed to dark-adapt for 30 min. 
Then very low-intensity, 5-ms flashes of light were presented to the cell and the intensity was 
found, which resulted in about two bumps per flash; we call this intensity I0. The experiment 
then consisted of repeated sets of three runs. 2 s before each run, 256 points (or 1.28 s) were 
averaged for use as a baseline. In each run, 10 flashes of light were delivered at 30-s intervals, 
the time needed for dark adaptation after each flash (Brown and Coles, 1979). The number of 
points recorded after a flash was 256, and the response never lasted more than 150 points. In 
the first run, the light intensity was I0, in the second, 1 log unit higher (I0, and in the third, 1.5 
log units higher than I0 (I].5). 

After the experiment, the average response amplitude was calculated across each run. In 
most cells, the average amplitude for a given light intensity rose slightly with the run number 
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and then stabilized and finally declined. The first rising phase may be a continuation of dark 
adaptation and celt recovery from dissection, and the final falling phase is a consequence of the 
deterioration of the cell. Usually the stable period lasted ~90 min (three to four sets) and our 
final analysis was done only for this period. 

At the I0 intensity, most of the bumps were isolated, and we extracted four kinds of 
information: (a) the average time course of ~ 10 consecutive, clearly visible and isolated bumps, 
with their times of steepest rise made to coincide; (b) the average of the amplitudes h of isolated 
bumps, where h is defined above; (c) the mean number of bumps that appeared at this intensity; 
and (d) the mean total area (time integral) of the response. In the absence of illumination, 
spontaneous bumps appear (Yeandie and Spiegler, 1973). In our experiments, their rate was 
~0.1 s -1 and their contribution to the area at low intensities was only ~2%. This contribution 
was even smaller at higher intensities. 

For higher intensities, we extracted five kinds of information: (a) the time course, g(t), of the 
bump as calculated from the decompound power spectrum; (b) the mean amplitude, h(t), of the 
bump as a function of time as extracted from our generalized Campbell's theorem; (c) the rate, 
X(t), of the bumps as function of time, again from Campbell's theorem; (a t) the mean total area 
of the response; and (e) the total number, N, of bumps elicited by the flash. The last number is 
obtained by time-integrating the rate of the bumps: 

N = s174 k(t) dt. (12) 

In order to estimate the bump time course, g(t), we make use of the decompound power 
spectrum F(w, -w) (see Eqs. 9 and 11). We determined F(w, -w) by Eq. 11. For a given 
intensity, we first calculated the square of the absolute value of the Fourier transform of each 
response. We then averaged over the different trials. From this result, we subtracted the square 
of the absolute value of the Fourier transform of the mean response as taken from the different 
trials. The result of the subtraction is F(w, -w). The Fourier transforms were performed by the 
classic FFT algorithm (Cooley and Tukey, 1965). We call attention to the fact that the 
decompound power spectrum has dimensions different from the usual power spectrum. This is 
because the decompound spectrum is a double Fourier transform of the autocovariance 
function, while the usual power spectrum is a single transform. The dimension of the usual 
spectrum is amperes squared times seconds, and that of the decompound spectrum is amperes 
squared times seconds squared, or coulombs squared. Having F(w, -r in hand, we used Eq. 9 
to estimate g by the first method of Wong and Knight (1980). They chose for g a simple analytic 
form: 

g(t)=2~"+'(ng[t]"e-,/,. 
(2,)! ~r] 

(13) 

They pointed out that in these conditions the normalized decompound power spectrum, as 
calculated from Eq. 9, is: 

F(w, -w) 1 
F(0, 0) [1 + (tar)2] "+l " 

(14) 

The parameters n and �9 can be evaluated by fitting the right side of Eq. 14 to the experimental 
decompound power spectrum in scaled form in the following way. From Eq. 14 one 
obtains: 

F(w, -oa) 
og - ~  - ( n +  1)log(1 + (w'r)2), (15) 
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which for a given n is a universal curve in log 0~, which is only shifted to the right or left by 
changes in r. We prepared templates for n from 1 to 10 and looked for the best fit of  these 

templates to the experimental log (F(0~, -~o)/F(O, 0)). This provides both n (from the best 
template) and r (from the best shift), and determination of  g(t) follows from Eq. 13. 

In order  to verify whether there was any trend in the bump time course, we divided the flash 
responses into three equal sections for the low intensity and two for the high intensity. These 
were the largest numbers of  sections into which it was possible to divide the response while 
keeping each section long compared with the bump duration. Making the approximation that 
each of  these periods is long compared with the typical bump duration, the decompound 
power spectrum of  the truncated responses as given by Eq. 11 is approximately (see 
Appendix): 

F(~o, - oo) = (2 fX(t')h~(t ') dr')I~(c0)I', (16) 

where the limits of  the integral are, respectively, the beginning of  the response and T' (the end 
of  the first section), T' and T" (the end of the second section), and T" and the end of  the 
response at the low intensity; and at the high intensity, respectively, the beginning and T', and 
T' and the end. This is again proportional to 1~(~0)1 ~ and allows an estimation of  g(t). The 
approximation may be fairly coarse but this does not preclude us from concluding from an 
observed constancy of  the calculated g that the bump time course is probably quite constant 
during the response. 

The essential parameter of  the bump time course is one that indicates its typical duration, 
T~p .  Referring to Eq. 13, it is: 

(n!)~2 ~'+l r (17) 
T ~ p  (2n)! 

