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Multiple primary cancers (MPCs) refer to cancers that occur simultaneously or

metachronously in the same individual. The incidence of MPC has increased

recently, as the survival time of malignant tumor patients has been greatly

prolonged. It is difficult to differentiate MPC from primary cancers (PCs) in the

same anatomical region from the clinical manifestation alone. However, their

biological behaviors appear to be distinct. In this study, we show that the

prognosis of multiple primary oral cancers (MP-OCs) is worse than primary oral

cancers (P-OCs). To better understand the molecular mechanisms of MP-OC,

we used whole exome sequencing (WES) to analyze samples from 9 patients

with MP-OC and 21 patients with P-OC. We found more somatic mutations in

MP-OC than in P-OC. MP-OC had more complicated mutation signatures,

which were associated with age-related and Apolipoprotein B mRNA Editing

Catalytic Polypeptide-like (APOBEC) activity-related signatures. Tumor

mutational burden (TMB) and mutant-allele tumor heterogeneity (MATH) of

MP-OC trended higher compared to P-OC. KEGG and GO analysis showed the

differential pathways of MP-OC versus P-OC. In addition, MP-OC took

amplification, not loss, as the main pattern of copy number variation (CNV),

while P-OC took both. Lastly, we did not find significantly different mutant

germline genes, but MSH-6 mutation may be a potential MP-OC driver. In

short, our preliminary results show that MP-OC and P-OC have different

molecular characteristics.
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1 Introduction

Multiple primary cancers (MPCs) are cancers that occur

simultaneously or metachronously in the same individual.

Metastasis of initial primary cancers should be carefully

excluded (1). As early as 1889, Billroth first reported a case of

multiple primary gastric cancer after epithelial carcinoma of the

outer ear (2). In 1932, Warren and Gates formally

determined the diagnostic criteria of multiple primary cancers

(3). MPC was once regarded as a rare disease (4). With the

improvement of early screening, diagnostic techniques,

treatment methods, postoperative follow-up, and supportive

treatment, survival following malignant tumors has been

greatly prolonged. Meanwhile, the incidence rate of MPC has

significantly increased (5–7). Without a clear medical history,

there are few obvious differences between MPC and primary

cancers (PCs) in terms of their clinical manifestations. However,

Kai-Hsiung et al. reported that the 5-year overall survival and 5-

year disease-free survival were worse in individuals with multiple

primary lung cancers than those with a primary lung cancer (8).

Qi-Wen et al. showed that compared with matched cases,

esophageal squamous cell carcinoma accompanied with

synchronous MPC was related to significantly impaired

survival and an elevated risk of locoregional disease

progression following concurrent chemoradiotherapy (9). It

thus appears that the underlying biological behavior of these

two clinical groups might be distinct. A better understanding of

the clinical features and molecular mechanisms of multiple

primary cancers may be beneficial to cancer management.

However, current studies on multiple primary cancers had

mostly focused on its clinicopathological features (10). There

are only a handful of studies that reveal the differences in the

molecular mechanisms of MPC.

Gene mutations, including single-nucleotide polymorphism

(SNP), insertion–deletion (InDel), and copy number variation

(CNV), play an important role in the occurrence and

progression of tumors. For example, the RB1 gene mutation

results in retinoblastoma (11). Detection of the mutation helps

to reveal the molecular mechanisms of MPCs and to promote

prognostication and treatment planning. Whole exome

sequencing (WES) is the most common method used to detect

gene mutations. Tumor mutational burden (TMB) and

microsatellite instability (MSI), which have been approved as

pan-cancer biomarkers by the FDA, can also be obtained by

WES (12, 13). Patients with high TMB (TMB-H) or high MSI

(MSI-H) benefit from immunotherapy.

In this study, we found that the prognosis of individuals with

multiple primary oral cancers (MP-OCs) was worse than those

with primary oral cancers (P-OCs) (8). We used WES to analyze

9 patients with MP-OC and 21 patients with P-OC, to better

understand the underlying molecular mechanisms. The mutant

germline genes of two groups were also analyzed.
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2 Materials and methods

2.1 Dataset and bioinformatics analysis

The SEER database is currently the largest publicly available

cancer database, covering approximately 28% of the US

population (14). We chose SEER Research Data, 9 Registries,

Nov 2020 Sub (1975–2018) to calculate the proportion of MP-

OC in oral cancer (OC). Then, we analyzed the survival of MP-

OC and P-OC. SEER*Stat software (version 8.3.92; National

Cancer Institute, Bethesda, MD, USA) was used to analyze the

proportion of MP-OC from 1975 to 2018.

