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Wildlife, especially mammals and birds, are hosts to an

enormous number of viruses, most of which we have absolutely

no knowledge about even though we know these viruses

circulate readily in their specific niches. More often than not,

these viruses are silent or asymptomatic in their natural hosts.

In some instances, they can infect other species, and in rare

cases, this cross-species transmission might lead to human

infection. There are also instances where we know the reservoir

hosts of zoonotic viruses that can and do infect humans.

Studies of these animal hosts, the reservoirs of the viruses,

provide us with the knowledge of the types of virus circulating in

wildlife species, their incidence, pathogenicity for their host,

and in some instances, the potential for transmission to other

hosts. This paper describes examples of some of the viruses

that have been detected in wildlife, and the reservoir hosts from

which they have been detected. It also briefly explores the

spread of arthropod-borne viruses and their diseases through

the movement and establishment of vectors in new habitats.
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Introduction
It is now 10 years since the world was faced with the first

severe and readily transmissible new disease to emerge in

the 21st century, Severe Acute Respiratory Syndrome

(SARS). SARS was a disease that threatened to become

a global pandemic as the virus spread rapidly along major

air routes, but which was contained within 4 months of its

first alert due to unprecedented international cooperation

and collaboration [1]. One of the legacies of the outbreak

has been a greater awareness of zoonotic diseases and of

the need to better understand how and from where

novel zoonoses emerge, and the factors which pertain
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to cross-species transmission. These are crucial to early

detection of potential future threats [2].

The concept, definitions and concerns associated with

disease emergence were encapsulated in two Institute of

Medicine reports, which defined the major issues and

described the major causes and mechanisms leading to

infectious disease emergence, as well as discussing

possible strategies for recognising and counteracting the

threats [3��,4]. The association of disease emergence with

anthropogenic activities is well established, especially the

effects of land changes and modifications including extrac-

tion industries, rapid movement of people, globalisation of

trade, human encroachment on natural environments, and

climate change [5–7,8��,9,10�]. More than 60% of emerging

diseases are zoonoses, the majority of which arise from a

wildlife source [8��]. As more information has been gener-

ated about the underlying drivers or causes of emergence,

there has been an expectation that it might eventually be

possible to predict or forecast the emergence of novel

pathogens [11,12,13�], but until now, there has been little

apparent success in predicting where and when a novel

pathogen might arise, nor the spill-over events which

might precede emergence. Nevertheless, there has been

an unprecedented search for novel pathogens over the past

decade, especially in at the human–animal interface in

wildlife and domestic species, fuelled in part by SARS and

by post-SARS concerns raised by H5N1 highly pathogenic

avian influenza and H1N1 (2009) pandemic influenza, and

supported by the development of new technologies for

detection and identification such as high throughput

sequencing technologies and by the initiation of new

pathogen discovery programs such as the PREDICT pro-

gram funded by USAID [13�]. During the decade, many

new viruses have been described from wildlife belonging

to a range of virus families, including Coronaviridae,

Bunyaviridae, Astroviridae, Rhabdoviridae, Flaviviridae,

Filoviridae, Paramyxoviridae, Adenoviridae, and Reovir-

idae. Most of the wildlife reservoir hosts of known viral

pathogens and many novel viruses can be found in the

mammalian Orders Rodentia, Chiroptera, Primates, Car-

nivora, as well as in birds. It is not possible to explore all of

these wildlife reservoirs and hosts of novel viruses, but

rather this short review will concentrate on a few specific

examples chosen because they represent recent reports of

diversity or geographic spread.

