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Bipolar disorder (BD) is a chronic psychiatric disease, characterized by frequent
behavioral episodes of depression and mania, and neurologically by dysregulated
neurotransmission, neuroplasticity, growth factor signaling, and metabolism, as well as
oxidative stress, and neuronal apoptosis, contributing to chronic neuroinflammation.
These abnormalities result from complex interactions between multiple susceptibility
genes and environmental factors such as stress. The neurocellular abnormalities of BD
can result in gross morphological changes, such as reduced prefrontal and hippocampal
volume, and circuit reorganization resulting in cognitive and emotional deficits. The
term “neuroprogression” is used to denote the progressive changes from early to late
stages, as BD severity and loss of treatment response correlate with the number
of past episodes. In addition to circuit and cellular abnormalities, BD is associated
with dysfunctional mitochondria, leading to severe metabolic disruption in high energy-
demanding neurons and glia. Indeed, mitochondrial dysfunction involving electron
transport chain (ETC) disruption is considered the primary cause of chronic oxidative
stress in BD. The ensuing damage to membrane lipids, proteins, and DNA further
perpetuates oxidative stress and neuroinflammation, creating a perpetuating pathogenic
cycle. A deeper understanding of BD pathophysiology and identification of associated
biomarkers of neuroinflammation are needed to facilitate early diagnosis and treatment
of this debilitating disorder.

Keywords: energy metabolism, mitochondria, bipolar disorder, oxidative stress, neuroinflammation,
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INTRODUCTION

Bipolar disorder (BD) is a chronic and recurrent mood disorder
characterized by cyclic episodes of depression and mania.
Further, some patients may experience psychotic episodes during
which there is a high risk of suicide. Depressive and manic
episodes are often interspersed with periods of mood stability
or euthymia (Goodwin and Jamison, 2007; Hoertel et al., 2013;
Sigitova et al., 2017). Global prevalence has been estimated
at approximately 1%–2%, but some estimates suggest that it
may be as high as 4% (Kessler et al., 2005; Martinowich
et al., 2009). BD can be divided into two subtypes, BD I
characterized by severe manic and depressive episodes, and the
less severe BD II characterized by hypomania and depression.
A meta-analysis reported a centrally pooled lifetime prevalence
of 1.1% for BD I and 1.2% for BD II (Clemente et al.,
2015). Rates vary considerably across studies, however, possibly
due to methodological differences. A recent epidemiological
meta-analysis of 85 studies, including 67,373 adult patients from
44 countries, found a lifetime BD spectrum prevalence of 1.02%,
relatively stable over three decades (Moreira et al., 2017).

The BD concordance rate is significantly higher between
monozygotic twins than dizygotic twins, indicating a genetic
influence (Barnett and Smoller, 2009). Studies have shown
that BD shares pathogenic characteristics with a wide variety
of other diseases, including metabolic, cardiovascular, and
neurodegenerative diseases (Furman et al., 2019).

These and many other findings reviewed here, suggest
that disease etiology is best explained by multiple interactions
between environmental factors such as chronic stress and
susceptibility genes (Goodwin and Jamison, 2007), altering
the brain development, neuroplasticity, chronobiology,
neurotransmission, and cell signaling pathways, ultimately
leading to neuroinflammation, oxidative stress, and apoptotic
cell death (Schloesser et al., 2008; Berk et al., 2011;
Szepesi et al., 2018).

Progressive structural and biochemical changes in the
prodromal and early stages of the disease, produce a slowly
evolving clinical process called neuroprogression. The typical
patient exhibits a slow decline in behavioral and cognitive
functions associated with a weaker response to treatment (Berk
et al., 2011; Borges et al., 2019). This slow progression prevents
early diagnosis and rapid initiation of appropriate treatment.
Finding an effective treatment regimen usually takes several
years, resulting in substantial clinical impairment.

The main objective of this review article is to provide a
better understanding of the pathophysiology of BD, especially the
contributions of biomarkers such as neurotrophins, cytokines,
oxidative stress, metabolic deficiencies, which are directly related
to neuroinflammation (Fernandes et al., 2015).

We also seek to understand both the role of neuronal and
glial cells, as well as the mitochondrial functions involved
in neuroinflammation. These cells have high energy demands
in relation to many other cell types, and the mitochondrial
dysfunction produces the rupture of the electron transport
chain (ETC), which leads to metabolic deficits, oxidative stress,
cellular damage, and inflammation. Also, we summarized recent

research conducted through biomarkers that were present in
blood samples, which assisted in early diagnosis, and treatment
response for better BD outcomes. Future research strategies
based on these findings, processes, and their impacts on the
evolution of the disorder, are discussed in detail below.

CHRONIC STRESS,
NEUROINFLAMMATION, AND
NEUROPROGRESSION, AS PATHOGENIC
MECHANISMS UNDERLYING BIPOLAR
DISORDER

A clear relationship has been established between chronic stress
and neuropsychiatric pathology, including depression and BD,
mediated primarily by dysregulation of the hormonal stress
responses (Byrne et al., 2016; McEwen, 2017; Hei et al., 2019).
Low levels of glucocorticoid released during acute mild stress
can induce a compensatory increase in metabolism and enhance
cognitive functions (Miller et al., 2009; Yaribeygi et al., 2017).
For instance, glucocorticoid binding to high-affinity receptors
can improve working memory and promote long-term memory
consolidation by promoting dendritic growth and dendritic spine
formation in the hippocampus, amygdala, and prefrontal cortex
(Barsegyan et al., 2010; Liston et al., 2013). Under chronic stress,
however, glucocorticoid levels decrease as a result of continuous
or repetitive long-term stimulation (Hall et al., 2015). This is
associated with reductions in glucocorticoid receptor expression
and cortisol sensitivity, resulting in hypothalamic-pituitary-
adrenal axis adaptation or habituation, particularly during
emotional stress which has multiple long-term deleterious effects
on neuronal functions, in different areas i.e., hippocampus,
anterior cingulate cortex, prefrontal cortex, ventral striatum and
insular cortex (Ulrich-Lai and Herman, 2009; Berk et al., 2013;
Vieta et al., 2013; Jayasinghe et al., 2015; Rabasa et al., 2015).