The mean amplitude, h(t), and the rate, Mt), of the bumps as functions of  time were 
calculated from Campbell's theorem by Eqs. 1 and 2. With g(t) expressed as in Eq. 13, it is 
straightforward to calculate X(t)h(t) and X(t)h~(t) in the same general manner as we did for the 
illustrative Eqs. 5 and 6. The repeated differentiation of Eqs. 1 and 2 yields: 

(2n), ~ ( n + l ) ' ~ - ' d ' R  (18) 
X(t)h(t) = (n!)22~,+1 i-0 \ i dt-'-T 

(n!)22 ~+s ,-o \ i ]k 2] at" (19) 

I f r  is small enough, only the i = 0 term in the summations would have to be taken into account 
for the most interesting range of  t. This would mean that the bump is so fast that we could do 
steady state noise analysis; no time derivatives at all would need to be taken. However, such an 
approximation is not adequate for our data, for which the response rise time may approach the 
bump duration. We therefore took the first two terms of  Eqs. 18 and 19: 

X(t)h(t) (n!)22~,§ + (n + 1)--~- , (20) 

(2n)! [2V 1)dV] 
x(t)n'(t) = ~ [ - 7  + (2. + atj" (21) 

In order  to check this approximation, we postulated gamma-distribution functions for R and 
V, as in Eq. 13, with values for their constants close to those observed experimentally. With 
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these functions, the higher-derivative components in the sums in Eqs. 18 and t 9 were found to 
contribute on the average no more than 5% to the summations in the range between the times 
where the response exceeded 10% of  its maximum. About 98% of  the area of  the response was 
contained in this range. 

To calculate R and V from the data, early baselines were subtracted. The derivatives were 
calculated by the standard five-point parabola approximation (Scheid, 1968). Since they were 
derived from quotients of  numerical data, h(t) and h(t) were very sensitive to noise where these 
functions were small. In these regions, in order  to calculate N as expressed by Eq. 12 or  the 
time average of  h, hand extrapolations were made for X(t) and h(t). These extrapolations never 
represented more than 5% of  the total N. 

As a control for the validity of  the transient noise-analysis technique, we have applied our 
procedure to a set of  simulated signals. Each signal was constructed from a Monte Carlo 
sample of  bump initiation time points drawn from a time-dependent Poisson process, which led 
to superimposed bumps of  fixed time course, and with the bump amplitude given by a specified 
function of  initiation time. The three time functions for the Poisson rate process, bump time 
course, and bump amplitude were all of the form at ~ exp (t/z), with a time offset relative to the 
rate and an added dark value for the amplitude. The parameter values chosen spanned the 
ranges of  those that emerged from our laboratory results. From these simulations, the bump's 
integer exponent, n, was always recovered correctly, and the bump decay time, r, was 
recovered to within 10%. The total number of  bump events was always recovered without 
major error and to within 10% in two-thirds of  the cases, and the same was true of the average 
bump amplification factor over its dark value. The separation of the maxima of rate and 
amplitude was also recovered reasonably, to within 10 ms in most cases and without substan- 
tial systematic error. In summary, these simulations validated our method of  transient noise 
analysis. 

R E S U L T S  

Flashes o f  light were  de l ive red  to d a r k - a d a p t e d  ventra l  p h o t o r e c e p t o r  cells o f  Lim-  
ulus, as desc r ibed  in the  Methods  sect ion,  a n d  vo l t age-c lamped  responses  were  
r eco rded .  Both  the  ampl i tudes  o f  the  responses  and  the i r  a reas  exh ib i t ed  a 
supra l inea r  d e p e n d e n c e  on  l ight intensity.  In  Fig. 2 we show the responses  o f  one  cell 
to Ii and  115 (p lo t ted  d o w n w a r d  by convent ion) .  O n e  can no te  that  a l though  11.5 is only  
a b o u t  th ree  t imes 11, its r e sponse  has a b o u t  e ight  t imes the  ampl i tude .  The  r e sponse  
Ofll.~ is sho r t e r  in d u r a t i o n  than  that  to 11, bu t  its a r ea  (t ime integral)  is still a b o u t  five 
t imes the  a rea  o f  the  11 response .  

This can be  seen b e t t e r  in Fig. 3. H e r e  the  a rea  o f  the  r e sponse  d iv ided  by the 
es t ima ted  n u m b e r  o f  b u m p s  in the  r e sponse  is p lo t t ed  as a func t ion  o f  l ight  intensity.  
Cons tan t  q u a n t u m  efficiency is a ssumed  for  this calculat ion.  (This a s sumpt ion  turns  
ou t  in fact to be  valid; see below.) O n e  sees that  the  r e sponse  a rea  p e r  b u m p  is h ighe r  
by a fac tor  o f  2.5 at the  h ighest  intensi ty than  fo r  i sola ted  bumps .  I f  one  assumes that  
the  r e sponse  is i ndeed  c o m p o s e d  o f  bumps ,  the re  a re  t h ree  poss ible  exp lana t ions  for  
this supral inear i ty :  (a) m o r e  b u m p s  than  e x p e c t e d  a p p e a r  in the  r e sponse  to h ighe r  
l ight intensit ies;  that  is, the  q u a n t u m  efficiency is h igher ;  (b) the  b u m p s  have h igher  
ampl i tudes  d u r i n g  the r e sponse  to the  h ighe r  intensit ies;  and  (c) the  b u m p s  have 
longe r  dura t ions .  Al te rna t ive  c is no t  ne ga t e d  by the observa t ion  that  the  total  
r e sponse  has a sho r t e r  du ra t ion ,  because  this cou ld  be  caused  by a decrease  in the  
width o f  the  b u m p  la tency d is t r ibu t ion .  In  o r d e r  to dec ide  a m o n g  these  a l t emat ives ,  
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FIGURE 2. Typical flash responses at 
two light intensities. Top: I~ = 1010; 
bottom: IL5 = 31.610, where I0 in- 
duced about two bumps. The start of  
each trace is the time of  delivery of  
flashes of duration 5 ms. Note that 
the lower response is eight times 
higher in amplitude and five times 
larger in area (time integral) than the 
upper response, for an increase in 
intensity of  a factor of  only 3.16 
(supralinearity). 

the noise analysis described in the Theory  section was used to determine the rate, 
amplitude,  and dura t ion  o f  the bumps  compris ing the responses. 

