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Abstract: Several disease risk variants reside on non-coding regions of DNA, particularly in open
chromatin regions of specific cell types. Identifying the cell types relevant to complex traits through
the integration of chromatin accessibility data and genome-wide association studies (GWAS) data can
help to elucidate the mechanisms of these traits. In this study, we created a collection of associations
between the combinations of chromatin accessibility data (bulk and single-cell) with an array of
201 complex phenotypes. We integrated the GWAS data of these 201 phenotypes with bulk chromatin
accessibility data from 137 cell types measured by DNase-I hypersensitive sequencing and found
significant results (FDR adjusted p-value ≤ 0.05) for at least one cell type in 21 complex phenotypes,
such as atopic dermatitis, Graves’ disease, and body mass index. With the integration of single-cell
chromatin accessibility data measured by an assay for transposase-accessible chromatin with high-
throughput sequencing (scATAC-seq), taken from 111 adult and 111 fetal cell types, the resolution
of association was magnified, enabling the identification of further cell types. This resulted in the
identification of significant correlations (FDR adjusted p-value ≤ 0.05) between 15 categories of
single-cell subtypes and 59 phenotypes ranging from autoimmune diseases like Graves’ disease to
cardiovascular traits like diastolic/systolic blood pressure.

Keywords: open chromatin regions; GWAS; chromatin accessibility data; complex phenotypes

1. Introduction

Many observable phenotypes in humans are referred to as complex phenotypes
(traits/diseases) because multiple genes contribute to them either individually or through
interactions with each other or the environment. Genome-wide association studies (GWAS)
have been successful in uncovering thousands of genetic variants associated with complex
phenotypes in humans [1]. Several studies have shown that GWAS variants of various
complex phenotypes are preferentially located on non-coding regions of DNA and in par-
ticular on accessible chromatin sites [2–4]. Additionally, we and others have shown that
the phenotype-relevant open chromatin sites are enriched in being accessible in specific cell
types [2,5–7]. Examples include hepatocytes for low-density lipoprotein (LDL) [8], embry-
onic stem cells (H1-hESCs) for height [9], immune cells for autoimmune diseases [5,6], and
cells of the nervous system for body mass index (BMI) [7]. For most complex phenotypes,
the predicted relevant cell types are highly heterogeneous and the specific subsets of cells
where phenotype-relevant regulatory sites are affected are largely unknown. Identifying
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specific subpopulations of cells underlying gene dysregulation of complex phenotypes, and
in particular complex diseases, is crucial for understanding their biological mechanisms.

In previous studies, mostly the bulk sequencing technologies (e.g., DNase-I hyper-
sensitive sequencing (DNase-I-seq) or the assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-seq)) were used to measure chromatin accessibility.
This provides an average chromatin accessibility profile across hundreds of thousands
of cells. To fully understand epigenetic differences among cells and identify the specific
subsets of cells underlying gene regulation in human complex phenotypes, it is necessary to
study epigenetic modifications at the single-cell level. The single-cell sequencing technology
is able to detect heterogeneity between individual cells and cell-specific changes that will
lead to an overall higher “resolution” of the information collected from cell samples [10].
There are many cases where bulk sequencing methods lack the level of granularity required
to sufficiently conserve data heterogeneity, such as with the complex tumor microenviron-
ments in cancers and different cell compositions in various tissue types [11,12]. Single-cell
sequencing leads to new cell subsets within known cell types, enabling the comprehensive
characterization of cells from complex tissues [13].

Recently, several studies have integrated GWAS of complex phenotypes and single-cell
RNA-seq (scRNA-seq) data to study the heterogeneity in the transcriptional profiles of
individual cells as it relates to complex phenotypes [8,14–16]. However, these studies are
not designed to capture epigenetic differences among cells and the functional consequences
of these differences on gene regulation. The epigenetic heterogeneity among cells from the
same cell type is highly informative, as it can reveal phenotype-relevant cell subsets defined
by chromatin states that are not detectable by transcriptional analysis alone [17–19].

The technology of single-cell epigenomics has advanced rapidly [20–22], and this tech-
nology is now revolutionizing our understanding of gene regulation and continues to find
many applications in the epigenetics of complex phenotypes. However, generating epige-
nomic data at the single-cell level is still quite expensive, and the single-cell epigenomic
(e.g., scATAC-seq) data are not available for a wide range of human complex phenotypes.
As an alternative option, publicly available GWAS data from complex phenotypes can
be integrated with scATAC-seq databases containing samples from healthy individuals
to predict the specific subsets of cells in which phenotype-relevant epigenetic changes
have occurred.

Partitioning heritability using linkage disequilibrium score (LDSC) regression analysis
has been the method of choice used by several studies to integrate GWAS data with
epigenomic data at either the bulk or single-cell level [23]. LDSC regression analysis
assesses the enrichment of phenotype-relevant genetic variants on the regulatory sites of
various cell types and prioritizes phenotype-relevant cell types based on their enrichment
levels. Peak data collected from bulk and single-cell chromatin accessibility datasets will
provide the base pair locations of open chromatin regions, and combined with GWAS
data, analysis can be performed exclusively on the risk variants found within these open
chromatin regions. Different cell types have varying significance levels in association with
a phenotype since open chromatin regions vary depending on the cell type itself. In other
words, data across a multitude of cell types can be prepared with epigenomic functional
categories to help understand the proportion of trait heritability explained exclusively by
single nucleotide polymorphisms (SNPs) within open chromatin regions.