Thus, when the challenges imposed by the social and
physical environment appear unexpectedly and continuously
exceed their limits of intensity and duration. Systems are
activated which regulate homeostasis in higher levels of demands,
which lead to the concept of allostasis. Thereby, allostasis
is the ability to achieve stability by enacting compensatory
responses to physiological and environmental stressors. The
physiological repetition of allostatic cycles appears to accelerate
the disease process (McEwen, 2000; Ganzel et al., 2010),
including psychiatric disorders through a mechanism known as
allostatic load (Rios, 2014). The allostatic load hypothesis was
developed to explain the substantial clinical changes observed
in the pathologies, and how these cumulative changes are
reflected by the progression of the disease, leaving the cells
and organs inefficient (i.e., pathogenic; McEwen, 2000; Grande
et al., 2012). This concept has been transferred to brain
diseases and has been referred to as neuroprogression (Berk
et al., 2009, 2011; Salagre et al., 2018). Particularly in BD
patients, the repeated episodes of depression and mania over
decades, enhance the vulnerability to stress, further reducing
the patients’ recovery capacity and accelerating disease process,
impairing several functions like the reduction of neural plasticity,
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consequently reducing the memory capacity, irregular emotional
responses, mood control, and decision making (Jansen et al.,
2013; Vasconcelos-Moreno et al., 2017; Lacroix, 2019). This
process can be better understood through the effects in the
brain cells and their mitochondria, which have pro-inflammatory
peripheral cytokine receptors, such as interleukins (IL)-6, IL-10,
and tumor necrosis factor α (TNF-α), which respond by
releasing second messengers, stimulating the production of more
cytokines by the CNS. The initial stimulation may derive from
damaged tissues releasing cytokines into the bloodstream, or
by inflammatory stimulation of peripheral afferent neurons
(Irwin and Cole, 2011; Fregnan et al., 2012; Zuccoli et al.,
2017). Upon arrival in the brain, these proteins activate other
cells and biochemical reactions, which enhance the allostatic
load and can be modulated by multiple mechanisms like
leukocytosis, a reduction in lymphocytes and natural killer
cells, increased CD4+/CD8+ ratios, more proinflammatory
cytokines (IL-1, IL-6, and TNF-α), cytokine receptor expression,
and activation of the downstream nuclear factor kappa B
(NF-κB) stress response pathway (Byrne et al., 2016; Gulati
et al., 2016). At the cellular level, several of these effects
are associated with altered calcium signaling. In chronic
levels of cortisol, the expression of L-type calcium channels
is upregulated by glucocorticoids promoting a greater Ca2+

influx into the cells promoting protease and phospholipase
activation (Joëls et al., 2012, 2013; Merkulov et al., 2017).
Also, when an overloaded calcium entry occurs, it leads
to the opening of the mitochondrial permeability transition
pore, and outer mitochondrial membrane permeabilization,
respectively, facilitating the release of cytochrome c through
the mitochondrial outer membrane, which triggers the caspase-
3-dependent apoptosis cascade (Pereira et al., 2012; Perier
et al., 2012; Di Meo et al., 2016). Furthermore, this increased
calcium entry reduces ETC-coupled proton export, resulting in
a reduced adenosine triphosphate (ATP) synthesis (Lin et al.,
2012; Zhao et al., 2019). Furthermore, the extrinsic apoptosis
pathway is triggered by the ligation of TNF-family death
receptors at the cell surface. Receptor ligation can result in the
recruitment of the Fas-associated death domain protein, which
in turn binds procaspase-8 molecules, allowing autoproteolytic
processing and activation of caspase-8, the principal effector
of the extrinsic apoptosis pathway (Youle and Strasser, 2008;
Machado-Vieira et al., 2009; Mitochondrial dysfunctions can
also trigger excessive production of free radicals, leading to
oxidative stress that eventually reduces metabolism and induces
neuroplastic dysfunction, contributing to apoptosis by altering
the structure of lipids, proteins, and DNA molecules (Machado-
Vieira et al., 2007; Vakifahmetoglu-Norberg et al., 2017).

All of these elements are involved in the chronic stress
response, which demonstrates their close relationship with the
immune system, where all of them causes a decrease in the
capacity for neuronal repair, and mitochondrial transport to
synaptic regions via the cytoskeleton with further neuronal
dysfunction and death (Mizisin and Weerasuriya, 2011; Lacroix,
2019). There is compelling evidence that BD arises through
alterations in the synapses and critical circuit functions, rather
than an imbalance of specific neurotransmitters mediating

affective and cognitive functions (Martinowich et al., 2009; Scaini
et al., 2020). Furthermore, prolonged metabolic dysregulation,
deficient neurotrophin (NT) signaling, oxidative stress, and
neuroinflammation, which may contribute to the increased
frequency and severity of manic and depressive episodes, as well
as other sequelae with age (Heneka et al., 2010; Kim et al., 2020).
These neurological and behavioral abnormalities, in turn, will
interfere with the patient’s personal and professional life, leading
to further stress-related pathogenesis. BD patients also exhibit
an increase in psychiatric and medical comorbidities, which
also may be associated with an imbalance of these mediators
(Kapczinski and Streb, 2014; Rowland et al., 2018).

Increased levels of proinflammatory cytokines in the CNS
stimulate the activation of immune cells, including macrophages,
monocytes, and microglia. Rising inflammatory cytokines in
the CNS appear to depend on the activation of microglia
(McEwen, 2017).