Wildlife reservoirs
Before the emergence of SARS, there had been a growing

awareness of the importance of bats as reservoirs or hosts of

novel diseases [14��,15]. This is not unexpected given that

they constitute 20% of known mammalian species, have
www.sciencedirect.com
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unique and diverse lifestyles including the ability to fly,

they often have gregarious social structures achieving

incredible abundance and densities, some cave-dwelling

bats reaching up to 500 individuals per square foot, and

they have long life spans. Importantly they also frequently

live in very close proximity to humans, often interact

closely with livestock and other domestic animals that

are potential intermediate hosts for human pathogens,

and with habitat loss due to land changes, are therefore

very much at the wildlife-human interface [16]. Bats are

grouped into two suborders, Megachiroptera and Micro-

chiroptera; the former comprises a single family, Pteropi-

didae, containing 42 genera and 166 species of fruit bats

and flying foxes which do not use echolocation; and the

latter comprises 18 families of 135 genera and 917 species,

most of which use echolocation. Thus bats provide a rich

and diverse source of potential reservoirs. Prior to SARS,

Pteropid fruit bats had been found to be the reservoirs of a

number of novel viruses able to infect humans, including

two new paramyxoviruses, Hendra [17,18] and Nipah

[19,20] viruses which together formed a new genus, Heni-

paviruses, within the Paramyxoviridae, as well as two

rubulaviruses, Tioman [21] and Menangle [22] and a

new lyssavirus, Australian bat lyssavirus [23]. This latter

virus, which is closely related to classical rabies virus, was

also found in at least one species of insectivorous bat

[24,25], but has not crossed into terrestrial wildlife or

domestic animal hosts. Thus, it is clear that RNA viruses

associated with Old World fruit bats pose zoonotic disease

threats of high public health significance. Insectivorous

bats have also been strong candidates as potential reser-

voirs, as demonstrated by their role as reservoirs of rabies

and rabies-like Lyssaviruses in Europe, Africa and else-

where in the Old World, and in the Americas. It was

therefore not surprising that bats were the major initial

target in the search for the natural reservoirs of SARS

coronavirus (SARS-CoV).

The search for reservoirs of SARS and other novel

coronaviruses in bats

In the decade since SARS, there has been a plethora of

new viruses reported from bats. Only a few of these new

viruses were cultured; some of the other viruses had their

genomes fully sequenced using RT-PCR. Most of the

more recent viruses have been detected using new high-

throughput sequencing technologies which have revolu-

tionised the ability to detect genomic fragments both in

terms of their exquisite sensitivity and speed, but also in a

greatly reduced cost [26�]. A problem of the technology is

that only partial genomes are usually detected and ident-

ified and although this can provide insights into virus

evolution and phylogeny, it does nothing to assist in

understanding virus ecologies nor in predicting which,

if any, may be potential pathogens.

Studies conducted on animals sampled from live animal

markets in Guangdong, China, during and immediately
www.sciencedirect.com 
after the SARS pandemic indicated that masked palm civets

(Paguma larvata) and two other species had been infected

by SARS-CoV [27�], but no evidence of infection was

detected in wild or farmed civets [28–30] indicating they

were probably spill-over hosts rather than natural hosts of

the virus. The finding of SARS-CoV-like viruses in Chinese

horseshoe bats from the genus Rhinolophus [31�,32�,33,34],

however, clearly suggested that bats could be a potential

reservoir of SARS-CoV, and possibly even the natural hosts

for all presently known coronavirus lineages [35]. A large

number of studies have since demonstrated further SARS-

CoV-like viruses and an astonishing diversity of other

coronaviruses belonging to alpha-coronavirus and beta-cor-

onavirus genera in the subfamily Coronavirinae occurring

widely in bat species in most parts of the world including

Africa [36–38], Europe [39–43], the Americas [44–49] and

Asia [50–52]. Interestingly, an analysis of viruses isolated

from bats in Mexico showed that host species was a strong

selective driver in coronavirus evolution, and that a single

species of bat can maintain multiple coronaviruses. Further-

more, phylogenetic association of CoVs with host species/

genus was particularly evident in allopatric populations

separated by significant geographical distances [49]. A

similar diversity of coronaviruses has also been found in

birds, comprising the gamma-coronaviruses [53], and a new

genus, the delta-coronaviruses recently described with

viruses from birds and pigs [54].