Here we have performed a large-scale study, where we used LDSC regression analysis
to integrate the GWAS data of 201 human complex phenotypes with two large-scale
chromatin accessibility databases in order to predict the relevant cell types in these traits.
Our analysis highlights the strength of single-cell chromatin accessibility data combined
with GWAS data, as it shows that there are phenotype-relevant cell subtypes that can
be detected by the single-cell approach, while they might be missed when using bulk
sequencing data.



Int. J. Mol. Sci. 2022, 23, 11456 3 of 20

2. Results
2.1. Integration of Bulk Chromatin Accessibility Data and GWAS Data

For the bulk chromatin accessibility dataset obtained from OCHROdb, there were
21 phenotypes that had at least one significant association (false discovery rate (FDR)
adjusted p-value ≤ 0.05) with any of the 137 cell types (Figure 1), an example of which is
prostate cancer with one significant association with the cells of the prostate gland. Below
we discuss some of these significant associations.

Atopic dermatitis (Eczema), an auto-immune disease, is a chronic inflammatory skin
condition and like many inflammatory disorders, immune cells play a key role in it [24,25].
Atopic dermatitis showed significant associations with a number of cell types, including
the T helper 1 cell, CD4-positive alpha–beta T cell, CD4-positive helper T cell, T cell,
inflammatory macrophage, and the regulatory T cell, all of which are immune cells. Another
broader category of cell types that were found to have a number of associations with
atopic dermatitis were fibroblasts, and this association has been researched and confirmed
previously [26].

Graves’ disease is an auto-immune disorder that results in the overproduction of
thyroid hormones (hyperthyroidism), while Hashimoto’s thyroiditis is an auto-immune
disorder in which the immune system attacks the thyroid tissue, resulting in the under-
production of thyroid hormones (hypothyroidism). Graves’ disease was significantly
associated with immune cells like natural killer cells, the T cell, etc., whereas Hashimoto’s
Thyroiditis was significantly associated with only the T helper 2 cell. The associations have
been previously studied and well documented [27–31].

Body mass index or BMI, a polygenic trait and the most common proxy for obesity,
was significantly associated with several cell types mainly from two organs, including
the brain and eye. The associations signal the various regions of the brain which have
been thoroughly researched and documented previously [32,33], and similarly with the
eye [34]. The parts of the brain that play a role in BMI can be identified, however, as we
only had cells from different regions of the whole brain and did not have brain cell types
in OCHROdb, it was not possible to identify the specific subset of cells that play a role in
that association.

Height is highly polygenic and has multiple cell types showing a significant association
with it, and so has also been found by a study conducted by Guo et. al. [35]. Lymphocyte
count [36] has significant associations with all the T lymphocytes, B lymphocytes, natural
killer cells, and also with cell types that are a super-category of lymphocytes, such as the
mononuclear cell of bone marrow, myeloid cells, peripheral blood mononuclear cells, and
so on.

While many associations between the cell types and phenotypes are consistent with
the discoveries from recent research, there were some associations that were unexpected
to show a lack of significance. One example is the serum creatinine levels that have often
been attributed to the functioning of the kidney [37]. Here, however, it only shows a
significant association with cells of the skin of the body and none with renal or kidney cell
types. It is important to note that a variety of dermatological diseases are more commonly
seen in patients with renal transplants and chronic kidney disease (CKD) than the general
population [38].

One hundred and eighty out of 201 phenotypes were not associated with any bulk
cell type, among which many are autoimmune and cardiovascular diseases. We reasoned
that this could be due to the lack of cell type resolution at the bulk sequencing level, and
this motivated us to investigate the integration of GWAS data with single-cell chromatin
accessibility data.



Int. J. Mol. Sci. 2022, 23, 11456 4 of 20Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 21 
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Figure 1. Heatmap depicting associations of 137 cell types form bulk chromatin accessibility data
(from OCHROdb database) with 21 phenotypes. Of 201 phenotypes, 21 had a significant association
(FDR adjusted p-value ≤ 0.05) with at least one cell type. In the heatmaps, dark red boxes represent
significant association with an FDR adjusted p-value less than or equal to 0.05, while light red boxes
represent trend association with an FDR adjusted p-value less than or equal to 0.10 but greater than 0.05.
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2.2. Integration of Single-Cell Chromatin Accessibility Data and GWAS Data

The associations that have been made between GWAS phenotypes and bulk chromatin
accessibility data can be further magnified when single-cell chromatin accessibility data
are used instead [39,40]. Switching from bulk to single-cell sequencing data provided two
advantages. First, many such phenotypes which had no associations with bulk data showed
up when integrated with single-cell datasets. Second, a greater resolution was produced as
further unknown subtypes of cells were discovered to have significant associations with
phenotypes which had been previously studied.