The role of microglia and the participation of
proinflammatory mediators in neuroinflammation will
be discussed from this point forward. The CNS hosts a
heterogeneous population of resident myeloid-derived immune
cells that regulate communication between the nervous,
vascular, and immune systems. Most prominent among these
are the parenchymal microglia, which account for up to 16%
of the total cell number in some areas of the human brain
(Norden and Godbout, 2013). Microglia perform essential
homeostatic functions under non-pathological conditions,
including regulation of neural circuit development (Squarzoni
et al., 2014) through the release of neurotrophins such as
brain-derived neurotrophic factor (BDNF; Parkhurst et al.,
2013), clearance of apoptotic cells and cellular debris, and
synaptic pruning (Paolicelli et al., 2011). Microglia are also
critical regulators of neuroinflammation in response to brain
trauma and various pathogenic insults (Gomez-Nicola et al.,
2014). Until recently, only circulating monocytes were thought
to replenish tissue macrophage populations, including CNS
microglia. However, new research suggests the presence of two
ontogenetically and genetically distinct myeloid populations of
microglia and nonparenchymal macrophages in the meninges,
perivascular spaces, and choroid plexus (Jakubzick et al.,
2013; Davies and Taylor, 2015; Herz et al., 2017). In rodents,
microglial progenitors derived from the yolk sack appear on an
embryonic day (E) 8.5 (Ginhoux et al., 2010; Gomez Perdiguero
et al., 2015) distributed in the brain before birth, and remain
a stable population throughout life. In contrast, other CNS
macrophages likely originate from monocytes derived from
the bone marrow (Ajami et al., 2011; Kierdorf et al., 2013),
are short-lived after birth and show rapid turnover through
proliferation and apoptosis (Aguzzi et al., 2013; Prinz and
Priller, 2014), which renews the entire population several times
over a lifetime (Askew et al., 2017). Rodent cell transplantation
experiments (Hickey et al., 1992) and observations following
bone marrow transplantation (Yang et al., 2013; Barr et al., 2015)
also indicate that some monocytes in the blood and perivascular
macrophages can infiltrate into the CNS parenchyma (Mildner
et al., 2007; Kierdorf et al., 2015). Despite their distinct origins,
CNS microglia and macrophages are morphologically similar
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and share certain functions. However, microglia cannot be
replaced by monocyte-derived macrophages due to their specific
gene expression patterns and unique functions (Goldmann et al.,
2013; Ginhoux et al., 2016; Prinz and Priller, 2017). In addition to
microglial cells, nonparenchymal and endothelial cells regulate
neural-immune function by maintaining the BBB, promoting
angiogenesis, regulating the composition of the cerebrospinal
fluid, and controlling vascular tone (He et al., 2016). Various
dendritic cells, mast cells, monocytes, and granulocytes complete
the CNS immune system (Kierdorf et al., 2015; Goldmann et al.,
2016). Mast cells are one of the few cells that migrate to the CNS
under both physiological and pathological conditions, where
they reside in the neuronal parenchyma (Sayed et al., 2010) and
function as pathogen sensors and modulate inflammation by
recruiting other immune cells to specific target regions (Skaper
et al., 2013). Many of these cells acquire anti-inflammatory or
pro-inflammatory phenotypes (Brendecke and Prinz, 2015),
and it is the balance between these phenotypes that determines
overall neuroinflammatory status and the progression of
neuroinflammatory diseases (Goldmann et al., 2016). Even in
their inactivated resting state, microglia continually search for
signs of potential threats to the CNS (Hellwig et al., 2013).
Multiple pathways are activated by chemical signals from
infection, trauma, endogenous and exogenous toxins, and the
loss of constitutive anti-inflammatory signals. Studies have
shown that microglia and brain macrophages can differentiate
into two distinct phenotypic groups, the classically activated
(M1) and alternatively activated (M2) populations (Chawla,
2010; Geissmann et al., 2010). These reactive phenotypes have
distinct protein and non-coding mRNA expression profiles,
release unique cytokines and chemokines, and have different
phagocytic activities. The reactive behavior of M1 microglia can
eliminate the initial activation trigger (such as a pathogen) with
or without the support of other resident or invasive immune
cells. This loss of the pathogenic stimulus leads to a more repair-
oriented microglial profile and eventual reversion to the initial
resting state (Arcuri et al., 2017; Tohidpour et al., 2017). Thus,
the microglia produce an immune response during inflammatory
conditions, moderating potential damage to the CNS and aiding
in tissue repair and remodeling (Kingwell, 2012; Hellwig et al.,
2013). Furthermore, in the early stages of diseases, symptoms
may be followed by microglial polarization to M1 (Duffy et al.,
2010; Yutaka and Kenji, 2014; Ginhoux and Guilliams, 2016).
This M1 phenotype can produce proinflammatory cytokines and
oxidative metabolites that cause additional damage, such as TNF-
α and IL-6 and IL-1 (Colton, 2009; Miller and Raison, 2016).
Activation of the M2 phenotype by IL-4, IL-13, or IL-10 (Nguyen
et al., 2011; Nakagawa and Chiba, 2014) negatively regulates
M1 function, thereby suppressing inflammation and promoting
tissue repair and wound healing, consequently attenuating
symptoms and restoring tissue homeostasis (Kawabori and
Yenari, 2014). In certain chronic conditions, however, some
cells may not return to a complete resting state, whereas others
remain post-activated microglia. If M2 microglia polarization
is insufficient, M1 microglial functions are maintained and
induce sustained inflammation and progressive neural network
dysfunction. In turn, symptom severity may gradually increase

according to the frequency of M1 polarization (Yutaka and
Kenji, 2014; Bachiller et al., 2018). These cells may maintain
subtle changes, such as transcriptional activity, that modulate
their sensitivity to anti-inflammatory signals or alter responses
to subsequent stimulation. Sustained M1 activity may even
lead to neuronal degeneration (Arcuri et al., 2017). A recent
study reported that there was an M1 dominance in one of
three BD patients during the manic state, and a downregulation
of M2 markers during the manic state in all three patients,
suggesting that the M1/M2 balance may indeed contribute to
BD symptoms. The researchers showed that the gene profiling
patterns are different between manic and depressive states
(Ohgidani et al., 2017).

However, while activated microglia have demonstrated
neurotoxic effects, responses may be very different in vivo
compared to the commonly used in vitro models (Hellwig
et al., 2013) due to the absence of inhibitory factors such as
CD200, CX3CL1, CD22, and CD172, which maintain microglia
attenuation in vivo (Ransohoff and Cardona, 2010; Prinz et al.,
2011). Blocking even one of these inhibitory factors results
in profound changes in microglial reactions, often causing a
disproportionate immune response and occasionally cytotoxic
responses (Hoek et al., 2000; Cardona et al., 2006). With
all that, neurons may be damaged or functionally impaired
when microglial activation is dysregulated, and microglia-
mediated inflammation is intense, as observed in chronic
brain pathologies. This inflammatory neuronal damage can
contribute to the progression of neurological disease, and
possibly psychiatric diseases such as BD (Perry et al., 2010;
Kettenmann et al., 2011; von Bernhardi et al., 2015).

ENERGY DEFICITS IN NEURONAL
MITOCHONDRIA AND ITS POSSIBLE
RELATIONSHIP TO PSYCHIATRIC
DISORDERS

Neurons contain large numbers of mitochondria to supply
the energy required for the maintenance of ion gradients
and electrical signaling, neurite growth, long-distance
axonal transport (mitochondria to distal synapses), calcium
homeostasis, and calcium signaling. Neurons are highly energy-
demanding cells. A single cortical neuron at rest consumes
approximately 4.7 million ATP molecules per second to execute
various biological functions, including the maintenance of
ionic gradients critical for electrophysiological signaling. In the
human brain, the ATP utilization rate is three times higher in
gray matter than white matter (Zhu et al., 2012, 2018), and gray
matter neurons are responsible for approximately 20%–25%
of all systemic oxygen and glucose consumption (Attwell and
Laughlin, 2001). Proper mitochondrial functions are, therefore,
critical for neural purposes.