The range of OCs included tongue, floor of mouth, and gum

and other mouth. According to the International Classification

of Diseases for Oncology, third edition (ICD-O-3), the codes for

tongue cancer are C019–C029, those for floor of mouth cancer

are C040–C049, and those for gum and other mouth cancers are

C030–C039, C050–C059, and C060–C069.

Data on sex, site of cancer, histopathological type, survival

time, and cause of death were collected. OC patients with a

history of malignancies were classified as MP-OC, and the

remaining cases were classified as P-OC. We excluded patients

with ambiguous information on survival, which was labeled with

“N/A not seq 0-59”.
2.2 Patient cohort

A total of 317 patients with OC from the Hospital of

Stomatology of Sun Yat-sen University (Guangzhou, China)

were enrolled from October 2014 to September 2016 to further

confirm the different prognoses of MP-OC and P-OC. Of these,

16 were MP-OC patients. The inclusion criteria of MP-OC

followed the SEER criteria (15): multiple neoplasms were

malignant with a definite pathological diagnosis; multiple

cancers come from different tissue origins, or the edges of the

cancer lesions are at least 2 cm apart from each other; if multiple

cancers were of the same site and tissue origin, their times of

diagnosis had to be at least 5 years apart. Recurrence and

metastasis were carefully excluded. The endpoint of follow-up

was 31 December 2020.

A total of 64 patients were enrolled for WES and subsequent

analyses, including 20 with MP-OC and 44 with P-OC. Fresh

cancerous tissues were collected from 30 patients for somatic

genome mutation analysis, including 9 with MP-OC and 21 with

P-OC. Blood or normal mucosa was taken as controls. We also

collected blood or mucosal samples from all remaining

participants. These samples were sequenced for germline gene

mutations. The samples were stored in liquid nitrogen or at −80°

C until WES. The DNA libraries were sequenced on the Illumina

sequencing platform by Gene Denovo Honour Biotechnology

Co., Ltd (Guangzhou, China).
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2.3 Detection and analysis of somatic
SNV and InDel

2.3.1 Nucleic acid preparation
DNA was extracted using the Cetyltrimethyl Ammonium

Bromide (CTAB) method to generate libraries for Next-

Generation sequencing. NEBNext dsDNA Fragmentase (NEB,

Ipswich, MA, USA) was used to fragment genomic DNA ends

followed by DNA end repair. Then, NEBNext adaptor (NEB,

Ipswich, MA, USA) was used to dA-tail and ligate these DNA

fragments. Biotinylated RNA library baits and magnetic beads were

mixed with the barcoded library to select targeted regions with the

SureSelect Human All Exome V6 Kit (Agilent Technologies, Palo

Alto, Calif.). Next, we further amplified the captured sequences for

150-bp paired-end sequencing using the Illumina X-ten system

(Illumina, San Diego, CA, USA).

2.3.2 Clean reads filtering
Fastq (16) was used to filter the raw reads. The low-quality

parts of raw data were identified for removal as follows: reads

with ≥10% unidentified nucleotides; reads with > 50% bases

having phred quality scores of ≤20; and reads aligned to the

barcode adapter. The quality of clean data after filtering is shown

in Supplementary Figures S1A, B.

2.3.3 Somatic SNV and InDel identification
The Burrows–Wheeler Aligner (BWA) (17) completed the

alignment of the clean reads against the human reference

genome (GRCh38). Somatic SNV and InDel of multisample

were called by MuTect (18).

2.3.4 Analysis of mutational signatures
The non-negative matrix factorization (NMF) method was

used to obtain mutational signatures (19). There were 96

possible mutation types combined to obtain a matrix

representing each feature. By cosine similarity, the identified

signatures were compared to the previously determined

consensus signatures (20) and confirmed.

2.3.5 Identification of mutated genes
Considering all variations, including somatic SNVand InDel,we

identified the set of mutated genes. Genes with a p-value<0.05 were

considered to be with high-frequency mutations. Significantly

mutated genes (SMGs) refer to the genes whose mutation

frequency was significantly higher in cancer than in controls. We

used MuSiC (21) to search for SMGs. MuSiC is a method based on

the mutational recurrence on all cancer samples. A convolution test

was carried out on eachmutation type. Only themutated genes with

FDR<0.01 were considered to be SMGs.

2.3.6 Gene functional enrichment analysis
The set of mutated genes with a p value<0.05 were used for

gene functional enrichment analysis. The Kyoto Encyclopedia of
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Genes and Genomes (KEGG) (22) and Gene Ontology (GO)

(23) are commonly used databases. We used an in-house script

that incorporated both databases for functional annotation

analysis. The significance of gene group enrichment was

defined by a modified Fisher’s exact test and Q value< 0.05

was considered to indicate a statistically significant difference.
2.4 Calculation of TMB, MSI, and MATH

Nonsynonymous mutations in the coding region were

selected to assess TMB. We used 38Mb as the estimate of the

exome size. All nonsynonymous mutations/exome lengths

indicate the TMB of each sample (24).