From 21 phenotypes with a significantly associated cell type in the OCHROdb database, 19
had a significant cell type when integrated with the scATAC-seq too (Figure 2; Figures S1–S11).
The missing two phenotypes were insomnia and serum total protein levels. The absence of
insomnia can be explained as it was associated with brain pericyte and the smooth muscle
cells of the brain vasculature, which were both absent in the scATAC-seq data, and so were
any possible subtypes, from the single-cell database. The same can be said for the serum
total protein levels. In the next sections, we highlight important associations between some
cell types and phenotypes.

2.2.1. Immune Cells

We observed several significant associations (FDR adjusted p-value ≤ 0.05) for the
immune cells when we integrated the GWAS datasets with the scATAC-seq data (Figure 3).
More specifically, the immune cells were significantly associated with 21 phenotypes. Some
significant associations were seen between single-cell data and phenotypes that can be
matched intuitively as they are mostly some sort of metric (count/volume). Yet here we
discuss the associations between single-cell data and important diseases such as Graves’
disease, hypothyroidism, Hashimoto’s thyroiditis, pediatric asthma, and atopic dermatitis.
Adult cell types were associated with 14 phenotypes while fetal cell types were associated
with 12 phenotypes. Examples of significant associations between adult cell types and
diseases include Graves’ disease, hypothyroidism, Hashimoto’s thyroiditis, and pediatric
asthma, and all of which were significantly associated with immune-related cells such as T
lymphocyte 1 (CD8) and T lymphocyte 2 (CD4). Examples of significant associations for
fetal cell types include Graves’ disease and hypothyroidism, and both were significantly
associated with T lymphocyte 1 (CD4+). These associations have been previously studied
and well documented [28,41,42]. For instance, Okajima et al., and Rydzewska et al. [28,42]
highlighted the fact that autoimmune thyroid diseases, including Graves’ disease and
Hashimoto’s thyroiditis, as well as hypothyroidism, which can be developed following
Hashimoto’s thyroiditis disease, are characterized by intrathyroidal infiltration of the T
lymphocytes CD4+ and CD8+, which are reactive to self-thyroid antigens. Associations
between CD4 and CD8 T lymphocytes were also well document by Lloyd and Hessel [41].
Compared to the bulk results, within the single-cell results, more significant associations
for Graves’ disease were observed.

With the single-cell results, the number of significant associations for atopic dermatitis
with immune cell types were less than the bulk results and can be reasoned by comparing
the type of immune cells. The single-cell dataset had more specific subtypes of immune cells,
while the bulk dataset covered a broader class, and hence, it seems that atopic dermatitis
had fairly more associations in the case of bulk analysis. However, it is important to note
that in both the single-cell and bulk results, mainly T cells were significantly associated
with atopic dermatitis. In addition, natural killer cells from bulk sequencing data had a
significant association with atopic dermatitis, whereas natural killer T cells, a subtype of
natural killer cells, had no significant association with atopic dermatitis. The autoimmune
regulation between the two has been reviewed in detail by Seaman [43]. This suggests that
natural killer T cells might not have a role in atopic dermatitis while other natural killer
cell subtypes might.
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Figure 2. Heatmap depicting associations of scATAC-seq data for 222 cell types with 59 phenotypes. Of
201 phenotypes, 59 had a significant association (FDR adjusted p-value ≤ 0.05) with at least one cell type.
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The rows have been ordered according to different categories of cell types based on similarity and
tissue composition. Here, cardio stands for cardiomyocytes, skeletal myo stands for skeletal myocytes,
F&P stands for follicular and placental cells, a. cortical stands for adrenal cortical cells, and hepa
stands for hepatocytes. In the heatmaps, dark red boxes represent significant association with an FDR
adjusted p-value less than or equal to 0.05, while light red boxes represent trend association with an
FDR adjusted p-value less than or equal to 0.10 but greater than 0.05.
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Figure 3. Heatmap depicting associations of immune cells from adult and fetal tissue cell types with
respective phenotypes. The heatmap follows a gradient from red to white as the values go from 0.00
to 1.00. ** represents a significant association with an FDR adjusted p-value less than or equal to
0.01. * represents a significant association with an FDR adjusted p-value less than or equal to 0.05 but
greater than 0.01.

2.2.2. Islets and Neuroendocrine Cells

For islets and neuroendocrine cells, there were six phenotypes that had a significant
association with the scATAC-seq data (Figure 4). Adult cell types could be associated with
five phenotypes while fetal cell types were associated with four phenotypes. There were
significant associations between adult cell types and phenotypes including prostate cancer,
type 2 diabetes, medication use drugs diabetes, and glucose levels, as well as BMI. In
addition, there were significant associations between fetal pulmonary neuroendocrine cell
types and chronic hepatitis C infection, as well as between islet cells and diabetic-related
phenotypes including type 2 diabetes, medication use drugs diabetes, and glucose levels.