In  Fig. 4, three consecutive responses to the I1 flashes are shown as examples o f  the 
data on  which the noise analysis was per formed.  All the o ther  figures presented  in 
this article refer  to the same cell as in Fig. 4. Very similar results were obta ined in 
three o ther  cells. In  each cell, 50 light flashes were delivered at each intensity. The 
first step in the analysis is to calculate the d e c o m p o u n d  power  spec t rum (Eq. 11). The 
result fo r  the I~.5 intensity in this cell is indicated in Fig. 5. The  solid line is the fit o f  a 
curve o f  the type described in Eq. 14, which cor responds  to a time course  for  the 
b u m p  as given in Eq. 13. The  fact that  the b u m p  time course  does no t  change  very 
much  with intensity can be seen in Fig. 6. In  this figure, we compare  the normal ized 
mean  time course  o f  isolated bumps  seen at the Io intensity with the b u m p  time course  
calculated f rom Eq. 13 for  the I~ intensity. The parameters  o f  the bumps  for /1  were 
always close to those o f  11. 5. The  time course  o f  the I0 b u m p  is similar to, though  
slightly nar rower  and more  symmetrical than, the derived time course  o f  the/1 bump.  
This result is an indication that in this relatively small range o f  low light intensities, the 
b u m p  time course  on  the average is no t  strongly dependen t  on  intensity. 

FIGURE 3. The area of  the flash 
2 0 0  ~ response has a supralinear depen- 

I l dence on light intensity; that is, the 
response area per absorbed photon 

og increases with increasing light inten- 
g ]~ sity in a certain range. The logarith- 
m: 50 mic intensity scale on the abscissa is 

based on a direct count of  the average 
~' number of  bumps elicited by the 

weakest flashes, with the other points r 
, plotted at values that are this number 2% 5 

Li0ht Int0nsity (number of tmm0s) multiplied by the factor of  increase in 
intensity. This will be the actual mean 

number of  bumps in the flashes of  these intensities if the quantum efficiency is constant. The 
linear ordinate is the flash area divided by the nominal flash intensity in numbers of  bumps. All 
points are averages of  four cells. The error bars indicate standard errors. 
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FIGURE 4. Response variability. Three 
successive responses to brief flashes are 
shown. The traces begin at the time of 
the flashes. The stimulus intensity was 
11, and stimuli were delivered every 30 
s. Note the large difference among the 
responses, assumed in this article to be 
due to their being composed of dif- 
ferent numbers of bumps appearing at 
random times. 

lOOms 

There  remains the possibility that the time course varies dur ing  the course o f  the 
response.  In  o rde r  to look for  such a trend,  the responses were divided into sections 
and T~m p was calculated for  each section as described above. Fig. 7 sets ou t  the 
results, which show that  the b u m p  dura t ion  is quite constant  dur ing  the response.  We 
conclude that changes in the b u m p  durat ion are not  responsible for  the supraiinear- 
ity o f  the dependence  o f  the response area on intensity. 

The  next  step in noise analysis was to calculate the temporal  behavior  o f  the rate, 
h(t), and mean  amplitude,  h(t), o f  the bumps  by using Campbell ' s  theorem,  in the 
forms given by Eqs. 20 and 21. For  this purpose ,  we extracted f rom the signals the 
mean  and the variance o f  the response.  They are plot ted for  the Il.5 intensity in Fig. 8. 
The  left-hand plot  is the mean,  R, and the f ight-hand plot is the variance, V, as 
funct ions o f  time, where t = 0 is the time o f  delivery o f  the flash. 

The functions k(t) and h(t) were calculated f rom the mean  and variance by using 
Eqs. 20 and 21 and in Fig. 9 they are plot ted for  bo th  intensities and all cells. Since h 
and ~ derive f rom the ratio o f  two noisy functions at the early and late times, where 
the terms in Eqs. 20 and 21 are small, h and k are very noisy, and therefore  are not  
plotted,  at these times. The  left-hand plot  fo r  each intensity is the rate h as a funct ion 

.o I0  
o 

I 0 

0.1 
to.  

I ,5 
f (Hz)  

FIGURE 5. The decompound power 
spectrum F (see text). Both scales are 
logarithmic. This spectrum was ob- 
tained for cell 1 at the 11.5 intensity. 
The dots are the experimental points 
and the solid line is a fit of  a curve as 
described in Eq. 14, with parameters 
n = 2 and r = 24 ms. 
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FIGU~ 6. Normalized bump time 
courses. The continuous line is the 
bump shape as calculated from the 
decompound power spectrum at the 
Ii intensity for cell 1. It represents the 
curve described in Eq. 13 with param- 
eters n = 2  and T - 2 2  ms. The 
vertical bars are the averages of 10 
isolated bumps recorded at the I0 
intensity with their times of steepest 
rise made to coincide. Note that the 
two time courses are quite similar, 
though the 11 bump is slightly broader 
and more asymmetrical. 

o f  time. Because the stimulus was a br ief  flash, ;~ represents the bump  latency 
distribution. There is an initial delay, followed by a rapid rise and a slower decline. 
The latency distribution is sensitive to the light intensity, the delay, and maximum 
move to shorter  times as the intensity is increased. The mean values of  the observed 
latencies, peak positions, and distribution widths of  the X curves are given in Table I 
for the two intensities. The area under  the X(t) curve is the total number,  N, o f  bumps 
in the response, and will be used in Fig. 10 (see Eq. 12). For the purpose of  evaluating 
the integral, the values of  • were extrapolated smoothly to zero at longer times. The 
central result of  this study is illustrated in the right-hand plots o f  Fig. 9, which display 
the time course of  the mean bump  amplitude h(t). After some delay, h increases 
strongly during the course of  the response, reaches a maximum, and begins to 
decline. Table I shows the average over four  cells o f  the latencies of  the curves, their 
peak positions, their widths, and their maximum and mean values. The mean increase 
factor was calculated by weighting the value of  h according to ~. 