Microsatellites are repetitive sequences with unit lengths

varying from 1 to 6 bp. We evaluated the MSI following the

MSIsensor method described by Niu and Ding (25).

Mutant-allele tumor heterogeneity (MATH) is a quantitative

assessment of genetic intra-tumor heterogeneity, based on WES

of tumors and matched normal tissues. The MATH score was

calculated following the method described by Mroz and Rocco

(26). Briefly, the MATH value of each tumor was calculated from

the median absolute deviation (MAD) and the median of its

mutant-allele fractions at tumor-specific mutated loci using:

MATH = 100 ∗MAD=median:
2.5 Somatic CNV detection and analysis

VarScan 2 (27) was used to identify somatic CNVs with the

following parameters: minimum coverage ≥20 and phred base

quality ≥20. DNA copy packages in R/Bioconductor were used to

normalize the log ratio of coverage between tumor and normal

samples by circular binary segmentation. Recurrent somatic CNVs

were identified by using GISTIC (28). GISTIC broad-level analysis

was performed with a size threshold of 98% of a chromosome arm

to differentiate between focal events and arm level. q ≤ 0.25 was

considered significant for arm-level events and CNV regions. Then,

residual q-values q ≤ 0.05 were used to determine the significance of

focal CNV events. All oncogenes and tumor suppressor genes were

identified according to the OncoKB™(https://www.oncokb.

org/cancerGenes).
2.6 Detection and analysis of germline
mutant genes

According to the study of Kuan-Lin Huang et al. (29), 152

genes were identified as cancer predisposition genes

(Supplementary Table S1). We annotated and prioritized

pathogenic variants in these 152 genes in our 64 patients.
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The tools used were as follows: germline SNPs were

identified using VarScan2 (30) (version 2.3.9) and GATK (31)

(version 3.81); germline InDels were identified using VarScan2,

GATK, and Pindel (32) (version 0.2.5b9); and pathogenicity was

assessed using SIFT (33) and PolyPhen (34).

We set the filter conditions as follows: firstly, only variants

with a structure type of exonic or splitting were retained; we

made requirements for allelic depth (AD) and read depth (RD),

requiring AD ≥5 and AD/(RD + AD) ≥0.2; we then removed

variants potentially contaminated by tumor-adjacent tissues.

Variants were removed if they were found in both cancer and

tumor-adjacent tissues, and the allele fraction in tumor-adjacent

tissues was<0.3; finally, we collected all SNPs called by GATK

and VarScan2, and indels that were called by at least two of the

three callers (GATK, VarScan2, and Pindel).

We used several methods to score these variants, and finally

obtained the sum of the scores of the variants. A higher score

indicated higher pathogenicity. A final score of ≥1 was classified

as pathogenic, while variants with scores of< 1 were discarded.

The specific methods are as follows:

Firstly, we required variants with a dominant mode of

inheritance; variants would be removed if they did not meet

this requirement.

Secondly, the pathogenicity of polypeptide changes was

annotated in ClinVar; variants were given +7 points if

consistent with previously identified pathogenic variants in

ClinVar. Variants that resulted in a different amino-acid

change at the same position were given +2 points.

Thirdly, we used HotSpot3D (35) to analyze the protein

structure and pathogenicity; if a germline variant was found to

be a recurrent somatic mutation among all cancer types in a

HotSpot3D cluster, the variant was given +2 points.

Fourthly, we scored according to mutation frequency.

Variants that did not exist or showed a very low frequency

(MAF< 0.0005) in the ExAC dataset were given +2 points;

common variants (MAF > 0.05) were given −8 points.

Finally, we used SIFT and PolyPhen for scoring. If a variant was

identified as “damaging” or “deleterious” in SIFT (score<0.05) and

“probably damaging” in PolyPhen (score >0.432), it was given +1

point. Conversely, if SIFT is greater than 0.05 and PolyPhen is less

than 0.432, the 1 point would be taken away.
2.7 Statistical methods

Statistical analysis was carried out by using IBM SPSS Statistics

25.0 (IBM Corp., Armonk, NY, USA). Clinical data including age,

gender, site of OC, smoking history, and excessive drinking history

were compared between P-OC and MP-OC using the Mann–

Whitney U test, Chi-square test, or Fisher’s exact test. The

difference of sequencing results between two groups such as TMB,

MATH, and MSI was also analyzed by the Mann–Whitney U test,

Chi-square test, or Fisher’s exact test. The survival rate of MP-OC
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and P-OC was calculated by using the Kaplan–Meier method, and

the survival curve was generated. We further performed univariate

regression analyses and a multivariate Cox regression analysis.