The pancreas contains clusters of cells that produce hormones. These clusters are
known as pancreatic islets or islets of Langerhans which secrete hormones for controlling
blood glucose levels. Alpha cells (secrete glucagon to raise the concentration of glucose in
the bloodstream), beta cells (secrete insulin to inhibit glucose production and its level in the
bloodstream), gamma cells (secrete pancreatic polypeptide to inhibit the release of glucagon
in the bloodstream), and delta cells (secrete somatostatin to inhibit insulin, glucagon, and
pancreatic polypeptide secretion in the bloodstream), are the four major types of cells
present in the islets of Langerhans [44]. The role of islet cell types in the pathogenesis
of diabetes, glucose levels, and insulin production has been thoroughly researched and
documented [45], be it alpha cells [46,47], beta cells [48,49], or delta + gamma cells [50].
Genomic relations of islet cells with type 2 diabetes have also been studied via genome-wide
association studies [51].
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than or equal to 0.01. * represents a significant association with an FDR adjusted p-value less than or
equal to 0.05 but greater than 0.01.

In this study, BMI was significantly associated with beta cells, delta + gamma cells, and
gastric neuroendocrine cells. BMI is widely used to define obesity and as this progresses,
can result in multiple disorders, including type 2 diabetes [52]. There exists a strong dogma
asserting a relationship between beta cell mass and BMI [53]. Type 2 diabetes is associated
with a reduced beta cell mass and function, thus causing inadequate insulin production [54].
BMI was not significantly associated with the pancreas in the OCHROdb analysis. This
resolution could be achieved due to the specificity of the subtype of pancreatic cells. This
observation highlights the advantage of using chromatin accessibility datasets at the single-
cell level to detect relevant cell types.

In this study, gastric neuroendocrine cells were significantly associated with prostate
cancer, type 2 diabetes, medication use drugs diabetes, and glucose levels, as well as BMI.
Insulinomas are the most common types of neuroendocrine tumors (NETs), cancers that
begin in specialized cells called neuroendocrine cells. These tumors secrete insulin, or less
commonly proinsulin, leading to hypoglycemic (low blood glucose) symptoms, and relief
is brought about with the administration of glucose. Thapi et al., showed a significant asso-
ciation between NETs and diabetes [55]. Lee et al., reported an association between gastric
cancer and BMI, where compared with normal weight patients, underweight patients had
a worse overall survival (OS) and disease-specific survival (DSS), whereas overweight and
mildly to moderately obese patients had a better OS and DSS rate [56]. Therefore, apart
from the association between gastric neuroendocrine cells and prostate cancer, where we
could not find any related literature explaining this relationship, the other associations
directly/indirectly are in agreement with the results of the mentioned studies.

The other finding here was the association between chronic hepatitis C infection and
fetal pulmonary neuroendocrine cells, which has not been reported in any study so far.
Bal et al., reported that patients having high doses of serum chronic hepatitis C RNA levels
were 14.2 times more likely to show pulmonary dysfunction than non-viremic patients [57].
Segna and Dufour also reviewed the association between the hepatitis C virus (HCV) and
endocrine and pulmonary manifestations [58]. Therefore, the fact that chronic hepatitis
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C infection can affect the lungs and other parts of the respiratory system has been well
studied, but here we revealed an important finding at the cellular level, the main target cell
type for chronic hepatitis C is the pulmonary neuroendocrine cell.

2.2.3. Stromal Cells

For the stromal cells, there were 11 phenotypes that had a significant association with
the scATAC-seq data (Figure 5). Adult cell types were associated with nine phenotypes
while fetal cell types were associated with four phenotypes. There were significant associa-
tions between adult cell types and phenotypes including height, head injury, and blood
traits/diseases (such as diastolic blood pressure, systolic blood pressure, mean arterial pres-
sure, myocardial infarction, unstable angina pectoris, stable angina pectoris, and medical
used agents on renin–angiotensin system). There were also significant associations between
fetal cell types and phenotypes including height, chronic hepatitis C infection, as well as
blood related problems (such as diastolic blood pressure and a cerebral aneurysm).
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In this study, significant associations were seen between adult/fetal cell types and
blood traits/diseases. The proper delivery of blood into different parts of the body is
essential for healthy tissue function. The anatomical substrate for this precise mechanism
is the vascular unit, which is formed by endothelia cells, which form the inner lining of
the blood vessel wall, as well as perivascular cells, referred to as pericytes, and vascular
smooth muscle cells, which envelop the surface of the vascular tube [59,60]. Therefore, all
these cell types are responsible for regulating capillary blood flow. Regarding stromal cell
types, studies suggest that the loss of pericytes in vessels makes them hemorrhagic and
hyper-dilated, thus affecting blood pressure, which leads to conditions such as diabetic
retinopathy, edema, and embryonic lethality [60]. Špiranec et al., reported that endothelial
C-type natriuretic peptide acts on pericytes for regulating blood flow and pressure and
they highlighted the necessity of pericytes for the maintenance of normal microvascular
resistance and blood pressure [61]. Touyz et al., and Michael et al., also reported that
vascular smooth muscle cells have important roles in the regulation of blood pressure and
defects in these cells could lead to several complications [62,63].