We conclude that the supralinearity in flash responses arises primarily f rom an 
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FIGURE 7. Constancy of bump duration during the course of a flash response. The durations 
(Eq. 17) of the bump averaged within each of three or two equal sections (low and high 
intensity, respectively) of the flash response are displayed. There is no indication of a trend with 
time in the bump duration. The power spectra for each cell are also very similar in the five 
c a s e s .  
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FIGURE 8. Time courses o f  the 
mean, R, and variance, 11, o f  
the flash responses of  cell 1 at 
the I1.5 intensity. These were 
calculated f rom 50 responses 
similar to the ones shown in 
Fig. 4 but  for this intensity. The  
variance was drawn downward 
in order  to make easier the 
comparison with the mean time 
course. 
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FIGURE 9. The time courses o f  the mean rate, k, and the mean amplitude, h, o f  the bumps 
dur ing a flash response. These were calculated f rom the results shown in Fig. 8 and similar 
results for the o ther  cells by using Eqs. 20 and 21. k(t) gives the bump latency distribution. 
After  a delay, it rises quickly to a maximum and falls more  slowly back to baseline. Its area is the 
number  o f  bumps, N, in the response, and this number  will be used in Fig. 10. Note  that h ( t ) ,  

after some delay, strongly increases dur ing the course of  the response, before  declining late in 
the response. Since the bump durat ion does not  change appreciably during the response (Fig. 
7), the increase in bump amplitude constitutes the main correlate of  the supralinear 
dependence  o f  response area on intensity. The results are displayed for  four  cells and two light 
intensities�9 The values of  various parameters read off these curves are given in Table I. 
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Flash Response Characteristics 

673 

Variable 

Intensity 

Area 

Number of 
bumps 

Average 
bump 
height 

Time to peak 

Width 

R ~ h 

I0 11 11.5 It 11.5 11 It.5 

0.12• 2.41• 11.3• 

2.0•  20 .0•  54•  

0.51 • 0.97• 1.75• 

299• 236• 219• 153• 263• 190• 

145• 122• 134• 111• 170• 106• 

The values of various parameters of the flash responses and their derived properties. Durations and times 
are in milliseconds; times refer to bumps beginning at those times after the flash presentation; widths are 
full widths at half-height. Response areas are in nanocoulombs and bump amplitudes, h, are in 
nanoamperes, ~ is the bump rate per second. The numbers are averages over four cells. The errors are 
standard errors. 

increase  in b u m p  size d u r i n g  the response ,  a n d  no t  significantly f rom increases  in 
e i the r  b u m p  d u r a t i o n  o r  q u a n t u m  efficiency. In  o r d e r  to  i l lustrate  this conclus ion,  we 
display in Fig. 10, as a func t ion  o f  the  intensity,  the  average  b u m p  ampl i tude ;  the  total  
n u m b e r ,  N, o f  b u m p s  in the  flash response ,  d iv ided  by  intensity;  and  the  i n t e g ra t e d  
r e sponse  area,  also d iv ided  by intensity.  The  o r d i n a t e  scales a re  no rma l i zed  to  make  
the  po in ts  co inc ide  at  the  I0 intensity.  O n e  sees that  the  r e sponse  supra l inear i ty  is 
i ndeed  very largely d u e  to  the  increase  in the  average  b u m p  ampl i tude .  The  total  

I I 
0"4~5 5 50 

Light Intensity (number of bumps) 

FIGURE 10. The intensity depen- 
dence of the average bump amplitude 
(filled circles), the total number N of 
bumps in the flash response per  unit 
flash intensity (plus signs), and the 
integrated response area per unit 
light intensity (dotted line). The ordi- 
nate scales are all normalized to unity 
at the I 0 intensity. The logarithmic 
abscissa scale is the same as in Fig. 3. 
One can see that the response supra- 
linearity correlates quantitatively with 
the increase in average bump ampli- 
tude. The total number of  bumps in 
the response per unit light intensity is 
constant, corresponding to constant 
quantum efficiency. The error  bars 
and the vertical lengths of  the crosses 
indicate standard errors. 
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number of  bumps in the response is linear with light intensity, which indicates the 
constancy of  the quantum efficiency. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

In this study, we have investigated changes in the properties of  the bumps that 
underlie the responses to flashes of light in the regime in which these responses 
exhibit a supralinear dependence on light intensity. Since the signal amplitude 
changes significantly during the course of one of  the elementary bumps of  which it is 
composed, standard techniques of  noise analysis cannot be applied. For this purpose, 
we therefore developed a new technique, which is described in detail in the Theory 
section. We note that our technique of  analysis differs from that of  Sigworth (1980, 
1981a, b) and is addressed to a different situation: his technique is specialized to 
rectangular bumps of constant amplitude but of stochastic duration, while our 
approach treats bumps with complex but causal shape and variable amplitude. The 
approach of Wong et al. (1974) is similar to ours but more restricted in that it is based 
on the approximation that the signal changes slowly compared with the elementary 
event, so that the signal can be considered to be a succession of steady states. 