Candidates were subjected to a multivariate Cox proportional

hazards regression with the enter selection of variables (a = 0.1),

and the forest plot was drawn to show the hazard ratio of risk factors.

The log-rank test was used to formally test the differences.

Significance was determined based on a p< 0.05 threshold.
3 Results

3.1 The proportion of MP-OC among
oral cancers has increased over time

Data from SEER showed that the proportion of MP-OC

among OCs increased over time. Among all OC patients

between 1975 and 1985, MP-OC patients accounted for

12.73%, while the proportion increased to 25.32% between

2008 and 2018 (Figure 1A).
3.2 MP-OC shows worse prognosis
than P-OC

We first investigated the patients in the SEER database. The

survival of patients with MP-OC was significantly worse, with a

median survival time of 70.52 months (95% CI, 68.52–72.52),

compared with 119.02 months (95% CI, 117.50–120.53) in the

P-OC group (Kaplan–Meier survival analysis, p< 0.001)

(Figure 1B). To confirm this result, we enrolled 317 patients

with OC from our center; their clinicopathologic features are

listed in Table 1 (further details are provided in Supplementary

Table S2). There was no significant difference in the

clinicopathologic features between the two groups (p > 0.05,

Chi-square test). The median follow-up time of the 317 patients

was 59 months. Our cohort paralleled our earlier findings; we

found that the survival times were significantly shorter in MP-

OC than in P-OC (p< 0.05, Kaplan–Meier survival analysis)

(Figure 1C). The median survival time of patients in MP-OC was

39.79 months (95% CI, 26.27–53.30) and 66.95 months in P-OC

(95% CI, 63.33–70.57). To determine the independent risk

factors for Kaplan–Meier results, univariate regression analyses

and multivariate Cox regression analysis were used. The results

showed that history of cancer and N stage were independent risk

factor factors of OC patients (Figure 1D).
3.3 General mutation characteristics of
MP-OC and P-OC

To explore the mechanisms underlying the difference in

prognosis, 9 MP-OC and 21 P-OC tumor samples were analyzed
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by WES. The clinicopathologic features of the cases are listed in

Table 2 (further details are provided in Supplementary

Table S2).

An average of 91.17 million reads was acquired with an

average base quality of 97.45% (Q20). The ratio of high-quality

clean reads ranged from 99.24% to 99.84% (Supplementary

Figure S1A). The average ratio of on-target coverage was

84.45%. The average target depth ranged from 66.16× to

452.29×, and 90% samples reached 80×. The quality control

data for each case are provided in Supplementary Table S3.

Among the 30 collected patient tumors, we observed 6,761

non-synonymous SNPs and 2,272 synonymous SNPs

(Supplementary Table S4). The type and distribution of SNPs

and InDels are listed in Supplementary Table S4 and

Supplementary Figures S1C–F. The SNP and InDel number of

MP-OC trended higher than P-OC, although the difference was

not significant. The median SNP and InDel number of MP-OC

were 552 (first quartile to third quartile [Q1–Q3], 485–780) and

33 (Q1–Q3, 30–35), and that of P-OC were 410 (Q1–Q3, 356–

596) and 17 (Q1–Q3, 14–50), respectively. The most common

SNP types in both groups were nonsynonymous SNPs

(Figure 2A, left; Supplementary Table S4). The most common

base substitution in both groups was C > T. More C>G

mutations were observed in MP-OC than in P-OC (p<0.05)

(Figure 2A, middle; Supplementary Table S4).

CNV gain numbers of MP-OC trended higher than in P-OC,

although the difference was not significant, and CNV loss was

significantly less than in P-OC (p< 0.05, Mann–Whitney test).
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The median CNV gains of MP-OC and P-OC were 6,423 (Q1–

Q3, 5,914–7,459) and 4,693 (Q1–Q3, 22–7,476), respectively.

The median CNV losses of MP-OC and P-OC were 0 (Q1–Q3,

0–2) and 54 (Q1–Q3, 1–5,653), respectively (Figure 2A, right;

Supplementary Table S4).

Then, we analyzed MSI, TMB, and MATH in the two groups.