Unlike many significant associations between adult cell types and blood traits/diseases,
fetal cell types were only associated with blood traits/diseases including a cerebral aneurysm
and diastolic blood pressure. A cerebral aneurysm or brain aneurysm is a weak or thin
spot on a brain artery that bulges out or balloons and fills with blood, which results in
pressure being placed on the nerves or brain tissue [64,65]. This pressure may also result in
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the burst or rupture of a blood vessel, spilling blood into the surrounding tissue (called
a hemorrhage), and can cause serious health issues such as a hemorrhagic stroke, brain
damage, coma, and death [64,65]. Pediatric cerebral aneurysms are associated with a
variety of disorders such as coarctation of the aorta, fibromuscular dysplasia, tuberous
sclerosis, and polycystic kidney disease [66]. The latter may explain the relationship be-
tween cerebral aneurysms and fetal mesangial 1 cells, which are the stromal cells important
for kidney glomerular homeostasis and the glomerular response to injury [67]. The few
associations between fetal cell types and blood traits/diseases might be attributed to the
general trend that the aberration in blood pressure occurs with aging due to structural
changes in arteries [68].

Height is a highly polygenic trait on which extensive research has been done along
with GWAS studies [35]. In this study, we saw significant associations between height and
many adult/fetal stromal cell types. Zhang et al. [69] also produced the association between
height GWAS data (smaller population) and single-cell chromatin accessibility data and
generated similar results. Our study extends that conclusion to a larger population of
multiple different ethnicities.

A significant association was observed between head injury and adult pericyte general
2 cell type. This association can be explained by the studies of Nakata et al., and Cai et al.,
where they reported that pericytes, with their multi-differentiation potency, are involved
in neurogenesis after a transient ischemic stroke [70,71]. They also reported that pericytes
could be used as a cell-based therapy after a stroke or other brain injuries to promote tissue
restoration [70,71].

A significant association was seen between chronic hepatitis C infection and fibroblast
cells including fibroblast muscle 1 and fibroblast general 2. This association might be
explained by the fact that during liver injury, hepatic stellate cells are activated and undergo
a transformation to proliferative, contractile myofibroblasts (muscle fibroblasts) [72,73].
This results in liver fibrosis, defined by the excessive accumulation of extracellular matrix
proteins such as collagen, laminin, fibronectin, and elastin, and is currently considered as a
wound healing response to chronic liver injury [72,73].

2.2.4. Endothelial Cells

In terms of endothelial cells, there were 14 phenotypes that had a significant associa-
tion with the scATAC-seq data (Figure 6). Adult cell types could be associated with seven
phenotypes while fetal cell types were associated with eight phenotypes. Adult endothelial
cell types were significantly associated with pulmonary fibrosis, height, and blood related
traits/diseases including a cerebral aneurysm, myocardial infarction, diastolic blood pres-
sure, systolic blood pressure, and mean arterial pressure. Fetal endothelial cell types were
also significantly associated with chronic hepatitis C infection, pleurisy, and blood related
traits/diseases including cerebral aneurysm, platelet count, mean corpuscular hemoglobin,
mean corpuscular hemoglobin concentration, mean corpuscular volume, and red blood
cell count.

Almost all body tissues depend on a blood supply, and the blood supply depends on
the endothelial cells, which form the internal linings of the blood vessels. These cells have
roles including angiogenesis, hemostasis, and the regulation of vascular tone, as well as
immune response via controlling the immune cell recruitment and extravasation into target
tissues throughout the body [60,74]. Therefore, the significant associations between the
fetal/adult endothelial cells and blood related traits/diseases seen here were expected, but
here we showed exactly which subtypes of endothelial cell are linked to which type of blood
related problems. Such an interesting detail seen here that was not reported previously
was the association between fetal endothelial hepatic 2 cells and red blood cell phenotypes
including mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration,
mean corpuscular volume, and red blood cell count.
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In this study, chronic hepatitis C infection was significantly associated with lymphatic
cells. Several studies have shown that the defects present in various lymphocyte popula-
tions in chronic hepatitis C patients and the extrahepatic diseases might be induced by a
direct interaction between the chronic hepatitis C virus and lymphoid cells [75,76]. Many
reports describing the existence of the chronic hepatitis C virus in B lymphocytes and B cell
lymphoma, as well as in T lymphocytes and T cell lines, have been published [75,76]. These
reports clearly validate our observed relationship between chronic hepatitis C infection
and lymphatic cells.

We also observed significant associations between pleurisy and fetal endothelial cell
types, including endothelial hepatic 1 and endothelial general 2. No study has directly
linked the endothelial hepatic cell types with pleurisy, but a broader area in the direction
has been researched, showing a pleural effusion in liver disease [77]. Pleurisy is a condition
in which the two large, thin layers of tissue that separate your lungs from your chest wall,
known as pleura, become inflamed, causing a sharp chest pain (pleuritic pain) that worsens
during breathing [78]. Acute respiratory disorders such as pulmonary embolism, pneu-
monia, and pneumo-thorax are clinically significant conditions that may cause pleuritic
pain [78]. Several studies have reported that endothelial cell damage has an important role
in the pathogenesis of acute respiratory disorders and several biomarkers of endothelial
damage have been tested in determining prognosis [79,80]. These findings validate the
significant relationship between pleurisy and the fetal endothelial cell types observed in
our study.