Although the entire neuron requires energy, some sites
display higher energy demand, including presynaptic and
postsynaptic terminals that mediate neurotransmission, active
growth cones or axonal branches, which regulate short- and
long-term plasticity, and also Ranvier’s nodes, where the
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transmembrane ion flux is the highest (Zhang et al., 2010; Sheng
and Cai, 2012). This is only possible because mitochondria are
highly dynamic, and the relevance of these dynamic processes
to BD and other psychiatric disorders is related to the constant
changes in the mitochondrial number. It produces an altered
mitochondrial distribution and a defective transport. The rapid
movement of axonal mitochondria is a primary mechanism,
underlying spontaneous and neural activity-dependent synaptic
remodeling, being altered under certain conditions, such as stress
and axonal trauma (Cataldo et al., 2010; Sheng and Cai, 2012;
Sun et al., 2013; Chu, 2019). Sustained local mitochondrial energy
production in the presynaptic region is critical for synaptic
vesicle release. For instance, a drop in ATP levels in hippocampal
synaptosomes reduces synaptic vesicle release and alters the
cytosolic calcium concentration (Ivannikov et al., 2013). The
postsynaptic site also has extensive energy requirements. A
combined proteomics and mass spectroscopy study by Föcking
et al. (2016) found high cytoskeletal and signaling protein
densities in the postsynaptic region, facilitating the movement
of receptors and activating complexes critical for standard
synaptic transmission and plasticity. Aberrant synaptic plasticity
is implicated in neuropsychiatric disorders such as schizophrenia
and BD and may stem from mitochondrial dysfunction and
reduced metabolism (Akula et al., 2015; Forero et al., 2016). As
shown in Table 1, the mitochondrial protein synthesis combined
involves a total of 37 nuclear DNA (nDNA), and mitochondrial
DNA (mtDNA) genes. Many of these proteins are involved
in both oxidative phosphorylation (OXPHOS) and ETC, and
any change in genes can drastically interfere with metabolism
(Björkholm et al., 2015; Garcia et al., 2017; Kang et al.,
2018). Thus, multiple lines of evidence implicate mitochondrial
dysfunctions in BD, including the ∼20-fold higher incidences
of BD symptoms in patients with mitochondrial diseases. The
research reported the identification of mitochondrial DNA
deletions, polymorphisms in some BD cases, aberrant up-
or downregulation of various mitochondrial genes, BD-like
behavioral phenotypes in mouse models with mitochondrial gene
mutations. Furthermore, there were differences in mitochondrial
morphology, distribution, and metabolite levels between BD
patients and controls (Kato, 2017).

Mitochondria produce ATP from metabolites through two
continuous biochemical processes, the tricarboxylic acid cycle
(TCA) and OXPHOS (Vidyasagar, 2015). ATP generation within
the mitochondrial matrix requires interconnected processes
(Cooper and Hausman, 2006; Kühlbrandt, 2015). First, fatty
acids and the glycolytic degradation product pyruvate are
converted into acetyl-CoA via matrix enzymes (Cronan and
Laporte, 2005) and enter the TCA cycle (Figure 1), which
generates electron-rich NADH and FADH2 as sources for ETC
complexes I and II, respectively (Enríquez, 2016). The electrons

TABLE 1 | Structural codifications of Oxidative Phosphorylation System
(OXPHOS) complexes from nDNA and mtDNA.

Structural codification of OXPHOS complexes

Complex I II III IV V

nDNA encoded polypeptides ∼= 38 4 10 10 16
mtDNA encoded polypeptides 7 0 1 3 2

are transferred to Coenzyme Q10, which is essential due to
its antioxidative properties (Bentinger et al., 2010). Coenzyme
Q10 transfers the electrons to Complex III, where they are
transported to Complex IV by cytochrome c (Alvarez-Paggi et al.,
2017). In Complex IV, electrons are transferred to molecular
oxygen to form water (Enríquez, 2016; Milenkovic et al., 2017).
Finally, hydrogen is pumped through Complex V to store energy
for ATP formation from ADP and inorganic phosphate, which
is coupled to controlled re-entry of protons in the mitochondrial
matrix (Figure 2; Walker, 2013; Angrimani et al., 2015).

The interest of neuropsychiatry in the TCA cycle and
oxidative stress focused on the studies related to the production
of brain energy. The TCA cycle plays an important role since
it is responsible for the reactions that generate the substrates
for OXPHOS that occur in ETC. The expression of levels or
activities of several TCA enzymes are altered in the brains of BD
patients, which may contribute to both neuronal energy deficits
and oxidative stress (Blass and Brown, 2000; Zuccoli et al., 2017).
Research with bipolar patients and animal models observed a
reduction in TCA cycle enzymes (Lee et al., 2007; Valvassori et al.,
2013). In oxidative stress, it is essential to note that mitochondria
are the primary source of free radicals, and are generated mainly
through the ETC, during the energy production from glucose
and oxygen, it generates oxidative stress (Barbosa et al., 2010;
Mandavilli et al., 2018). Initially, we will describe the main
processes, functions, and losses in oxidative stress, and later,
the changes that occur in BD, which are related to the section
on biomarkers.

Free radicals are molecules that have at least one unpaired
valence electron, resulting in chemical instability and high
reactivity with other molecules being continuously produced
under physiological conditions (Figure 3). However, the free
radicals, both the reactive oxygen species (ROS) and reactive
nitrogen species (RNS), are derived from both endogenous
sources (mitochondria, peroxisomes, et cetera), and exogenous
sources (alcohol, heavy metals, et cetera; Phaniendra et al., 2015).

The physiologically and pathologically relevant free radicals
include; superoxide (O2 • −), hydroxyl (OH•), nitric oxide
(NO•), peroxyl-lipids (LOO−), and hydrogen peroxide (H2O2),
and they are formed via enzymatic and non-enzymatic reactions
(Reynolds et al., 2007; Collin, 2019). Superoxide is the leading
free radical species formed by the ETC, and thus, production
is enhanced in metabolically active neurons. The OH• is the
most reactive biological species and can damage for instance
ETC complexes I, II, and III. It can also lead to Fe-S electron
center complex malfunction in the TCA cycle and affect mtDNA,
leading to further oxidative stress resulting in a reduction in
mitochondrial energy production (Federico et al., 2012; Ghezzi
and Zeviani, 2012; Voets et al., 2012; Kausar et al., 2018). In
contrast, hydrogen peroxide is not strongly reactive but can
be toxic due to its long half-life, damaging the membrane
permeability (Barreiros et al., 2006).

In healthy cells and tissues, multiple enzymatic and
non-enzymatic antioxidant defense systems can reduce the
damage caused by free radical production. However, most
ROS are neutralized by endogenous enzymatic antioxidants
which consist of diverse proteins that metabolize free radicals,
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FIGURE 1 | Tricarboxylic acid cycle (TCA) cycle. In aerobic organisms, glucose is oxidized to CO2 and H2O. The pyruvate present in the cell cytosol is oxidized to
acetyl-CoA which can enter the TCA cycle. This cycle is composed of a complex of enzymes located in the mitochondrial cytosol of eukaryotic cells.

reduce oxidized molecules, and peroxidized lipids, being the best
known, the superoxide dismutase (SOD), catalase (CAT), GSH
S-transferase, y-glutamylcysteine synthetase, GSH peroxidase
(GSH-Px), and GSH reductase (Jeeva et al., 2015; Kurutas, 2016).
When free radical production is greater than the endogenous
antioxidant capacity, it leads to oxidative stress (Barreiros et al.,
2006; Barbosa et al., 2010). Among the most pathogenic results
of oxidative stress in neurons, is self-perpetuating membrane
lipid peroxidation, which results in reduced membrane fluidity
and barrier function (Ademowo et al., 2017). SOD acts as the
primary protective enzyme against oxidative stress and DNA
damage in mitochondria by catalyzing the dismutation of O2 • −

into H2O2 and O2 (Gill and Tuteja, 2010; Krishnamurthy and
Wadhwani, 2012). In turn, H2O2 is converted to H2O and
O2 in most tissues by CAT (Barbosa et al., 2010). At low
concentrations, H2O2 regulates several physiological processes,
however, at higher concentrations, it damages cells by reacting

with cellular iron to form hydroxyl radicals. Therefore, CAT
is critical for limiting H2O2-induced damage (Ighodaro and
Akinloye, 2018). GSH-Px inhibits lipid peroxidation, thereby
preventing loss of membrane function. Like CAT, it acts by
catalyzing the reduction of H2O2 or RHO2 to H2O by GSH,
which is concomitantly oxidized to form the disulfide-bonded
dimer GSSG (Espinosa-Diez et al., 2015).