No significant differences in MSI, TMB, or MATH were found

(Supplementary Table S5). MSI was 0.27% (Q1–Q3, 0.16%–0.55%)

in the MP-OC group and 0.26% (Q1–Q3, 0.08%–0.62%) in the P-

OC group (p>0.05, nonparametric Mann–Whitney test)

(Figure 2B). Taking 3.5% as the cutoff between MSI and

microsatellite stability (MSS), only one patient exceeded the

threshold. TMB was 16.93% (Q1–Q3, 13.84%–23.43%) in the

MP-OC group and 13.47% (Q1–Q3, 11.99%–18.55%) in the P-

OC group (p > 0.05, nonparametric Mann–Whitney test)

(Figure 2C). The MATH of MP was 61.12 (Q1–Q3, 45.93–88.64)

and 49.22 (Q1–Q3, 39.70–68.16) in P-OC (p > 0.05, nonparametric

Mann–Whitney test) (Figure 2D; Supplementary Table S5). TMB

andMATH trended higher in the MP-OC than in the P-OC group.
3.4 MP-OC and P-OC have different
mutational signatures

Firstly, we analyzed the mutational signatures of the two

groups. Based on the catalogue of somatic mutations in cancer

(COSMIC) (20), there were 14 mutational signatures in the MP-

OC group and 8 mutational signatures in P-OC. The patterns of
B C

D

A

FIGURE 1

Proportion and prognosis of MP-OC and P-OC patients. Histogram of MP-OC patients’ proportion with years (A). Overall survival of MP-OC and
P-OC patients from the SEER database. Kaplan–Meier survival analysis, p< 0.001 (B). Overall survival of matching 16 MP-OC patients and 301 P-
OC patients from the Hospital of Stomatology, Sun Yat-sen University. Kaplan–Meier survival analysis, p = 0.03 (C). Univariate regression
analyses and multivariate Cox regression analysis of OC patients (D).
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mutational signatures were more complex in MP-OC than P-

OC. The somatic mutation types of the MP-OC and P-OC

groups are shown in Supplementary Figure S2. Signatures 4, 13,

15, 18, 20, 21, 23, and 24 were shared by the two groups, while

signatures 1, 2, 6, 7, 10, and 30 were unique to the MP-OC group

(Figure 3A; Supplementary Table S6).

Then, we focused on the mutated genes (Supplementary Table

S6). The spectra of mutated genes differed between the two groups.

In the MP-OC group, TP53 was the most frequently mutated gene,

followed by MUC16, AHNAK2, and FLG. In the P-OC group, the

most frequent mutation was also TP53, followed by MUC17,

MUC4, AHNAK2, and TTN (Figure 3B). The two groups only

shared 5 of the top 30 most frequently mutated genes. Only one

SMG, MUC17, was observed in the P-OC group (Figure 3C).

Lastly, we conducted pathways analysis using GO and

KEGG with the mutated genes in MP-OC and P-OC. The two
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groups shared some of the pathways. In the cellular component

(CC), molecular function (MF), and biological process (BP)

parts of GO pathways, there were zero, one, and four

pathways unique to the MP-OC group (Figure 4A). Among

KEGG pathways, there were two pathways unique to the MP-

OC group, including drug metabolism–cytochrome P450 and

metabolism of xenobiotics by cytochrome P450 (Figure 4B;

Supplementary Table S6).
3.5 Different CNV patterns in MP-OC and
P-OC groups

We evaluated DNA fragment changes by CNV. We observed

that mainly CNV gains rather than CNV losses occurred in MP-

OC. Both CNV gain and CNV loss, and mixed patterns were
TABLE 1 Clinicopathologic features of 317 patients for follow-up.

MP-OC (16) P-OC (301)

Clinicopathological features n (%)

Gender p>.05

Male 8 (50.0%) 203 (67.4%)

Female 8 (50.0%) 98 (32.6%)

Age p>.05

≥55 10 (62.5%) 148 (49.2%)

<55 6 (37.5%) 153 (50.8%)

Location of disease p>.05

Tongue 5 (31.3%) 154 (51.2%)

Gingiva 3 (18.8%) 33 (11.0%)

Buccal region 2 (12.5%) 43 (14.3%)

Floor of mouth 1 (6.3%) 24 (8.0%)

Hard palate 1 (6.3%) 11 (3.7%)

Other sites 4 (25.0%) 36 (12.0%)

T stage p>.05

T1-2 11 (68.8%) 204 (67.8%)

T3-4 5 (31.3%) 97 (32.2%)

N stage p>.05

N0 10 (62.5%) 213 (70.8%)

N+ 6 (37.5%) 88 (29.2%)

Histologic type p>.05

Well-differentiated 5 (31.3%) 79 (26.2%)

Moderately differentiated 7 (43.8%) 136 (45.2%)

Poorly differentiated 1 (6.3%) 4 (1.3%)

UK 3 (18.8%) 82 (27.2%)

Smoking p>.05

Yes 3 (18.8%) 117 (38.9%)

No 13 (81.3%) 184 (61.1%)

Excessive alcohol intake p>.05

Yes 2 (12.5%) 54 (17.9%)

No 14 (87.5%) 247 (82.1%)
frontiersi
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observed in the P-OC group (Figure 5A; Supplementary Table

S4). We highlighted some of the chromosome fractions that were

different between the two groups. In these fragments, there were

99 oncogenes and 89 tumor suppressor genes, while 14 genes act

as a double-edged sword (Supplementary Table S7). We labeled

some genes that may impact the pathogenesis of MP-

OC (Figure 5B).
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3.6 Germline mutations in MP-OC and
P-OC group.