3. Discussion

The GWAS data provides invaluable information on the polygenic architecture behind
complex traits and is most informative when combined with other genomic information in
the downstream analyses. As of August 2022, there are over 5500 publications generating
GWAS data recorded by the NHGRI-EBI Catalog alone; [1] therefore, the field of association
studies has become quite expansive ever since the first GWAS was published in 2005 [81].
While GWAS provides important information regarding the association of genetic variants
with phenotypes of interest, the GWAS data type alone is not sufficient to unravel the
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specific cellular and molecular mechanisms underlying complex phenotypes. In this study,
we have integrated GWAS and chromatin accessibility data to identify the specific cell types
in which phenotype-relevant epigenetic changes are likely to happen. Here, we provided
the most optimal and informative conditions when performing partitioning heritability
analysis through GWAS integration, by not only accounting for linkage disequilibrium
but taking advantage of the heterogeneity of bulk and single-cell chromatin accessibility
sequencing data. Compared to previous studies, here we scaled up our analysis and
generated a large collection of associations between a wide array of cell types at the bulk
and single-cell chromatin accessibility level and tens of GWAS phenotypes.

Bulk sequencing refers to the sequencing of DNA with every sample containing
thousands of cells. In turn, the data available in every sample are an average of the
data across many cells, and in the case of open chromatin regions, the average level of
accessibility across a large number of cells in a sample is represented. At a population
level, bulk sequencing is able to provide an effective overview of chromatin accessibility
patterns; however, it does have its limitations in the preservation of data heterogeneity and
overall accuracy. It cannot provide insight into the variable levels of accessibility between
individual cell subtypes [82]. Signals that are less frequently seen within a population of
cells are drowned out, so the data is lost. In contrast, the single-cell sequencing technology is
able to detect heterogeneity between individual cells and cell-specific changes that will lead
to an overall higher “resolution” of information collected from cell samples [10]. Ultimately,
single-cell sequencing will lead to new cell subsets within known cell types, enabling
the comprehensive characterization of cells from complex tissues [13]. In this study, we
integrated the GWAS data of 201 phenotypes (diseases, biomarkers, and medication usage)
with bulk chromatin accessibility data measured by DNase-I-seq and found significant
results for at least one cell type in 21 complex phenotypes, such as strong associations
with atopic dermatitis, Graves’ disease, BMI, and height. With the integration of single-
cell chromatin accessibility data measured by scATAC-seq and taken from 222 cell types
(111 adult and 111 fetal cell types), the resolution of association was magnified, enabling
the identification of further cell types. At the single-cell level, significant correlations were
found between 15 categories of cell types (222 cell types) and 59 phenotypes ranging from
autoimmune diseases like Graves’ disease to cardiovascular traits like diastolic/systolic
blood pressure. For those phenotypes with no significantly identified cell types (neither at
the bulk nor single-cell resolution), the lack of association may be caused by the relatively
lower sample sizes of their corresponding GWAS study (Table S1).

We pointed out many of the generated associations in the literature that was already
thoroughly documented, such as the associations made between immune cells with Graves’
disease, hypothyroidism, and hyperthyroidism. However, in many cases, the more uncom-
mon associations are not sufficiently considered in practice or research. It was often the case
that little to no literature existed to support some of the significant associations generated
from this paper, but we tried to speculate the results by addressing the association from the
literature between phenotype and a broader category of cell type (e.g., tissue), instead of
a particular subtype of cell. The results uncovered in this study opened the possibility of
researching the mechanism of these complex phenotypes through the various cell subtypes
that were associated with them. While the results of this study branch off towards research
outlining well-known mechanisms of disease pathogenesis, there is also an opportunity
to open new and potential research avenues for discovering cell-type specific pathways
not yet considered when studying the development of diseases. Associations between cell
types and phenotypes from this study can shed light upon future under-researched areas
of diseases, medicines, and other traits.

In our study, we have considered chromatin accessibility data (bulk and single-cell) as
they provide important associations between phenotypes and particular cell types based
on the open chromatin regions within the genome. However, the GWAS data [83] can also
be integrated with other sequencing data types such as RNA-seq [84–86] or DNA methyla-
tion [87,88] data to draw meaningful insights into multiple phenotypes. Each of these data
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types provide important information about the gene regulation genome-wide. RNA-seq
provides information about the genes that are being expressed [89], ATAC-seq or DNase-I
hypersensitive sequencing provides information about the potentially active gene switches
and transcription factor-binding sites [90], and DNA methylation provides information
regarding gene regulation and transcriptional activities [91]. Therefore, combining these
data will reveal a more comprehensive view of gene regulation. While both scRNA-seq
and methylation can be used to verify our results, there might be slight variations owing to
the difference in the basic information these sequencing techniques capture.

4. Materials and Methods
4.1. GWAS Data

GWAS studies identify and associate phenotypes to variations in the genome. GWAS
intends to identify and map the polygenic architecture of phenotypes through SNP alleles
that exist in a significantly different proportion for a specific trait group (e.g., patients
having a specific disease) when compared with controls (e.g., unaffected patients).

There is a plethora of publicly available GWAS datasets for different phenotypes.
For this study, we have used a cross-population atlas of such associations with around
201 phenotypes taken from a study by Sakaue et al. [92]. The paper contains GWAS data
for 220 complex phenotypes (diseases, biomarkers, and medication usage) from BioBank
Japan (BBJ), UK Biobank (UKB), and FinnGen (ntotal = 628,000) and identified 5343 new loci,
substantially improving the resolution of genomic mapping of human phenotypes, while
also diversifying the database by incorporating varying ethnicities. Of these, 201 were
selected for this study, eliminating the inaccessible, missing, or repeated ones.