It is important to highlight that the brain is particularly
vulnerable to oxidative damage because it uses a high oxygen
utilization rate, associated with weak defense of antioxidants, and
a constitution rich in lipids, favoring the oxidative damage in
neuronal cells (Salim, 2017). Thus, alterations in antioxidants
and various oxidation products suggest a possible link between
oxidative stress and BD. Evidence demonstrates that ROS
act as essential second messengers in innate and adaptive
immunity (West et al., 2011; Kamínski et al., 2013), stimulating
proinflammatory cytokine generation (including IL-1B, IL-8,
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FIGURE 2 | The mitochondrial electron transport chain (ETC). The flow of electrons through the complexes is energetically coupled to the pumping of protons into
the intermembrane space. This process produces an electrochemical gradient that stores the energy necessary for adenosine triphosphate (ATP) synthesis.

TNF-α, and interferons) during the immune response to control
pathogens and repair tissue damage (Chen and Nuñez, 2010;
Mittal et al., 2013). Therefore, in BD, a probable hypothesis is
that a higher oxidative stress load is generated by a fundamental
disturbance in mitochondrial functions, aggravating the disease.
Based on these findings, improved mitochondrial functions is a
potentially promising strategy for BD treatment.

BIOMARKERS RELATED TO
NEUROINFLAMMATION IN BIPOLAR
DISORDER

Collectively, the findings mentioned above indicate that BD
should be treated as a multisystem inflammatory disease. An
analysis of biomarkers for inflammation and oxidative stress
showed that patients with acute BD onset have a significantly
higher systemic toxicity than healthy controls, although not as
severe as sepsis (Pfaffenseller et al., 2013). Although consequent
allostatic overload associated with neuroinflammation in BD
patients has been present, a causal link between systemic toxicity
and biomarkers has not yet been established. As such, there is
an increasing interest in identifying peripheral biomarkers that
could function as indicators for systemic and cellular toxicity
in BD (Kapczinski et al., 2011; Frank et al., 2014). Specific
biomarkers or combinations may be associated with the degree of
disease activity during active periods or remission. Notably, some
systemic markers have already been implicated as mediators of

BD allostasis, and in neuroinflammation (Juster et al., 2013).
Thus, such studies have improved our understanding of the
disease’s activity and progression, providing clues to new novel
therapeutic targets.

While there is still no reliable set of biomarkers for
early diagnosis, many show promise for disease detection and
treatment evaluation. These biomarkers fall into three categories:
(1) imaging signs; (2) genetic loci; and (3) metabolic molecules.
Category 3, includes various substances that are derived from
neuronal and glial cells, such as the neurotrophins BDNF,
glia-derived neurotrophic factor (GDNF), and neuronal growth
factor. The pro-inflammatory cytokines IL-6, IL-1, and TNF-α,
TCA markers such as citrate synthase, succinate dehydrogenase,
and malate dehydrogenase, and oxidative stress-related markers
including SOD, CAT, GLUT-Px, 3-nitrotyrosine, and products
of lipid peroxidation (Thiobarbituric Acid-Reactive Substance;
de Sousa et al., 2015; Scaini et al., 2016). In this review article,
we will focus mainly on the last group (metabolic molecules),
associating the alterations found in BD and their relationship
with neuroinflammation.

Neurotrophins
Neurotrophins are small secreted proteins that promote multiple
neuronal responses through surface receptor binding and
activation of several downstream kinase signaling pathways.
More than 50 neuronal growth factors are expressed in
the mammalian brain. The NT family members BDNF,
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FIGURE 3 | The Oxidative Phosphorylation System (OXPHOS) and the enzymatic antioxidant defense. Electrons derived from cellular metabolism reach Complexes
I or II through NADH or FADH2, respectively. These electrons are then transferred to Coenzyme Q10 (ubiquinone), which carries electrons from Complexes I or II to
Complex III. In Complex III, electrons are displaced from cytochrome b to cytochrome c and consequently transferred to Complex IV (cytochrome c oxidase), where
they reduce O2. These electrons are transported through mitochondrial protein complexes and are coupled to proton pumping into the intermembrane space.
Complex V uses the generated electrochemical gradient for ATP synthesis. Complexes I and II are responsible for the production of superoxide anion (O2−), which is
removed by the antioxidant enzyme superoxide dismutase (SOD). This process produces hydrogen peroxide (H2O2), which is removed by catalase (CAT) and
glutathione peroxidase (GSH-Px) enzymes. Superoxide and H2O2 can be converted into highly reactive hydroxyl radicals (OH·), causing lipoperoxidation and cellular
injury.

GDNF, NGF, NT-3, and NT-4/5 increase cell survival by
stimulating axonal regeneration following injury and inhibiting
apoptotic protein cascades, and promote multiple forms of
neurite and synaptic plasticity (Machado-Vieira et al., 2009;
Pereira et al., 2012). BDNF activates two distinct receptors,
the NT p75 receptor, and the Trk tyrosine kinase receptor.
These two receptors can have opposing actions depending
on ligand availability and cellular context (Mocchetti and
Brown, 2008; Sasi et al., 2017). Both receptors regulate
development, survival, repair, cortical dendritic growth,
and plasticity as observed, for example, in the visual cortex
and its connections (Huberman and McAllister, 2002; Sutton
and Schuman, 2006). The p75 receptor signals mainly through

stress-associated pathways such as JNK, p53, and NF-κB, while
Trk receptors activate the Akt and mitogen-activated protein
kinase/extracellular regulated kinase (MAPK/ERK) pathways.
Activation of the Trk receptor by BDNF phosphorylates target
proteins such as phospholipase C, phosphatidylinositol-3
kinase (PI3K), and ERK1/2 (Kaplan and Miller, 2000; Park and
Poo, 2013). The MAPK/ERK pathway initiates a cascade that
inhibits pro-apoptotic proteins and increases the expression
and phosphorylation (activation) of the transcription factor
nuclear cAMP response element (CREB), which upregulates
the expression of neurotrophic/neuroprotective proteins such
as Bcl-2 and BDNF (Machado-Vieira et al., 2009; Benito and
Barco, 2010). Chronic cell stress can result in the dysregulation

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 609487

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Cyrino et al. Bipolar Disorder: New Findings and Concepts

of any component of the BDNF–MAPK/ERK–CREB pathway.
For example, overstimulation by cortisol can negatively
regulate CREB phosphorylation and subsequently decrease the
transcription of NT genes such as BDNF (Kandel, 2001; Carlezon
et al., 2005). This fact is especially vital in psychiatric illnesses
and may contribute to the pathophysiology of BD (Berk et al.,
2009; Tramontina et al., 2009).