The comment should be made that one can propose chemical-chain transducers 
that incorporate a fast-acting nonlinearity and for which the immediate application of 
Campbell's theorem is inappropriate. A chain that involves n-fold cooperativity at 
some forward step is such an example. Such models yield a power spectrum whose 
shape depends on mean output level at low intensity: this feature is not seen in our 
data (Fig. 7 and its legend). Furthermore, these models yield systematic errors 
dependent on the output level when Campbell's theorem is applied directly to the 
data for determination of quantum efficiency. These errors would lead to a 
discrepancy between the calculation from Campbell's theorem and the result of a 
direct count of bumps in a low-intensity record; our data show no such discrepancy 
(Fig. 10). Accordingly, we believe that the chain contains no nonlinearity strong and 
fast enough to disturb the conclusions of  this article. 

Application of our method to the responses to flashes in dark-adapted cells leads to 
the following conclusions about the four parameters that characterize the quantal 
composition of  the responses: the amplitude, quantum efficiency, latency, and 
duration of  the component bumps. The bump amplitude exhibits a strong increase 
during the course of the response, followed by a decline. (The implications of this 
time course will be discussed below.) Prior (or continuing) illumination has previously 
been reported to increase the bump amplitude slightly at very low intensities (Stieve 
and Bruns, 1980) and to decrease the bump amplitude strongly at higher intensities 
(Dodge et al., 1968; Wong et al., 1982). The quantum efficiency is constant against 
the intensity of  the flashes, as it is in the steady state (Wong et al., 1982). However, 
very weak prior illumination has been reported to increase quantum efficiency (Stieve 
and Bruns, 1980), while higher intensities apparently decrease quantum efficiency 
(Srebro and Behbehani, 1972). Mutation (Minke, 1982) and abnormal pharmacolog- 
ical media (Corson et al., 1983) may also change the quantum efficiency. (A new 
phenomenon that may be interpreted as a modulation either of  quantum efficiency 
or of latency has been reported by Grzywacz et al., 1985, but the observation has not 
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yet been analyzed in detail.) There is a substantial decrease in bump latencies and 
latency dispersion with increasing flash intensity. Prior illumination also decreases 
bump latency (Martinez and Srebro, 1976; Stieve and Bruns, 1980; Wong et al., 
1980). The bump duration is constant through the flash response. It is also less 
dependent  on intensity (if at all) than is the latency. In the steady state as well, the 
duration is less dependent  on intensity than the latency (Wong et al., 1982), and the 
mechanism might be similar. In addition, it is possible that the mechanism 
responsible for  the reduction in duration sets in slowly compared with the flash 
response duration. 

These data provide the quantal basis for several observed nonlinearities in the 
responses of  photoreceptors.  The supraiinearity of  flash responses correlates largely 
or  entirely with an increase in the bump amplitude. The sublinearity that corresponds 
to light adaptation correlates largely with a decrease in the bump amplitude, but with 
a contribution from the bump duration (Dodge et al., 1968; Wong, 1978). The 
acceleration of  the response with increasing intensity correlates largely with a 
decrease in bump latency. The acceleration of  the early phase of  the response is of  
particular interest (Payne and Fein, 1986; also see Hamdor fand  Kirschfeld, 1980, for  
a related observation in the fly), and here the latency decrease is the exclusive 
correlate, since the bump amplitude has not yet begun to change (Fig. 9). The 
acceleration of  the response by prior illumination (Fuortes and Hodgkin, 1964; 
French and Kuster, 1985; but see Stieve et al., 1983, for a contrary observation) also 
appears to be ascribable to a latency decrease. We comment that the study of  Lisman 
and Brown (1975) reports data consistent with our  own: at a comparable flash 
intensity, they show a latency reduction and also a response peak that follows an ~ 1.2 
power of  intensity. Similarly, Brown and Coles (1979) show an ~ 1.5 power before the 
regime of  adaptation. 

We shall now discuss what can be learned about the mechanism of  bump amplitude 
enhancement from the time courses of  the bump parameters. In analyzing these time 
courses, we first note that the response is the product  of  the bump rate, ~, and the 
bump amplitude, h, folded with the bump time course, g [R = (A,h)*g]. Accordingly 
the peak of~,-h, which will be roughly halfway between the peaks of  X and of  h, should 
precede that of  R by approximately the time from the start o f  a bump to its centroid 
(remember that the time axes of  X and h refer  to the times at which the bumps begin). 
In fact, the peaks of~, and h occur 80 and 40 ms, respectively, before that of  R (Table 
I). Thus, the peak of  A,h is at ~60 ms, while the time from the bump to its centroid is 
~70 ms, in reasonable agreement. This consideration means that the peak position 
data provide values for only two independent parameters; let us assign them to the 
position of  the R peak and the separation of  the ~, and h peaks. We shall not consider 
fur ther  the R position here, but comment only on the A-h separation. 

As a framework model for our  discussion, we start with the suggestion by Grzywacz 
and Hillman (1985), based on their observations on isolated bumps, that the 
transduction process at this level can be described as a chain of  first-order enzymatic 
reactions. Onto this model we graft a single nonlinear stage to explain the bump 
amplitude enhancement: either a cooperativity in which an enzyme in the chain acts 
cooperatively to produce the next-stage material, or  a positive feedback or feedfor- 
ward loop in which an accessory material created at some stage of  the chain acts as a 
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cofactor, perhaps cooperatively, of  the enzymatic reaction at another  stage in the 
chain. 