The extraordinary diversity uncovered in these viruses

over the past few years is largely due to the high fre-

quency of recombination in coronaviruses [55] and the

high rate of mutation found generally in RNA viruses, but

aided by their worldwide dispersal and spread in flying

hosts, bats and birds. The importance of understanding

the diversity of these viruses was exemplified by the

recent isolation of a novel coronavirus from a fatal human

infection in Saudi Arabia, with further cases in Qatar and

Jordan. The virus was isolated from the sputum of a fatal

case of acute pneumonia with renal failure and with a

clinical presentation that closely resembled that of SARS

[56�]. Phylogenetic analysis showed the novel coronavirus

to be related to two bat coronaviruses, Tylonycteris bat

coronavirus HKU4 and Pipistrellus bat coronavirus

HKU5 [56�,57], and is the sixth coronavirus known to

infect humans. The new virus is able to replicate in bat

cell cultures representing four major chiropteran families

from both suborders, as well as in cell cultures from pigs

and humans, indicating that it may use a receptor con-

served between bats, pigs and humans and suggesting a

low barrier against cross-host transmission [58]. The

emergence of this novel coronavirus clearly demonstrates

the importance of uncovering and understanding the

wildlife reservoirs and their potential for human infection.

Bats as reservoirs of Filoviruses

The natural reservoir of Filoviruses (Ebola and Marburg

viruses) was the subject of considerable conjecture for
Current Opinion in Virology 2013, 3:170–179
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over 30 years [59]. The first indication that bats might be

involved came from some experimental infection studies;

it was found that some species of fruit and insectivorous

bats supported virus replication and circulation of high

titres of virus without necessarily falling ill [60]. Asymp-

tomatic infection with Zaire Ebola virus was sub-

sequently found in three species of fruit bat in Gabon

and the Republic of the Congo [61��,62]. Fruit bats were

later believed to be the source of an Ebola outbreak in

2007 in the Democratic Republic of the Congo (DRC),

supporting the contention that they are the natural reser-

voir hosts [63]. About the same time, Marburg virus was

also detected in fruit bats in Gabon; this was particularly

interesting as the virus had not been known to be present

in Gabon, and thus extended the known range of the virus

[64]. That bats were the reservoirs of Marburg virus was

most clearly demonstrated by studies carried out near a

mine in the DRC where there was an ongoing and

protracted Marburg outbreak over two years in 1998–
2000. Marburg viral genomic sequences were detected

in various tissues collected from 12 bats comprising two

species of insectivorous bats, Rhinolophus eloquens and

Miniopterus inflatus, and from Rousettus aegyptiacus fruit

bats, which shared the same mine/cave habitat [65].

Although no infectious virus could be isolated from the

bats, 12 genetic variants were detected, six of which were

also found in human isolates circulating during the out-

break, providing strong circumstantial that the bats were

the source of the outbreak. An additional bat variant was

similar to an earlier human isolate from Zimbabwe in 1975

[65]. Subsequent serological investigations confirmed

that Zaire Ebola and Marburg viruses in Gabon were

co-circulating in bats, with evidence of Ebola virus in six

species and Marburg in two species, and the highest

seroprevalence to both viruses was found in Rousettus
aegyptiacus [66]. Seropositive fruit bats for Ebola virus

were also reported from Ghana [67], and it is probable that

Ebola and Marburg viruses will be found anywhere over

the range of their bat hosts.

In Asia, serological evidence has suggested that Rousettus
amplexicaudatus fruit bats may be the reservoir of Reston

Ebola virus in the Philippines [68], and Rousettus lesche-
naultia for Reston Ebola and Zaire Ebola viruses, or to

unknown but closely related Ebola strains, in China [69]

and Bangladesh [70]. There was also an indication that

two insectivorous bat species, Pipistrellus pipistrellus and

Myotis species, may also contribute to reservoirs of Ebola

virus in China [69].