Out of these, BDNF is the most widely distributed and is
also the most studied in BD. The initial meta-analyses have
reported reduced serum BDNF in BD patients during manic or
depressive states, compared to euthymia. These discoveries have
been found both in the serum of living BD patients, as well as
in postmortem neurons (Knable et al., 2004; Sen et al., 2008;
Fernandes et al., 2009; Lin, 2009). However, other meta-analyses
and longitudinal studies have demonstrated that the reduced
BDNF levels associated during BD manic and depressive phases
were responsive at clinically useful drugs like lithium can elevate
BDNF expression in the brain (Lang et al., 2007; Yang et al.,
2009; Schmidt et al., 2011). More recently, Fernandes et al. (2015)
performed a systematic review and meta-analysis evaluated
serum and plasma BDNF levels in BD including a total of
52 studies with 6,481 participants, showing that, compared to
healthy controls, peripheral BDNF levels are reduced to the same
extent in manic and depressive episodes, while BDNF levels are
not significantly altered in euthymia. The researchers showed
the BDNF levels were negatively correlated with the severity of
both manic and depressive symptoms. However, they found no
evidence for a significant impact of illness duration on BDNF
levels. Also, in plasma peripheral, BDNF levels increase after
the successful treatment of an acute manic episode, but not
of a depressive one demonstrating that BDNF is a potential
biomarker of disease activity in BD, but not a biomarker of the
stage (Panaccione et al., 2015; Roda et al., 2015). While it is not
always clear whether reduced BDNF is a cause or consequence of
BD-related pathology, there is a suggestive association between
changes in brain BDNF levels and BD. The reduced serum
BDNF in the brains of BD patients exhibits a variety of gross
and fine morphological changes that become more pronounced
with repeated episodes and disease duration (Tramontina et al.,
2009; Olsen et al., 2013). For instance, reductions in the
density of oligodendrocytes and myelination in BD patients
showed brain white matter abnormalities have been observed
in subgenual prefrontal cortex layer VI, caudate nucleus, and
the hippocampus along with signs of necrosis and apoptosis
(Mechawar and Savitz, 2016; Ganzola and Duchesne, 2017).
Also, reduced neuronal somal size, increased somal density,
and reduced dendritic spine density have been observed in the
anterior cingulate cortex of BD patients. These changes may
explain the associated impairments in cognition and judgment
(Vostrikov et al., 2007; Konopaske et al., 2014).

As reported above, both cross-sectional and longitudinal
studies have indicated that administration of antidepressants
and mood stabilizers such as lithium and valproate has
normalized BDNF, promoting so, a neuroprotection stress-
induced, protecting the cells through anti-apoptotic pathways
activation (Colucci-D’Amato et al., 2020). It can also increase the
gray matter promoting neurogenesis in the subventricular zone

of the lateral ventricle and subgranular zone of the hippocampal
dentate gyrus, and improve cognitive functions such as learning
and memory, both in animal and human studies (Sassi et al.,
2002; Gould, 2007; Kempton et al., 2008; Machado-Vieira et al.,
2009; Hashimoto, 2010; Corena-McLeod et al., 2013; Yu and
Greenberg, 2016). However, the utility of BDNF as a biomarker
during the early or late phases of the disease remains to be
determined in longitudinal studies. Further studies are also
needed to identify whether BDNF modulation can reduce acute
episodes, and promote the possibility for patients to return
to euthymia.

Other neurotrophins and neurotrophic factors are also altered
in BD patients, reinforcing the hypothesis that impairments
in neuroplasticity are involved in pathophysiology (Scola and
Andreazza, 2015). Both NT-3 (Fernandes et al., 2010) and
NT-4/5 (Walz et al., 2009) were increased during manic and
depressive episodes compared to euthymic patients or healthy
controls. However, studies on GDNF changes are conflicting.
Barbosa et al. (2011b) found increased plasma GDNF levels in
euthymic patients compared to manic patients and controls,
while Rosa et al. (2006) observed increased GDNF levels in manic
and depressive patients, but not in euthymic patients, compared
to controls. In another study, GDNF serum levels were reduced
in patients during manic and depressive episodes but increased
after mood stabilizer treatment (Zhang et al., 2010). Additional
studies are needed to assess whether peripheral GDNF levels
correlate with CNS levels.

Inflammatory Cytokines
Both peripheral immune cells and resident brain cells, such as
astrocytes, oligodendrocytes, and microglial cells, are associated
with elevated pro-and anti-inflammatory cytokines (Barbosa
et al., 2011a). The imbalance between them, have been implicated
in neuroinflammation, causing toxicity and apoptosis of neurons
and glial cells (Dong and Zhen, 2015; Réus et al., 2015; Muneer,
2016), which is associated with neuroprogression in BD, as well
as other psychiatric diseases (Kato et al., 2013).

The prevailing hypothesis is that the immune system is
chronically activated in BD mainly through microglial activation,
which leads to an imbalance of pro-and anti-inflammatory
cytokines and chemokines, which in turn can deregulate
moods. This hypothesis arose after a significant number of
patients with hepatitis C (treated using IFN-α), experienced
depressive or manic symptoms (Hoyo-Becerra et al., 2014).
It is not clear how peripheral cytokines affect inflammatory
processes in the CNS since they do not readily cross the
BBB under physiological conditions. Furthermore, postmortem
studies have shown an increase or decrease in various pro- and
anti-inflammatory factors in the prefrontal cortex, hippocampus,
and cingulate gyrus of BD patients (Rao et al., 2010; Sneeboer
et al., 2019). Also, many of the changes in cytokine levels
found among bipolar patients, are similar to those observed in
schizophrenia and major depression during acute and chronic
disease phases (Hope et al., 2009; Momtazmanesh et al., 2019).
Numerous studies have evaluated serum concentrations of
cytokines (IL, IFN, TNF), growth transforming factors, and
chemokines in BD patients. Research has pointed to an increase