We now suggest that the data exclude a mechanism of  cooperativity. The argument  
starts with placing an uppe r  limit on the duration of  the stage on which the 
enhancement  acts. A continuously acting enhancement  must, in principle, modify the 
time course of  the bump.  We have calculated that if the enhancement  acted on a stage 
whose duration was that of  the final b u m p  response, the durations of  bumps  
occurring in the last segment of  the flash response would be reduced by 40% 
compared  with those in the first segment. This is outside the acceptable limits 
supplied by Fig. 7. We conclude that the duration of  the bump at the stage of  the 
chain on which the enhancement  acts cannot  be more than 30-40  ms (and therefore 
must precede the final stage). It  is clear that the separation in the peaks of  X and h 
arising f rom cooperativity in one stage cannot be greater  than the duration of  that 
stage, and this is borne  out by analysis. That  is, if the duration of  that stage is very 
short, the effect amounts simply to a nonlinear dependence of  h on X, with no peak 
separation. However, we have used the observed X curves to show that a X-h peak 
separation arising f rom cooperativity in fact cannot  be more  than ~40% of  the 
duration of  the enhancement  s t age- - tha t  is, not more than ~ 16 ms, in disagreement 
with the observations. 

We conclude that the mechanism of  the bump  enhancement  is a positive feedback 
or feedforward loop. We have analyzed simple examples of  these two cases. In the 
simpler feedforward case, the ~,-h separation is roughly the difference in the direct 
and side path times f rom the source of  the feedforward material to the point at which 
it acts. For instance, if the feedforward material acts on a point 20 ms fur ther  along 
the chain via a loop whose length is 60 ms, the h peak will lag the X peak by ~40 ms. 
For a particular class of  simple models, these considerations apply exactly to the )~-h 
centroid separation. 

The feedback case is more  complicated because of  its reflexive nature. We find that 
the h peak can in principle be postponed as much as one wishes by increasing the 
feedback gain, as long as any X signal remains, and that this delay also depends on 
intensity. Within a simple model, we are able to obtain the observed X-h separation 
with the observed degree of  enhancement.  As a mechanism for b u m p  amplitude 
enhancement,  a positive feedback loop has a potential for explosion, while a positive 
feedforward does not. However, we have shown (Grzywacz and Hillman, 1988) that 
adaptation is probably a negative-feedback loop and that the positive-feedback 
explosion can be avoided if the source of  the positive feedback is later in the chain 
than the sink (point o f  action) of  the negative feedback. 

A final note about  the time course of  h: The decline of  h before the end of  the 
response can be ascribed either to a decline in the enhancement  mechanism or to the 
onset o f  the adaptation mechanism. The time at which the decline begins ranges f rom 
120 to 300 ms in different cells and at different intensities. These times span those 
suggested by Lisman and Brown (1975) and Fein and Charlton (1977) for  the onset o f  
adaptation. We conclude that the decline may well arise f rom the onset of  adaptation, 
and that we then have no information on the offset time of  the enhancement.  The 
onset latency of  the enhancement  is ~40 ms f rom the start o f  the response and 
90-170  ms f rom the flash. 
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The above statements constitute strong constraints on possible models for  bump 
phototransduction. What follows is a scheme that satisfies all these constraints. The 
scheme is an arbitrary choice out of  several that appear to be conceptually close to 
minimal. 

50 50 30 10 20 20 30 ms 
Rh---* A I --; A~ ---* A~,.,.-~ A4 ,,...~ As,,,..~ A6"'* R 

Cf~ C,.p 

(Scheme I) 

In this scheme, the portion Am-As is non-amplifying, and determines the bump 
latency and latency spread. Materials A3, A4, and As are enzymes for producing the 
succeeding stages from substrates and are responsible for the bump amplitude and 
time course. Accessory materials Cfac and C~p are created by A5 and A6 (their 
"sources") and act as a cooperative cofactor and inhibitor of  the As and A4 reactions, 
respectively. A6 can be amplifying or non-amplifying. Rh and R are rhodopsin and the 
response of  the system (open ion channels), respectively. Each number  in the upper  
row represents the lifetime of  the state below it. The numbers derive from a variety of  
considerations and are very rough. The facilitatory feedback is assumed to be fast, 
while the adaptation feedback must involve a delay of  60-80 ms in order  to explain 
the late onset of  adaptation in the flash response. 

The basic chain of  the model, a series of  non-amplifying stages followed by a series 
of  amplifying stages, appears to be required by data on the latency and time course 
distributions of  the bumps comprising the responses (Wong et al., 1980; Tiedge, 
1981). The relevant observations are the brevity of  the bump duration compared with 
its latency, the large latency spread, the time course of  the bump itself, and the 
independence of  the changes in latency and time course under  varying conditions. 
Insertion into such a chain of  two nonlinear molecular processes, one responsible for 
the flash supralinearity and the other  for light adaptation, leads to a limited number  
of  formally distinguishable models (see Grzywacz and Hillman, 1988) involving 
feedbacks, feedforwards, and local processes. I f  one imposes on these models the 
available constraints, one is left with only a small number  of  possibilities. 

The addition of  state A6 preceding the response is called for by evidence in Liraulus 
and CaUiphora that at least part of  the adaptive material arises from a stage preceding 
the response. In Limulus, Lisman (1976) has shown that at least part of  the Ca ++ 
apparently responsible for  adaptation arises from intracellular stores. Furthermore,  
Lisman and Strong (1979) demonstrated that this release is not activated by ions 
flowing through channels. The release of  Ca ++ from intracellular stores must 
therefore depend on a step prior to channel opening. Moring et al. (1979) showed 
that in CaUiphora a flash stimulus can depress the response to a prior flash even 
before its own response begins to develop, so again the adaptation must arise from a 
stage preceding the response. 

Fein and DeVoe (1973) observed that the state of  adaptation in this preparation is 
"functionally independent"  of  membrane potential. (Kleinschmidt and Dowling, 
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1975, made a similar observat ion in gecko.) This result may be consistent with ou r  
model  if one  assumes that the feedback materials are long-lived and so accumulate  
and partly integrate the response.  