A genetically distinct Ebola-like filovirus has recently

been described in Europe from dead Schreiber’s bats

(Miniopterus schreibersii), and has provisionally been

named Lloviu virus [71]. It will be interesting to see

whether this virus is more widespread in Europe, or in

other parts of the world as this bat species is found

extensively from Europe through Asia to Australia.
Current Opinion in Virology 2013, 3:170–179 
Bats as reservoirs of other virus families — some

additional examples

Fruit bats and insectivorous bats have been shown to

harbour a wide range of novel viruses belonging to a

number of different virus families. Recent studies have

described the detection of paramyxoviruses in insectivor-

ous bats in Europe [72] and south-west Indian Ocean [73],

and in fruit bats in China [74], Indonesia [75], Australia

[76] and Africa [77��,78,79]. Major discoveries from these

investigations include evidence of an origin of Hendra

and Nipah viruses in Africa, new Henipaviruses from

Australia and Indonesia, identification of a bat virus

conspecific with the human mumps virus, detection of

close relatives of respiratory syncytial virus, mouse pneu-

monia virus and canine distemper virus in bats. Novel

fusogenic reoviruses have recently been described from

human patients with acute respiratory disease in Malaysia

[80–82] and in Hong Kong from a patient returning from

Bali [83], for which there is strong circumstantial evidence

to indicate an origin in fruit bats [84]. These reoviruses

comprise a new species, Pteropine orthoreovirus, together
with a number of orthoreoviruses from fruit bats in Malaysia,

Australia and China [84,85]. Novel Hantaviruses have also

been described in insectivorous bats over the past few

years in Africa in Sierre Leone [86] and Côte d’Ivoire [87],

and in Brazil [88], but the reliance of these viruses to

Hantavirus phylogeny remains to be determined.

Rodents as reservoirs of zoonotic pathogens

Rodents are important reservoirs of viral pathogens [89],

especially for Arenaviruses [90,91] and Hantaviruses [92].

The Arenaviruses are a diverse group of viruses, some of

which are capable of causing a wide range of human

illness ranging from encephalitis to severe haemorrhagic

fever throughout the New and Old World, whereas others

have not been associated with disease. The Old World

arenaviruses are associated with Eurasian rodents in the

family Muridae, whereas New World arenaviruses are

associated with American rodents in the subfamily Sig-

modontinae, and each tightly associated with a specific

host. Tacaribe virus is the only exception, having been

isolated from a fruit-eating bat. The major pathogens are

lymphocytic choriomeningitis virus (LCMV), which

occurs in many parts of the World in house mice; Lassa

virus in West Africa; Lujo virus in South Africa; and

various South American haemorrhagic fever (HF) viruses

including Junin (Argentinian HF), Muchupo (Bolivian

HF), Guanarito (Venezuelan HF), Sabia (Brazilian HF),

and Chapare (the cause of an outbreak of HF in Bolivia).

Several new Arenaviruses have been reported over the

past 5 years either from human infections (including Lujo

[93�,94] and Chapare [95]) or from rodents [96–101].

There is a continuing need to maintain a surveillance

of these and related viruses because with the great large

number of different Arenavirus host reservoirs, the great

genetic diversity among virus species, and the ability of

the viruses to adapt to rapidly changing environments,
www.sciencedirect.com
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there is concern that a new virus potentially pathogenic

for humans could arise [102]. Indeed this happened

recently with Lujo virus, which led to several subsequent

nosocomial infections [93�,94].