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 609487

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Cyrino et al. Bipolar Disorder: New Findings and Concepts

in mainly proinflammatory factors i.e., IL-1β, IL-6, and TNF-α
(Forrest et al., 2018; Formanova et al., 2019; Kany et al., 2019;
Pawluk et al., 2020). On the other hand, several studies have
shown that anti-inflammatory cytokines (IL-4, IL-10, IL-13,
IGF-1, TGF-β) increase BDNF release and inhibit microglial
proinflammatory activity, resulting in increased synaptic pruning
and microglial phagocytosis (Barbosa et al., 2011a; Lee et al.,
2015; Sochocka et al., 2017; Liu et al., 2019; Milan-Mattos
et al., 2019). Recently, some studies have evaluated circulating
inflammatory mediators during different phases of BD as
potential biomarkers for diagnosis or treatment, and the results
were promising (Bhattacharya et al., 2016; Goldsmith et al., 2016;
Sigitova et al., 2017; Rowland et al., 2018). Multiple studies
have demonstrated an increase in IL-6, IL-1, IL-2, TNF-α,
and TNFR1 serums, during the manic and depressive phases,
compared to controls and euthymic patients (Brietzke et al.,
2009a,b; Barbosa et al., 2011a; Modabbernia et al., 2013; Luo
et al., 2016) while IL-4 concentration was significantly lower
than in controls (Kim et al., 2007). Nonetheless, other studies
have found elevated IL-6 in mania and euthymia, but not in
bipolar depression (Uyanik et al., 2015; Jacoby et al., 2016).
Kauer-Sant’Anna et al. (2009) found that IL-6 levels were
elevated during the advanced stages of disease progression, while
Hamdani et al. (2012) reported that the anti-inflammatory IL-
10, increased in the early stages of the disease but decreased
in the final stages. It is consistent with chronic progressive
neuroinflammation, where BD patients with a more significant
number of previous episodes, exhibit higher levels of TNF-α and
IL-6 during all disease states (Kauer-Sant’Anna et al., 2009).

Other changes in these biomarkers have been observed during
different phases following the treatment of acute illness. For
instance, levels of the endogenous interleukin receptor antagonist
(IL-1RA) were lower in the manic stage among chronic patients,
while IL-6 was higher in the euthymic phase but not during
the depressive phase compared to controls. Furthermore, IL-1β

levels were also significantly elevated in chronic euthymic BD
(Hamdani et al., 2013; Goldsmith et al., 2016). This IL-1 activates
the transcription factor NF-κB, which in turn enhances the
expression and release of IL-6, IL-8, and interferon-gamma
(Magalhães et al., 2012; Kany et al., 2019) Thus, Rowland et al.
(2018) concluded that while no single biomarker was able to
differentiate mood phases or evaluate the stages of the disease,
specific combinations including IL-6, BDNF, TNF-α, TNFR1, IL-
2, IL-10, and IL-4, were correlated with the disease’s stages. These
findings demonstrate a significant link between the immune
system and BD pathophysiological pathways.

TCA Cycle Enzymes and Metabolites
TCA cycle, a crucial component of respiratory metabolism, is
composed of a set of eight enzymes present in the mitochondrial
matrix. However, most of the TCA cycle enzymes are encoded in
the nucleus in higher eukaryotes (Cavalcanti et al., 2014). Studies
suggest that mitochondrial dysfunctions play an essential role in
the pathophysiology of BD. Increased neuronal oxidative stress
produces deleterious effects on signal transduction, plasticity,
and cell resilience (Olmez and Ozyurt, 2012), which can
induce mitochondrial dysfunctions reducing the ETC activity

and of the TCA cycle. The impact of these dysfunctions can
be measured in the peripheral blood and postmortem brains
of BD patients (De Sousa et al., 2014a; Valvassori et al.,
2018). This notion is consistent with parallel transcriptomics,
proteomics, and metabolomics studies, showing differential
expression of numerous genes related to mitochondrial functions
and oxidative stress between patients with mental disorders
and healthy controls (Prabakaran et al., 2004). For instance, a
loss of function mutation in the malic dehydrogenase enzyme
gene, which converts malic acid to pyruvate, was found in
the postmortem brains of patients with longer mental disease
duration (Lee et al., 2007).

Changes in the TCA cycle, modify brain metabolism, and
produce free radicals, leading to further dysfunction. The final
product of glycolysis, pyruvate, is converted to acetyl-CoA
by pyruvate dehydrogenase. Pyruvate, the end-product of
glycolysis, is derived from cellular cytoplasm being destined
into mitochondria as fuel undergirding the TCA carbon flux,
being critical for mitochondrial ATP generation and for driving
several major biosynthetic pathways in TCA (Gray et al.,
2014). Acetyl-CoA is then converted to CO2 in the TCA
cycle with the resulting production of NADH and FADH2,
the electron donors for the ETC, and ATP production. Eight
enzymes control the TCA cycle and inactivating anyone can
reduce mitochondrial energy generation (Blass and Brown,
2000; Shi and Tu, 2015; Lazzarino et al., 2019). Despite its
importance, few studies have evaluated the activity of the TCA
cycle enzymes in patients with mental diseases. Bubber et al.
(2011) demonstrated that the activities of enzymes in the TCA
cycle varied considerably in the human brain in schizophrenia.
They determined, on the prefrontal cortex, the activities of
the PDHC, aconitase, isocitrate dehydrogenase (ICDH), and
KGDHC. The activity of aconitase was undetectable, and the
KGDHC and ICDH activities were very low. On the other hand,
fumarase and malate dehydrogenase had the highest activity,
while pyruvate dehydrogenase complex (PDHC) and citrate
synthase activities were intermediate. Reduced activity of some
of these enzymes suggests that some patients with schizophrenia
have abnormalities in neural mitochondria. Interestingly, Bubber
et al. (2004) had demonstrated that the enzymatic activities
of the TCA cycle in mouse brains have a similar pattern,
although the majority of the enzyme activities in the brain
were 2–3 times higher than in humans brains. However, a
study involving 18 untreated BD patients in major depressive
episodes found no changes in TCA cycle enzymes compared
to controls. The research assayed the activity of the key
TCA cycle enzymes citrate synthase, malate dehydrogenase,
and succinate dehydrogenase from leukocytes of BD patients
(de Sousa et al., 2015). In contrast, Yoshimi et al. (2016)
showed that serum levels of pyruvate and α-ketoglutarate in BD
patients were significantly higher than those of healthy controls,
while serum levels of acetyl-CoA and oxaloacetate were not
altered. It is possible that TCA cycle enzymatic alterations are
present only during the manic phases. Further, no study has
been conducted during later disease stages. Although the BD
patients presented higher serum levels of α-ketoglutarate and
pyruvate than controls, the reasons underlying are unknown.
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Increased pyruvate levels likely play a role in the pathogenesis
of BD. The α-ketoglutarate is a key metabolite in the TCA,
but also an obligatory substrate for 2-oxoglutarate-dependent
dioxygenases (2-OGDO) which are involved in DNA and histone
methylation, producing an epigenetic impact (Salminen et al.,
2014). Altered α-ketoglutarate levels in BD may lead to epigenetic
changes. Epigenetic modifications have been suggested to play an
important role in the pathogenesis of many psychiatric disorders
including BD (Labrie et al., 2012; Kato and Iwamoto, 2014).

Findings from animal model studies also implicate
dysregulation of the TCA cycle in mental illness. Valvassori
et al. (2014) found reduced levels of the TCA cycle enzyme
citrate synthase, succinate dehydrogenase, and malate
dehydrogenase in the prefrontal cortex, hippocampus, and
striatum in amphetamine-treated rats, a commonly employed
animal model of mania. Further, these reduced levels were
associated with behavioral hyperactivity.