4.2. Chromatin Accessibility Data

The choice of datasets, starting with bulk chromatin accessibility data to single-cell
chromatin accessibility data, was made to identify the resolution that can be produced as
one goes from analyzing bulk sequencing to single-cell sequencing. Both selected bulk and
single-cell chromatin accessibility datasets broadly scan over the several human tissue cell
types and they are not focused on only certain organs which would have limited the scope
of our study. We obtained the bulk chromatin accessibility data from our previously built
database called OCHROdb (https://dhs.ccm.sickkids.ca/ accessed on 27 May 2022) [5,93].
OCHROdb is one of the largest bulk chromatin accessibility databases available publicly
that contains a diverse range of cell types and tissues. OCHROdb was originally generated
by integrating sequencing-based open chromatin data from 828 samples generated by
four international consortia (ENCODE, Roadmap, Blueprint, and NIH GGR). The samples
were uniformly processed and quality checked to ensure the open chromatin sites pass the
replication test. OCHROdb comprises ~1.5 million peaks (open chromatin regions) across
194 cell types and cell lines. Fifty-seven/one hundred and ninety four cell types/cell lines
were not categorized as normal, healthy cells, and were therefore not considered in this
analysis. We prepared peak files for each of the remaining 137 cell types in the BED format,
which contains data on the start and end positions of open chromatin regions along with
the chromosome number. To accommodate for flanking regions, 100 base pairs have been
added to each side of every peak region location.

For the scATAC-seq data, we chose a dataset generated by Zhang et al., (Figure 7,
Table S2) due to the availability of a wide range of cell types both from adult and fetal
tissues in this dataset [69]. This dataset contains scATAC-seq data for 30 adult human tissue
types which was integrated with previously available scATAC-seq data of 15 fetal tissue
types [94] to reveal the status of open chromatin for ~1.2 million candidate cis-regulatory
elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. The genome
build was hg38 for adult cell types, while it was hg19 for fetal cell types, so we used the
UCSC LiftOver tool to lift hg19 to hg38 [95]. There were no unhealthy cell types or cell
lines, so all of the cell types were used in our analysis. Once retrieved, the 222 cell types
were divided into 2 batches of 111 adult and 111 fetal cell types. We prepared peak files
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for each of the 222 cell types in the BED format. The peak files (“.bed” format) obtained
from the dataset already included the flanking sequence of 100 base pairs. Zhang et al., also
integrated these 222 cell types with the GWAS data for multiple phenotypes, obtained from
the study of Buniello et al. [1]. However, the dataset used in our study is newer and more
comprehensive, capturing sufficient diversity in the population owing to the meta-analyses
of independent biobanks and the scope of phenotypes. Our study not only contains disease
endpoints but also traits such as blood cell count, diastolic/systolic blood pressure, and
medication usage associations [96]. Our selected GWAS dataset also consists of around
108 phenotypes on which GWAS has never been conducted in the East Asian populations.
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Figure 7. (A) Box plot depicting the number of peaks per category of cell type to visualize the number
of open chromatin regions. The boxes have been sorted in increasing order of median. (B) Box plot
depicting the number of nuclei per category of cell type to visualize the resolution of the study. The
boxes are in the same order as section A. Details regarding all the particular cell type have been
provided in the Table S2.

We first integrated the GWAS datasets with the bulk chromatin accessibility data and
then with single-cell chromatin accessibility data, enabling us to identify further unknown
cell subtypes and enhance the resolution of the associations. Table S1 contains information
about the phenotypes including the number of cases, controls, and percentage of cases per
control. The 201 phenotypes include 143 diseases, 22 medication usage phenotypes, and
36 other traits.

4.3. Prioritizing Cell Types Using Linkage Disequilibrium Score Regression Analysis

Although there is a vast number of published GWAS available online, and thousands
of loci associated with complex phenotypes have already been mapped through these
numerous studies, there are a few outstanding complications with these associations that
must be considered before moving forward with the data integration. Linkage disequi-
librium (LD) is one of the major complications with downstream analysis using GWAS
data [97]. There is an existing correlation between alleles in the genome for many rea-
sons, including allele proximity on the chromosome, mutation, genetic drift, and other
confounding factors [97]. One of the main reasons is due to crossing over during meiosis.
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During this process, some regions of the genome are more likely to stay together than
others. Therefore, for a sample disease phenotype, the causal variant may be present firmly
in a large population. Still, it would be difficult to isolate and identify it as non-causal
variants linked to the causal variant would also be simultaneously present in many positive
cases and absent in many controls. In other words, non-causal SNPs in LD with a causal
SNP will have inflated levels of association with a potential disease or the trait of interest.

We used a tool called LDSC (version 1.0.1) to account for this complication, by distin-
guishing between inflated test statistics from LD and other confounding biases found in
statistical genetics [23,98]. The LDSC utilizes a stratified LD score regression and estimates
the variance explained by all the SNPs on a chromosome when testing the association
of a particular SNP to a phenotype. LDSC analysis is specifically designed for finding
out how partitioned heritability can be explained by the risk variants that are located in
specific genomic regions, which in this case, refers to open chromatin regions. It ultimately
employs a powerful and accurate correction factor, refining association data to show a true,
unconfounded polygenic signal.