We also tried to analyze whether germline mutations were

the possible cause of MP-OC. The clinicopathological features of

64 patients are shown in Supplementary Table S2. In our

preliminary study, we found no significant differences between
TABLE 2 Clinicopathologic features of 30 patients for whole exome sequencing.

MP-OC (9) P-OC (21)

Clinicopathological features n (%)

Gender

Male 3 (33.3%) 14 (66.7%)

Female 6 (66.7%) 7 (33.3%)

Age

≥55 6 (66.7%) 9 (42.9%)

<55 3 (33.3%) 12 (57.1%)

Smoking

Yes 0 10 (47.6%)

No 9 (100.0%) 11 (52.4%)

Excessive drinking

Yes 1 (11.1%) 5 (23.8%)

No 8 (88.9%) 16 (76.2%)

Chewing betel nut

Yes 0 4 (19.0%)

No 9 (100.0%) 17 (81.0%)

Family history of cancer

Yes 0 0

No 9 (100.0%) 21 (100.0%)

Site of oral cancer

Tongue 4 (44.4%) 14 (66.7%)

Gingiva 2 (22.2%) 2 (4.8%)

Buccal region 1 (11.1%) 4 (19.0%)

Other sites 2 (22.2%) 1(9.5%)

T stage

T1-2 5 (55.6%) 16 (76.2%)

T3-4 4 (44.4%) 5 (23.8%)

N stage

N0 7 (77.8%) 15 (71.4%)

N+ 2 (22.2%) 6 (28.6%)

Clinical stages

I 0 4 (19.0%)

II 4 (44.4%) 8 (38.1%)

III 2 (22.2%) 4 (19.0%)

IV 3 (33.3%) 5 (23.8%)

Pathological differentiation

Well-differentiated 5 (55.6%) 14 (66.7%)

Moderately differentiated 3 (33.3%) 1 (4.8%)

Poorly differentiated 0 1 (4.8%)

UK 1 (11.1%) 5 (23.8%)
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B

C

D
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FIGURE 2

General mutation characteristics of 9 MP-OC and 21 P-OC patients. All somatic substitutions identified in this study were included, and the bar
graph showed the subtype of SNP and InDel (left), proportion of base substitution types (middle), and number of copy number variation
fragments (right) between MP-OC and P-OC groups, respectively. * indicates significant difference between the two groups (Mann–Whitney
test, p< 0.05) (A). TMB and MSI of 9 MP-OC patients and 21 P-OC patients. The bar chart (left) shows the details of 30 patients, and the violin
diagram (right) shows the comparison of MSI and TMB between the two groups, respectively. Mann–Whitney test, ns stands for no significance,
which indicates p > 0.05. The cutoff between TMB-H and TMB-L is 20%, and the cutoff between MSI and MSS is 3.5% (B, C). The figures
showing typical MATH of MP-OC (left) and P-OC (middle) patients, respectively. The right violin diagram showing the comparison of MATH
between the two groups. Mann–Whitney test, ns indicates p > 0.05 (D).
Frontiers in Oncology frontiersin.org08

https://doi.org/10.3389/fonc.2022.971546
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.971546
B

C

A

FIGURE 3

Mutational signature, frequent mutated genes of MP-OC and P-OC patients. Decomposition of mutational signatures; all somatic substitutions identified
in this study were included to decipher mutational signatures. The bar plots show the details of 30 patients (left), their relative contribution, and
differences between the two groups (right) (A). The landscape of frequent mutated genes in MP-OC (left) and P-OC (right) groups. The middle panel
shows the somatic mutations by patient (column) and by gene (row). The histogram at the top shows the number of mutations accumulated in each
individual sample, and mutation types are marked with different colors (B). Venn diagram showing the differences of significantly mutated genes. The
right figure lists the genes with significant differences between the two groups in different colors (C).
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the two groups (p > 0.05, nonparametric Mann–Whitney test)

(Table 3; Supplementary Table S8).
4 Discussion

Firstly, we analyzed data from the SEER database. We found

that in recent years, the proportion of multiple primary cancer in

the total OC pool has increased. The oral cavity is one body

region with a high incidence of multiple primary cancers (36).

Without a medical history, it is difficult to distinguish multiple

primary cancers from primary cancers in the oral cavity. These
Frontiers in Oncology 10
distinctions are critical, as our study shows that the prognosis of

MP-OC patients is worse than P-OC patients; this finding is

consistent with previous studies (8, 37, 38). However, the

molecular mechanisms remain unexplored. With an increasing

incidence of multiple primary OCs, there is growing importance

in understanding the molecular mechanisms of poor prognosis.