The Hantaviruses are the etiological agents of haemor-

rhagic fever with renal syndrome (HFRS) in the Old World

[92,103�] and hantavirus (cardio)pulmonary syndrome

(HPS) in the New World [92,103�,104–106]. The reservoir

hosts of Hantaviruses are rodents and insectivores. The

viruses cause asymptomatic persistent infections in their

reservoir hosts with prolonged virus shedding in excretia,

and although they have a strong history of co-divergence

with their hosts, recent evidence suggests that this associ-

ation may be due to a more recent history of preferential

host switching and local adaptation [107]. Approximately

150 000–200 000 cases of HFRS occur each year, with most

of the cases occurring in the developing countries, and with

a case fatality rate from <1% to 12% depending on the virus

strain, whereas the annual number of cases of HPS in the

New World is about 200, but with a 40% fatality rate. The

reported cases of hantaviral infection is increasing in many

countries and new hantavirus strains have been increas-

ingly identified worldwide, which constitutes a public

health problem of increasing global concern [105,108].

Hantaviruses are largely infections of rural communities,

except for HFRS due to Seoul virus which is rat-borne and

usually urban. Thus factors which predispose to an

increased incidence of Hantavirus infection are habitat

disturbance and ecological changes, climatic changes,

and occupational exposure by outdoor workers. As with

Arenaviruses, the Hantaviruses exhibit considerable diver-

sity [109], and new potentially pathogenic strains could

arise, indicating a need for ongoing surveillance.

Vectors and vector-borne diseases
A vector can be defined as an organism that transmits a

pathogen or disease-causing organism from a reservoir to

a host. In the context of this review, vectors are

restricted to arthropods, and particularly mosquitoes,

ticks, sand flies and Culicoides or biting midges, as

transmitters of pathogenic threats to humans or live-

stock. The role of mosquitoes in pathogen emergence is

largely one of major geographic spread due to incursions

of mosquitoes into new habitats. There are a number of

major mosquito species that have jumped continents

over the past three decades (e.g. [110�]), but there is little

doubt that the most important ongoing threats come from

extensive tropical urbanization and the colonization of this

expanding habitat by Aedes (Stegomyia) aegypti [111], and the

global expansion in the geographic distribution of Aedes
(Stegomyia) albopictus [112]. The latter has expanded to

establish in at least 26 new countries in Africa, Europe and

the Americas from its original home in tropical forests of

south-eastern Asia. Thus there is a significantly increased

risk of transmission of arthropod-borne (arbo)viral diseases,

especially dengue and chikungunya [110�,113–115].
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The dengue viruses are the most important human arbo-

viral pathogens, with an estimated 50–100 million annual

cases of dengue fever (DF) and about 500,000 cases of the

more severe and sometimes fatal dengue hemorrhagic

fever/shock syndrome (DHF/DSS syndromes). The geo-

graphical areas in which dengue transmission occurs have

expanded in recent years, and all four dengue virus

serotypes are now circulating widely in Asia, Africa and

the Americas [116��]. Thus dengue is an ongoing global

threat, and it will undoubtedly continue to spread as

vectors become established in additional habitats. Chi-

kungunya virus has also began an unprecedented global

expansion, causing a series of epidemics probably invol-

ving 5–10 million people, and putting hundreds of

millions at risk [117]. The most extensive was the Indian

Ocean lineage (IOL) which evolved in Kenya in 2004,

spread to the Indian Ocean islands, and the then to India

and South-East Asia where major urban epidemics

ensued [117,118]. The spread of the IOL was accom-

panied by a mutation in the envelope protein gene,

A226V, which allowed the virus to utilise A. albopictus
as a new vector. The mutation had the effect of increasing

its infectivity for this new vector by ca. 100-fold [117].

Thus the epidemics were largely due to viruses with the

A226V and transmitted by A. albopictus mosquitoes, which

enabled the virus to spread in viraemic travellers to areas

where the mosquito had established in new habitats.

The expansion of A. albopictus into Europe has already

had major implications with the 2007 outbreak of chi-

kungunya in northern Italy [119,120] resulting in about

160 laboratory confirmed cases, and autotochthonous

transmission in France in 2010 [121,122]. In addition,

autochthonous cases of dengue have been reported from

France [122,123] and Croatia [124].