We integrated the GWAS of 201 phenotypes with the chromatin accessibility data (both
bulk and single-cell) using LDSC-based partitioning heritability analysis, and identified
specific cell types with the significant enrichment of phenotype-relevant variants (e.g.,
SNPs) on their chromatin accessibility sites. Our core partitioning heritability analysis
workflow can be summarized in the following steps: the preparation of peak data from
chromatin accessibility databases, LD score regression calculation, GWAS integration, and
data visualization.

In our study, we used chromatin accessibility datasets both at the bulk and single-
cell level, and, as mentioned earlier, prepared their peaks (i.e., accessible chromatin sites)
information across various cell types and tissues in the BED file format.

The next step in the partitioned heritability workflow was to calculate the LD scores
for each SNP found within the open chromatin regions. To do so, firstly, for each of the cell
types, the “.bed” file was used along with “.bim” PLINK files, containing information on
known SNPs, to generate binary annotation files for each cell type and chromosomes 1–22.
This was done through the “make_annot.py” script provided by the LDSC toolkit from
the LDSC github page (https://github.com/bulik/ldsc accessed on 27 May 2022). At this
stage, for every cell type, SNPs that are found within the inputted open chromatin regions
were listed in the binary annotation files as 1s and the ones that are absent, as 0s. Then
the “ldsc.py” script from the LDSC github page was used to calculate the LD scores for
each SNP found within the open chromatin regions. This required the input of the binary
annotation files, as well as the “.bim” PLINK file. We used the HapMap3 SNP data as a
checklist of qualifying SNPs to include in the LD calculation. The resulting output files
contained LD score information for every qualifying SNP.

The next step was the integration of the GWAS data with the chromatin accessibility
data using the “ldsc.py” script from the LDSC github page. Here we used the GWAS
summary statistic files in conjunction with the generated LD files to create links between
cell types and phenotype SNPs using the LDSC toolkit. This integration step was repeated
for all of the different phenotypes to be considered in the analysis. For each association
between phenotypes and cell types, a coefficient p-value was calculated, signifying the
potential relevance of each cell type to the specific phenotype. Thus, a significant p-value
represented a significant contribution of the open chromatin sites of a cell type to SNP
heritability for the specific phenotype. To correct for multiple testing, an FDR with a
threshold of ≤0.05 was used to adjust the p-values within each cell type batch, that is, bulk,
adult single-cell, and fetal single-cell [99].

Once the resulting p-values were adjusted, heatmaps were constructed to effectively
visualize the data and derive reasonable conclusions from it. To generate the heatmaps,
the ComplexHeatmap R package (version 2.10.0) [100] was used. First and foremost,
the results from the bulk chromatin accessibility data (OCHROdb) were generated into
heatmaps. Only those phenotypes were selected which had at least one cell type with
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an FDR adjusted p-value ≤ 0.05. A similar process was then repeated on the scATAC-
seq datasets, resulting in 222 cell types from both adult and fetal cell types. For a more
comprehensive understanding of the associations in the case of scATAC-seq data, the cell
types were divided into 15 categories, based on their similarity and tissue composition
which was loosely based on the Zhang et al., study (Table 1). Heatmaps were generated for
each category that further subdivided the fetal and adult cell types along the X-axis, while
the Y-axis contained the GWAS phenotypes that had at least one significant (≤0.05) cell
type in the particular category.

Table 1. Categories of cell types along with number of adult and fetal cell types.

Category of Cell Types Number of Adult Cell Types Number of Fetal Cell Types

Immune Cells 10 17
Endothelial Cells 9 8
Erythroids 0 5
Cardiomyocytes 2 2
Stromal Cells 12 14
Adult Stromal Cells 22 0
Skeletal Myocyte 2 5
Follicular and Placental 1 2
Epithelial 19 9
Gastric and GI Epithelial 12 7
Islets and Neuroendocrine 6 2
Fetal Neural Cells 0 25
Neural Cells 11 11
Adrenal Cortical Cells 4 2
Hepatocytes 2 1

5. Conclusions

For this study, we integrated the GWAS data of 201 complex phenotypes (diseases,
biomarkers, and medication usage) with bulk and single-cell chromatin accessibility se-
quencing data to uncover those cell types that are significantly associated with these
com-plex phenotypes. First, we integrated the GWAS data of these 201 phenotypes with
bulk chromatin accessibility sequencing data and found significant results for at least one
cell type in 21 complex phenotypes. Then we integrated the GWAS data of these 201 phe-
notypes with chromatin accessibility sequencing data at the single-cell level and found
significant associations between 15 categories of cell types and 59 phenotypes. Therefore,
the resolution of association was magnified at the single-cell level enabling the identification
of further cell types, compared to the bulk analysis results. The associations between cell
types and phenotypes from this study can shed light upon future under-researched areas of
diseases, medicines, and other traits. Further studies should be done on the identified sub-
sets of cells that contribute to each phenotype to understand gene regulatory mechanisms
of a given phenotype. The identified significant associations can be linked with several
works of literature that investigate biological mechanisms behind disease pathogenesis.
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