Therefore, we attempted to characterize the differences in the

molecular mechanisms of MP-OC and P-OC by utilizing WES.

In general, mutations were more frequent in the MP-OC

group. This group had a trend towards greater SNP, TMB, and

MATH. TMB refers to the number of mutations per million

bases in cancer. The MATH value was calculated from the MAD
B

A

FIGURE 4

Pathway analysis of MP-OC and P-OC patients. Histogram showing the difference of GO between the MP-OC (upper) and P-OC (lower) group.
Venn diagram showing the differences of molecular function, cellular component, and biological process in GO, respectively (A). Lists of the
significant KEGG pathways in the two groups. Wayne diagram showing the differences between the two groups (B).
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B

A

FIGURE 5

CNV in MP-OC and P-OC groups. Histogram showing CNV gains (red) and CNV loss (blue) in 9 MP-OC patients and 21 P-OC patients. Patients
with CNV gains and CNV loss in the two groups were counted in the pie chart (A). Composite of copy number profiles for the MP and P group,
with gains in red and losses in blue. The regions that showed a difference in the frequency of copy number alterations between two groups
were shaded in light gray rectangles; some genes in these regions are labeled (B).
Frontiers in Oncology frontiersin.org11

https://doi.org/10.3389/fonc.2022.971546
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.971546
and the median of its mutant-allele fractions at tumor-specific

mutated loci (39). MATH evaluates the genetic differences

between tumor cells. Previous studies showed that TMB and

MATH are not significantly different in multiple gastric

cancer and multiple primary lung cancer (39, 40), and our

research supports these findings. However, the situation may

be more complicated in MP-OC than in P-OC. A larger sample

size is essential to confirm and refine these conclusions. In

addition, we also compared the MSI of the two groups. No

significant differences or tendencies were found. MSI refers to

short and tandem repeat base sequences that have errors in the

replication process, usually arising from DNA mismatch repair

defects (dMMR). Previous studies found that colorectal cancer

and head and neck cancer (HNC) with MSI-H show a higher

risk of MPC (41, 42). Multiple primary gastrointestinal cancer

exhibits frequent MSI (43, 44). MSI-H is not common in OC. A

study across 39 cancer types showed an incidence of only 0.78%

in head and neck squamous cell carcinoma (45). Our research

shows similar results in OC.

Mutational signatures are different combinations of mutation

types, often originating from different mutational processes (46).

The mutation types of MP-OC and P-OC groups are shown in

Figure S2. In our study, the mutational signatures of the MP-OC
Frontiers in Oncology 12
group were more abundant than in the P-OC group, which might

result frommore complicated pathogenic factors. Signature 1 was

closely related to age. The age at diagnosis of patients with MPCs

is older than that of patients with the same primary cancer (47,

48). Accumulated mutations accompanied by aging might play

an important role in the occurrence of MPCs. Signatures 2 and 13

were related to the activity of the AID/APOBEC cytidine

deaminase family. The APOBEC family has been shown to

induce tumor mutations by aberrant DNA editing mechanisms

(49). Infection with high-risk HPV, which is one of the

pathogenic factors in the oral and maxillofacial regions, leads

to increased APOBEC family activity (50–52).

We also found that the mutation spectrum between the two

groups was significantly different. Among the top 30 frequently

mutated genes, only 5 overlapped between groups. Similar results

were found in our GO and KEGG pathways analysis. We carefully

reviewed the specific KEGG pathways peculiar to MP-OC, in

which the cytochrome P450 pathway is involved. Various studies

have shown the significance of CYP 450 polymorphism in the

susceptibility to cancer. In hormone-related cancers such as breast

cancer (53) and prostate cancer (54), CYP 450, which is involved

in steroid hormone metabolism, affects cancer susceptibility.

Studies have shown that patients carrying a mutation of the
TABLE 3 Germline mutations in MP-OC and P-OC group.