In  summary,  we have applied a new technique o f  dynamic noise analysis to the 
transient responses o f  Limulus ventral pho to recep to r s  following br ief  flashes o f  
2 0 - 5 0  effective photons ,  and we reach several conclusions. The p h e n o m e n o n  o f  
response area supralinearity is due  to a l ight-induced increase in the ampli tude o f  the 
under lying qua n t um  bump,  as q u a n t u m  efficiency and b u m p  dura t ion  are essentially 
independent  o f  flash intensity in this range. Within the response,  the peak in the 
b u m p  ampli tude lags that o f  the b u m p  rate by ~40  ms; this observation, in 
conjunct ion  with a substantially smaller change in the b u m p  durat ion (if any) over the 
time course  o f  the flash response,  strongly constrains the possible a r rangement  o f  
chemical mechanisms whose combined  action gives rise to photot ransduct ion .  

A P P E N D I X  

In this appendix, we develop the equations used in the text, which follow from the four 
assumptions advanced in the Theory section. This inquiry addresses probabilistic questions of 
some depth and must involve a notation sufficiently elaborate to describe both the biophysical 
situation and our various manipulations on the data. 

Our whole theoretical approach follows from two considerations: first, the laboratory yields 
us an unpredictable current signal,J(t), from which we can average, over many repeated runs, 
algebraic combinations yielding, for example, (J(t)J(t')), where the two current values are 
correlated if the two times are close together; and second (from assumption 2: uncorrelated 
elementary events), the probabilistic current signal can be regarded as the sum of uncorrelated 
probabilistic pieces: 

J(t) = ~-'J,(t), (A1) 
s 

which, though they overlap in time, originate from events that occur independently in short 
disjoint time intervals (At), = t, - t,_a. 

All the moments of  a random variable X [such as J(t) at fixed t] are subsumed in its 
characteristic function: 

Cx(a)=(expa.X)=(~_ol - "\  not X )= ~. n,1 (X")a", (A2) 

and similarly all the joint moments of  two correlated random variables X and Y [such asJ(t) and 
J(g)] are subsumed in their joint characteristic function 

1 1 
Cx,~(a, 3) = ( (exp aX)(exp 3 Y)) = L ~ ~ (X'Y") a*3". (A3) 

a~-0 
•-0 

We make the further formal observation that if either of  these characteristic functions (each 
has 1 as its leading constant term) is substituted into the series for the logarithm 

In (1 + u) = u - I/2 u 2 + l/s u3 . . .  (A4) 

the result is straightforward to organize as a power series: 

Gx(ot) = In (exp oaf ) = s G~x'~ " 
n - I  
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(A5) 

Gx, r(a, 3) In ((exp aX)(exp 13Y) ) )._ G (''') a "n" ~ X , Y  I ~ , 
m - |  

n - 1  

where each coefficient ~,~l~(") o r  v x ,  vPt")~ is a specific algebraic combinat ion o f  moments.  In 
particular, we calculate 

C ~  ) = <X) ,  G ~  ) = 1/2 ( ( X  2) - (X)2) ,  ~x.r~("]) = <XY)  - ( X )  ( V); (A6)  

whence we recognize G~ ) as the mean, G~ ) as half  the variance about  the mean ((X - (X))Z); 
and G().'))as the covariance about  the means o f  the correlated X and Y, ( ( X -  (X)) .  
(Y - (Y))) .  

Step A5 has a particular payoff if the variable X is the sum of  uncorrela ted random variables 
[asJ(t) is according to Eq. A1]. Say X = X1 + X2; then 

Cx,+x,(a) = ((exp aX0(exp aX2)) = (exp aXi ) ( expaX2)  = Cx,(a).Cx,(a), (A7) 

whence its logarithm A5 yields 

= ~(") (A8)  Gx,+x,(a) = Gx,(a) + Gx,(a); r G~ + , - .x,  

for each n and by a calculation exactly similar to A7 

G(,,.-) ~(,,.,) ~(,,.,) X t + X ~ , Y l + u  ~ ~JXi,Yi + ~JXt, Y~ 

for each m, n. The generalization to a larger sum as in A1 is immediate. 
Evidendy this machinery can be used to evaluate the expressions in the text, which are 

called 

R(t)  = (J(t))  

V(t) = ( (J(t)  - R ( t ) )  2) 

K(t , ,  t2) = ( (J( t , )  - R(t ,))(J(t~) - R(t2)) ), 

(A9) 

(A10) 

(All) 

respectively, the t ime-dependent  ensemble mean of  the current,  ensemble variance o f  the 
current ,  and two- t ime-dependent  covariance of  the current.  Straightforward procedures  lead 
to text Eqs. 1, 2, and 8, which express these experimentally measured functions in terms of  the 
underlying elementary processes that determine the probability distribution o f  J(t). 

First we consider the situation in which the bump amplitude, h(t), is a sure (nonrandom) 
function o f  the exper iment  time t. The time course o f  a bump that starts at t ime t, is given by 
g(t - O.  T h e  rate o f  independent  (Poisson) events we call X(t). We may ask: what is the 
probability distribution of  that part o f  the current  that arises in a very br ief  t ime interval (At.), 
between two time marks t,_l and t,, which we choose closely spaced? We can think of  the fixed 
time t at which this contributionJ,( t)  is measured as later than the br ief  t ime interval in which 
the contribution arises. I f  the interval (At), is chosen to be br ief  enough,  the probability that 
one  event occurs in (At), will be small and that o f  two events will be negligible, so we can 
write 

P0 = Prob(J,(t)  = 0) = 1 - k(t,) (At), 

P, = Prob(J,( t)  = h(Q g(t - t,)) = X(t,) (At), 

(A]2) 

(M3) 
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Cj,~)(a) ffi Po exp (a.0) + P1 exp (a .h ( t , ) . g ( t  - t,)) 

ffi (1 - X(t,)(At),) + X(tJ(At),.exp (a .h ( t , ) . g ( t  - t~)) (A14) 

ffi 1 + (At),.X(t,).{- 1 + exp ( a . h ( t J . g ( t  - 0)}. 