It is believed that these cases represent the tip of the

iceberg. Increasing international travel and trade,

together with the effects of global warming and changes

in land use, will undoubtedly result in the further spread

of arthropod vectors and their viruses, presenting an

ongoing global threat of exotic diseases. Ongoing surveil-

lance will be crucial as we try to manage these diseases in

the future.

Arthropod-borne diseases also pose threats to livestock

industries. In Europe, Bluetongue virus poses an ever

increasing threat [111], and new viruses are emerging as

witnessed recently by the appearance of Schmallenberg

virus. Bluetongue virus (BTV) is in the genus Orbivirus

(family Reoviridae) and currently consists of 25 viruses

clustered within 10 distinct lineages [125]. BTVs are

maintained within an enzootic cycle among biting midges

in the genus Culicoides (family Ceratopogonidae) and

various ruminant species, almost all of which are suscept-

ible to infection. However, not all species of Culicoides are

competent vectors and for the most part the distribution
Current Opinion in Virology 2013, 3:170–179
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of the virus is governed by the availability of a species of

Culicoides that permits replication of the virus [126]. The

virus is believed to have its origin in Africa but occurs in

semi-tropical and temperate areas where such vectors

exist or periodically occur [127]. Thus virus is found

for example, in southern Europe, North America and

northern and eastern Australia. The frequency of invasion

into new areas or non-endemic areas has increased

recently in part due to climate change but also in terms

of movement of its vectors and changing patterns in

competence of other Culicoides species as vectors

[111,128�]. The distribution of BTV types varies widely;

disease is rarely seen in wild ruminants in Africa, or in

domestic cattle until recently. The disease in sheep can

be severe and is strongly breed related [129]. In non-

endemic areas, where Culicoides species do not survive

throughout the year due to colder conditions, a number of

theories have been postulated for overwintering of the

virus but there is a lack of solid evidence for how this

might occur [125–127,128�,129–134]. Note that the

primary importance of BTV infection in cattle and sheep

relates to trade embargoes on export of ruminants in areas

where the virus is found, for example North America

[127].

Since 2000, increasing BTV types have been found in

southern Europe with a variety of Culicoides species being

incriminated [111,130,135]. In the summer of 2006 how-

ever, BTV serotype 8 (BTV-8) emerged for the first time

in northern Europe, resulting in over 2000 infected farms

by the end of the year [136]. This was probably due in

large part to climatic changes permitting its major vector,

Culicoidesi micola, to move northwards, and to the ability of

some northern Culicoides species to become competent to

transmit the virus [111,128�]. Interestingly, the initial

spread from the Netherlands indicated a single point

introduction of the disease into Europe, not typical of a

spread by competent vectors from southern Europe. The

virus subsequently overwintered and spread across much

of Europe, causing tens of thousands of livestock deaths.

In August 2007, BTV-8 reached the United Kingdom

(UK), threatening the large and valuable livestock indus-

try. A voluntary vaccination scheme was launched in UK

in May 2008 and, in contrast with elsewhere in Europe,

there were no reported cases in the UK during 2008. Thus

whilst the global range of BTV has historically been

assumed to be restricted by regional differences in vector

competence amongst Culicoides species as well as by the

temperature requirements of the virus for replication, this

outbreak did not follow this pattern. It has been postu-

lated that the use of a live attenuated BTC 8 vaccine may

have been the initial cause of this outbreak [137]. Impor-

tantly on 15th January 2013, Spain proceeded to declared

itself free of serotype 8 of bluetongue virus. As with other

parts of Europe BTV serotype 8 appeared for the first

time in Spain in January 2008 but the system of disease

surveillance implemented in Spain allowed for early
Current Opinion in Virology 2013, 3:170–179 
detection and the implementation of rapid and effective

control measures based on vaccination and movement

control limited spread and enabled eradication of BTV

from this region [138]. This still leaves the question of the

underlying reservoir of BTV 8 and the process for emer-

gence into Europe.