Oxidative Stress Markers
The role of oxidative stress in BD pathophysiology has been
investigated in several studies. Increased neuronal oxidative
stress produces deleterious effects on signal transduction,
plasticity, and cell resilience (Olmez and Ozyurt, 2012), which
can induce mitochondrial dysfunctions and reduce ETC activity
that can be measured in the peripheral blood and postmortem
brains of BD patients (De Sousa et al., 2014b; Valvassori
et al., 2018). BD is characterized by alterations in CAT, SOD,
and GSH-Px activity, NO, and GSH levels, DNA damage,
and lipid peroxidation (Gawryluk et al., 2011; Tunçel et al.,
2015). Although there is a great deal of work demonstrating
serum changes in antioxidant enzymes across all BD stages,
these findings are conflicting. Because of these discrepant
results, these enzymes cannot yet be used as BD biomarkers,
but may nonetheless be useful for evaluating disease stages
(Gama et al., 2013).

As related above, studies in animals and humans have
reported that increased oxidative damage reduced BDNF
expression. However, BDNF has been shown to stimulate the
expression and activities of GSH-Px and SOD; resulting in
reduced oxidative damage (He and Katusic, 2012; Valvassori
et al., 2015; Wang et al., 2020).

Clinical studies in individuals with schizophrenia or BD,
provide an empirical basis for hypothesizing that abnormal
BDNF and oxidative stress regulation observed in these disorders
are inter-related (Fernandes et al., 2011; Zhang et al., 2015;
Mansur et al., 2016). However, two recent studies reported that
patients with BD exhibited a negative association between serum
BDNF levels and lipid peroxidation (Tsai and Huang, 2015;
Newton et al., 2017). Also, studies in schizophrenic populations
observed a positive correlation between BDNF and TBARS,
and a negative association between BDNF and SOD activity
(Gama et al., 2008; Zhang et al., 2015). Nonetheless, there is
significant heterogeneity in results within and across studies of
these systems, which limits the generalizability of the findings.
For example, metabolic comorbidities, obesity, and impaired
glucose metabolism affect the activities of BDNF and antioxidant
enzymes (Tinahones et al., 2009). Studies have demonstrated

increased serum SOD activity in patients during manic or
depressive episodes (Kunz et al., 2008). Increased SOD activity
has been reported in medicated or unmedicated patients during
manic episodes (Salim et al., 2011) and acute BD episodes, but
not in euthymic patients (Singh et al., 2010). One study found
CAT increases in euthymic and manic patients regardless of
medication status (Steckert et al., 2010). In contrast, another
found that CAT was decreased in euthymic patients but increased
in unmedicated manic patients (Raffa et al., 2012). Halliwell
(2006) reported increased SOD, CAT, and GSH-Px in patients
during manic and depressive BD episodes.

Conversely, Vasconcelos-Moreno et al. (2017) found that
GSH-Px activity was reduced in euthymic BD I patients
compared to controls. A meta-analysis that included 27 studies,
with 971 patients, measured eight peripheral oxidative stress
markers in BD. Markers of lipid peroxidation, DNA/RNA
damage, and NO were significantly increased in all stages in
BD I/II patients compared to healthy controls (Brown et al.,
2014; Scola et al., 2016). Andreazza et al. (2010) reported higher
levels of mitochondrial protein oxidation in patients with
BD, whereas another meta-analysis concluded that TBA-RS
levels might be higher during manic or depressive episodes
than during remission. Additionally, NO concentrations
were elevated in BD patients regardless of mood state
(Savas et al., 2006; Siwek et al., 2016).

CONCLUSION

Clinical and animal studies have identified multiple promising
BD biomarkers that may be related to neuroinflammation, and
that may alter its concentrations throughout mood episodes,
showing that patients can present increased systemic toxicity
during manic and depressive episodes, compared to euthymic
patients (Kapczinski et al., 2010, 2011). Despite the systemic
toxicity and consequent allostatic overload associated with
BD, a causal link between these characteristics has yet to be
established. However, the co-occurrence of acute BD episodes,
clinical comorbidities, and substance abuse indicates that initial
allostatic loading can produce a long-term overload effect.
This state of chronic systemic toxicity occurs mainly by
the dysregulation of cytokine signaling and the consequent
mitochondrial oxidative stress, producing neuroinflammation,
which leads to decreased BDNF expression. This observation
supports the neuroprogression hypothesis and may explain,
at least partially, the deficits associated with chronic BD.
However, the mechanisms contributing to lower BDNF are
not yet fully understood. It has been suggested that the
methylation of BDNF gene promoters, can epigenetically
modulate BDNF transcription and that mitochondrial oxidative
stress and cytokine levels may alter the binding of nuclear
transcription factors (Martinowich et al., 2003). Also, as related
above, the brain is particularly susceptible to oxidative damage
due to its high rate of oxygen use, lipid constitution, and
low antioxidant defenses. In BD, the prevailing hypothesis
is that a fundamental disturbance in mitochondrial functions
generates a higher oxidative stress load. Changes in Complexes
I, II, and III paired with reduced GSH levels have been
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detected in BD (Andreazza et al., 2010). Further, significant
increases in SOD, CAT, and GSH-Px activities have been
found, suggesting the induction of compensatory mechanisms
to counter the pro-oxidative state. NO levels and oxidative
damage to lipids have also been identified as potential systemic
toxicity markers in BD patients (Andreazza et al., 2009). These
findings support the vital contribution of oxidative stress to BD
neuroinflammation, and the clinical neuroprogression, justifying
the research on antioxidant mechanisms as new therapeutic
strategies (Pandya et al., 2013). Thus, it is hypothesized that
the treatment with stabilizers drugs during the early stages of
BD, may be beneficial by offering neuroprotection and slowing
systemic toxicity progression through the increasing of BDNF.
Also, this toxicity may be linked to age and the number of
episodes. With each episode, lower BDNF levels result in more
significant cognitive impairment and reduced functionality,
further reducing the chances of returning to euthymia. Indeed
the number of episodes has a more significant impact on
disease evolution, than the patient’s age (Passos et al., 2016;
Scussel et al., 2016).

Thus, based on our improved understanding of the
neuroinflammation and neuroprogression, it is reasonable
to speculate that combinations of biomarkers for different
pathophysiological processes of BD, will 1 day help predict

disease evolution, treatment response, and long-term outcomes
(Goldberg and Harrow, 2004). However, the interactions among
biomarkers are complex and, as of yet, cannot predict an
outcome. Thus, as questioned by Vinberg (2020), in a recent
article, the search for peripheral biomarkers in psychiatry is like
searching for the needles in a haystack.

Thereby, this review sought to clarify some
pathophysiological mechanisms of BD, focusing mainly on
the energetic metabolism of brain cells and their correlation with
mental diseases.
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