MP-OC P-OC MP-OC P-OC

Symbol n (%) Symbol n (%)

MSH6 4 (20.0%) 0 HBB 0 1 (2.3%)

SDHA 2 (10.0%) 4 (9.1%) TPO 0 1 (2.3%)

SETBP1 2 (10.0%) 5 (11.4%) EPCAM 0 1 (2.3%)

AGBL1 1 (5.0%) 3 (6.8%) TSC2 0 1 (2.3%)

FLG 1 (5.0%) 2 (4.5%) FANCA 0 1 (2.3%)

GCDH 1 (5.0%) 0 TP53 0 1 (2.3%)

SUN5 1 (5.0%) 0 RNF135 0 1 (2.3%)

CABP4 1 (5.0%) 0 NF1 0 1 (2.3%)

SLC37A4 1 (5.0%) 0 BRCA1 0 1 (2.3%)

GALNS 1 (5.0%) 0 RHBDF2 0 1 (2.3%)

ABCA4 1 (5.0%) 0 SERPINB7 0 1 (2.3%)

PRDM9 1 (5.0%) 1 (2.3%) PINK1 0 1 (2.3%)

EVC2 1 (5.0%) 1 (2.3%) HPS3 0 1 (2.3%)

SLCO1B1 1 (5.0%) 1 (2.3%) ETFDH 0 1 (2.3%)

BRCA2 1 (5.0%) 1 (2.3%) CYP4V2 0 1 (2.3%)

GJB2 1 (5.0%) 1 (2.3%) SBDS 0 1 (2.3%)

EGF 0 1 (2.3%) CD36 0 1 (2.3%)

F11 0 1 (2.3%) CLCN1 0 1 (2.3%)

DNAH5 0 1 (2.3%) FBP1 0 1 (2.3%)

PNPLA1 0 1 (2.3%) TYR 0 1 (2.3%)

DST 0 1 (2.3%) C12orf65 0 1 (2.3%)

EYS 0 1 (2.3%) ATP7B 0 1 (2.3%)

SLC25A13 0 1 (2.3%) GALC 0 1 (2.3%)

CYP7B1 0 1 (2.3%) SPG11 0 1 (2.3%)
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CYP1A1/2, CYP2D6, and CYP2E1 have an increased risk of head

and neck squamous cell carcinoma, esophageal carcinoma, and

lung carcinoma, arising from a deficiency in metabolizing

carcinogens to their inactive derivatives (55, 56); alcohol and

nicotine are common carcinogens. The metabolism of

cytochrome P450 plays an important role in the production of

ROS and oxidative stress (57). Mutation of the cytochrome P450

pathway may play an important role in the development of MPC.

On the contrary, cigarette extracts have been shown to directly

upregulate the expression of CYP 450 (58). OSCC patients who

use tobacco also have some relevant characteristics, such as higher

C>G transversion mutations (59). In our study, no smoker or

betel nut chewer was enrolled into the MP-OC group for

sequencing, which might have biased our results. Samples

involving MPC smokers or nut-chewing patients will be

collected in our future studies.

CNV refers to a form of genomic structural change that

results in abnormal gene copy numbers (46). It is an important

way to regulate the expression and function of oncogenes and

tumor suppressor genes, which lead to the evolution and

progression of cancer (46, 60–63). We found different CNV

patterns between the two groups. The main CNV pattern of MP-

OC patients was gain. Cancer patients with CNV gain have a

poorer prognosis (64), which might be one of the reasons why

MP-OC patients have a poorer prognosis.

The causes of MPCs include accumulation of mutations

accompanied by aging, field cancerization caused by physical

and chemical factors, virus infection including HPV, iatrogenic

effects of radiotherapy and chemotherapy, and germline

mutations (41, 65–67). We preliminarily investigated germline

mutations as a potential cause. Germline mutation refers to a

congenital gene mutation in germ cells and leads to a higher risk

of canceration of somatic cells. However, we found no significant

differences in germline mutations between MP-OC and P-OC.
5 Conclusions

The biological behavior and molecular mechanism

underlying MPC were different from primary cancers. MP-OC

patients had a worse prognosis. By WES and comparative

analysis of 9 MP-OC patients and 21 P-OC patients, our study

described the differences in somatic point and fragment

mutations between the two groups. TMB and MATH in the

MP-OC group trended higher than in P-OC. The MP-OC group

had more complex mutation signatures, suggesting that age-

related factors and the AID/APOBEC pathway play different

roles in MP-OC versus P-OC. The mutated genes of MP-OC

were enriched in the cytochrome P450 pathway of KEGG.

Amplification is the main mode of CNV in MP-OC. Our

study did not find germline mutations that play a key role in

the pathogenesis of MP-OC. The mechanisms underlying MPC

remain appealing but unresolved. There are several limitations
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in our preliminary study. Smoking and nut-chewing patients

were not involved in the sequencing study. A larger cohort that

includes smoking and nut-chewing patients will be essential for

further studies. Samples should be carefully stratified and

analyzed according to the different potential causes, including

aging, field cancerization, radiation, and germline mutations.

Moreover, WES alone is unable to resolve molecular

mechanisms. Multi-omics studies incorporating analyses of the

transcriptome and proteome will need to be incorporated to

tease out the biological effects of specific mutations. In vivo and

in vitro experiments need to be performed to confirm the specific

potential driving genes and pathogenic pathways.
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