A similar question arises with the recent discovery of a

new virus in Europe in 2011. Schmallenberg virus, an

informal name given to an Orthobunyavirus related to

Shamonda virus, was initially reported in November 2011

as a cause congenital malformations and stillbirths in

cattle, sheep, goats, and possibly alpaca [139]. It appears

to be transmitted by Culicoides spp. which are likely to

have been most active in causing the infection in the

northern hemisphere summer and autumn of 2011, with

animals subsequently giving birth from late 2011. The

virus is named after Schmallenberg, in North Rhine-

Westphalia, Germany, from where the first definitive

sample was derived [140]. After Germany, it has been

detected in many European countries, with disease in

sheep and calves [141]. At least three species of Culicoides
appear to be capable of transmitting the virus [142]. A

number of questions remain unanswered about the out-

break, its vectors, management issues and public health

issues [143]. To date there appears to be no human

infections from Schmallenberg virus [144]. However as

with the emergence of BTC 8 in Europe, no explanation

is available as to the original reservoir of either virus, a

critical risk management issue.

Concluding comments
Most new viruses that have the potential to cause pan-

demics are zoonoses, that is, they originate in animals, and

then with assistance from various drivers of emergence

such as ecological, behavioural or socioeconomic changes,

spill over to infect humans. This is the start of the first of

three stages in disease emergence described by Morse

et al. [13�], and it is at this stage that surveillance of

potential reservoirs at known hot spots [8��] might pro-

vide the first enigmatic indication of the potential to spill

over to infect humans and thus lead to that early cross-

transmission event.

Since the SARS outbreak there has been an explosion in

our knowledge of novel viruses in a variety of hosts, but

perhaps more in bats than other animal orders for reasons

relating to their ecology and to their association with

novel viruses in the preceding decade. Some of the virus

isolates can be cultured, and their biology explored for

possible cross-species transmission and other factors

associated with assessing their pathogenic potential.

Many others are known only from short genomic

sequences, and it is less obvious how they can be used

for determining future risk potential. Nevertheless, hav-

ing sequence data from viruses in wildlife niches can be

useful when tracking the origins of novel diseases, as
www.sciencedirect.com
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demonstrated recently with the SARS-like virus infection

in Saudi Arabia, and also in seeking information on

genetic diversity and perhaps indications of host range.

Surveillance has been described as the first line of

defence against emerging viruses [145]. While this is

certainly so for the timely detection of outbreaks of

human disease, and indeed a requirement under the

terms of the new International Health Regulations, it is

also important to maintain surveillance at the human-

wildlife interface where that first indication of a cross-

species transmission event might be detected or even

suspected. Studies at the animal interface have only

recently been initiated by the USAID-sponsored pro-

gram ‘PREDICT’ and by some individual laboratories

with specific disease interests (eg. Nipah virus). It is

still a long way finding a possible pandemic virus — it

has never happened before, but the development of

exquisitely sensitive genomic detection technologies

and the initiation of surveillance close to the

animal–human interface might just provide that rare

event.

The spread of arthropod vectors around the world in

used car tyres, in lucky bamboo plants, in aircraft, or

breeding in containers or other water traps on vessels is

an ongoing problem, but one which will undoubtedly

lead to further threats to human and animal health from

exotic viral pathogens. This has demonstrated a

widespread weakness in quarantine, environmental

health and public health activities in many countries.

Unless this is improved, further incursions are

inevitable.

Note added in proof
Recent studies by Annan and Colleagues (2013) have

shown that the novel coronavirus from Saudi Arabia is

very closely related genetically to betacoronaviruses

detected in Pipistrellus bats from the Netherlands,

Romania and Ukraine, one of which from the

Netherlands differed by 1.8% in amino acid sequence

in the RNA-dependent RNA polymerase gene fragment

from the Saudi Arabian virus. These studies clearly

demonstrate that the Saudi Arabian virus originated in

Pipistrellus species bats, and they may represent the major

reservoir species. [146].
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