In  the logarithm formula A4, we can again ignore powers of  (At), higher than the first, and at 
once calculate 

Gl.(t)(a) ffi (A0,-X(t,).{-1 + exp ( a . h ( t , ) . g ( t  - t,))}. (A15) 

We now exploit the fact thatJ(t) is the sum of  uncorrelated piecesJ,(t) (A1) and we also exploit 
the sum property of the log-characteristic function A8: 

Gj~)(a) = ~ (At),.X(t,). { -1  + exp ( a . h ( O . g ( t  - t,))} 
' (A16) 

= fdt'X(t').{-1 + exp ( a . h ( t ' ) . g ( t  - t'))}. 

I f  this expression is represented as a power series in a, the  coefficient of  a ~ is the mean ~](t)), 
while twice the coefficient of  a 2 is the variance a round the mean as we saw above at A6. These 
coefficients can be isolated in the usual way by differentiation; thus, 

"~I~) Gj,)(a) = f~, dt 'X(t ' )h(t ' )g(t  - t ') ,  (A1 7) 

which is exactly the expression for R(t )  given in Eq. 1 of the main text. Similarly, application of 
02/Oa 2 to A16, followed by a ffi 0, would isolate the variance about  the mean according to A6, 
but  the variance is also a special case of  the covariance evaluated below. 

We note that if h(t,) is a further independent  random variable, the analysis above still goes 
through for every narrow subrange of  h. Because of  the property (A8) of  additivity from 
independence,  we can add over these subranges, which yields the mean value of  h(t ' )  in A1 7, 
which is also its meaning in text Eq. 1. 

The evaluation of  the covariance K(t l ,  t2) (1.1) . = G~(t,).j(,,~ is equally straightforward. If  an event in 
fact takes place in (At), [with probability P1 = X(t,) (At.)] then bothJ,( t0 andJ,(t2) will be given by 

J,(t)  in A13, whence 

cj.(t,)a.,,)(a, 8)  = {1 - x ( t , ) . ( ~ t ) ,  + x ( t J . ( ~ t ) ,  

�9 exp ( a . h ( O . g ( t ,  - 0 ) - e x p  (J3.h(O.g(t2 - t,))} (.4,18) 

and proceeding as we did to A16 

GI(,,).j(,,) (a, O) ffi f dt 'h(t ' ){1 - exp ( a . h ( t ' ) . g ( f i  - t ' ) ) .exp  ( f l .h ( t ' ) .g ( t2  - t'))} (A19) 

from which 

02 
K(t , ,  t2)= (~-0-'~ GJ(")'J(")) y--0= f d t ' X ( t ' ) ( h ( t ' ) ) 2 g ( t , - t ' ) g ( t , - t ' ) .  (A20) 

As we argued in the paragraph that followed Eq. A17, if h is a further independent  random 
variable, its square in Eq. A20 will be replaced by its mean square, and if h is exponentially 
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distributed, then (h s) = 2(h)  s. I f  we change notat ion and let h(t) stand for the mean of  an 
exponentially distributed random bump amplitude, then this factor 2 is in t roduced in Eq. A20, 
which becomes identical to text Eq. 8. I f  we now let tl = ts = t [and remember  g(t- t ' )  is causal 
and hence is nonzero for  t '  only up to t], we get text Eq. 2 for the t ime-dependent  variance. For  
the remainder  o f  this appendix, we write h for the (time-dependent) mean value o f  the 
exponentially distributed height  variable, and introduce the factor o f  2, which arises because 
2h s is the mean-square height. 

The "decompound  power  spect rum" of  the main text can now be calculated. It is 
straightforward to evaluate the two-time Four ier  t ransform of  K(tx, ts) in text Eq. 8 (or A20) to 
obtain the function o f  two angular velocities: 

F(w, O) = f dt 1 f dt~e-"~ (t,, ts) = 2Xh2(~0 + 0).~(0a).~(0). (A21) 

For  the particular choice 0 = -0: ,  this reduces to 

F (w, - r = 2Xh s (0). ]~ (w) l s, (A22) 

which is text Eq. 9 for the decompound  power  spectrum of  the signalJ.  
Finally, we point  out  that if  we truncate the signal at a t ime T', making the signal zero for all 

times after T', the development  for the autocovariance for all the times fi, ts < T'  is unchanged,  
and the autocovariance is zero if tl > T'  or  ts > T'. In that case, if  one  takes the double Four ier  
Transform in the pathway o: = - 0 ,  the result is: 

Fr, (oo, -o:) = 2 f - 5  X(t)hS(t) l ~gr-t(~ is dt, (A23) 

where ]~r'-'(w)is= f r ' - ,  f f ' - t  e~tr~g(t,3g(t,)dt] d~. For  all times that T ' -  t > A, where A 

spans the effective decay of  the bump g(t), we get, effectively, I~r-'(to) ] = ]~(to) l s. Then 

Thus if a much larger por t ion o f  the response occurs before  T' - A than between T' - A and 
T', the second integral can be neglected and the t runcated decompound  power  spectrum will 
be proport ional  to ]~(o:)] s. The same analysis holds jus t  as well for a section o f  the signal 
between T' and a second time T" as for a section f rom T' to ~. 
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