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Abstract 

Ischemic stroke is one of the leading causes of death and disability. Ischemia triggers a cascade of events leading 
to cell death and cerebral infarction. Mesenchymal stem cell (MSC) therapy is a promising treatment modality 
to promote the development of nerve and blood vessels and improve nerve function. However, MSCs have a 
limited therapeutic effect in the harsh microenvironment of ischemic brain tissue. Modified MSC therapy shows 
better therapeutic effect under different pathological conditions, and is expected to be translated into clinical 
practice. In this article, we review the latest advances in the development of modified MSCs for the treatment 
of cerebral ischemia. In particular, we summarize the targets involved in migration, homing, antioxidant stress, 
anti-inflammatory, nerve and vascular regeneration, providing new ideas for clinical transformation. 
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Introduction 
Stroke is the second leading cause of death in the 

world after ischemic heart disease [1]. Ischemic stroke 
(IS) accounts for 87% of all stroke patients, and its 
incidence rate is still rising [2, 3]. IS is also a leading 
cause of disability. In China, IS accounts for 
approximately 70% of all cases of stroke [4]. An 
estimated three quarters of patients with ischemic 
stroke drop out of the labor force, and two fifths of 
these patients develop severe disability [5]. Therefore, 
prevention and treatment of ischemic stroke is a key 
research imperative. 

Currently, there is a paucity of effective 
treatments for IS. Tissue plasminogen activator 
(T-PA) is administered intravenously to unblock the 
blocked blood vessels. However, the time window for 
T-PA treatment is short (≤4.5 hours) and there is a risk 
of secondary intracerebral hemorrhage [6]. 
Mechanical thrombectomy (MT) can extend the 
treatment window to 24 hours, but this particular 
procedure can only be performed in a limited number 
of qualified hospitals and requires strict screening for 
indications and contraindications; therefore, only a 
few patients are able to receive MT treatment [7]. 
Therefore, it is imperative to develop a new treatment 

method for IS. 
Mesenchymal stem cells (MSCs) are multipotent 

cells that can specialize into several cell types from 
different lineages. Intravenously administered MSCs 
can migrate to the site of tissue damage and promote 
angiogenesis, growth, and differentiation of local 
progenitor cells [8-12]. Some studies have shown no 
significant risk of host immune response to allogeneic 
transplantation of MSCs [13-15]. In addition, MSCs 
are easy to isolate and culture from different tissues 
such as cord blood, bone marrow, and adipose tissue. 
These attributes make MSCs the main source of cell 
therapy for many diseases. 

MSC therapy has been shown to promote 
post-stroke functional recovery and neurological 
outcomes [16, 17]. In addition, clinical trials of MSC 
therapy for the treatment of IS have demonstrated its 
safety and feasibility [18-22]. However, there are 
several barriers that limit its use and therapeutic 
effectiveness. For example, in the harsh 
microenvironment of stroke (inflammation storm, 
oxidative stress), isolated MSCs gradually lose their 
homing ability to the lesion [23]. In clinical trials, 
although MSC therapy was shown to be safe and 
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confer some therapeutic effects, the effects were not 
significant [24-26]. Attempts have been made to 
develop novel MSC-based methods for the treatment 
of IS, such as genetically-modified MSCs, and use of 
preconditioning, electrical stimulation, and ultrasonic 
stimulation. A large number of studies published in 
recent years have demonstrated the improved ability 
of MSCs in the treatment of IS by using genetic 
modification or preconditioning of MCS in 
combination with physical therapy [23, 27-30]. This 
paper provides an overview of the recent advances in 
this field. 

Application of modified MSCs in the 
treatment of ischemic stroke 

There are several therapeutic challenges in the 
use of MSC therapy for treatment of IS. The key issues 
include whether MSCs and their exosomes 
(microvesicles) can migrate to the target organ and 
play a role, their ability to survive for a long time in 
the ischemic and hypoxic brain tissue, and their 
ability to successfully transform into functional nerve 
cells in the damaged area (Figure 1). 

Migration and Homing 
It is generally believed that the homing ability of 

MSCs at the site of target lesions and their 
implantation determines the therapeutic effect of MSC 
therapy [31, 32]. However, the decreased expression 
of some chemokine receptors (such as CCR2 and 
CXCR4) during the continuous passage of MSC was 
found to affect the homing ability of MSCs to target 
lesions [33-39]. In order to improve the homing ability 
of MSCs, it was found that the expression of some 
chemokines (CCR1, CCR2, CXCR4) was increased 
after gene modification or pretreatment of MSCs [37, 
40]. At the same time, the interaction of CCL2/CCR2 
and SDF-1/CXCR4 was shown to significantly 
improve the homing and migration of modified MSCs 
during acute ischemic attack [41-43]. This was also 
shown to significantly improve the neurological 
function [23, 44-50]. 

Secondly, in the experimental middle cerebral 
artery occlusion (MCAO) model, only a small part of 
intravenously injected MSCs entered the ischemic 
brain tissue, and most of them were trapped in the 
lung and spleen [33, 51], which also affected the 
homing of MSCs. Compared with intravenous 
administration, MSCs were found to more readily 
migrate to the damaged brain tissue after arterial 
injection; in addition, genetically-modified MSCs 
were found to survive longer in the ischemic brain 
tissue [40] and reduce vascular embolization [43]. 
Exosomes and microvesicles of MSCs are small in size 
and more readily pass through the lung tissue; in 

addition, these contain many molecules that may 
have therapeutic effects on stroke [52, 53]. However, 
extractable exosomes and microvesicles require large 
amounts of MSCs for therapeutic purposes. MSC 
culture methods can be modified, such as by using 
microcarriers and hollow fiber bioreactors to culture 
MSCs in a 3D environment, so that they can be 
massively amplified [54]. This can serve the purpose 
of treatment. 

Antioxidant 
During brain ischemia and hypoxia, the adverse 

microenvironment induced by excessive oxidative 
stress leads to the death of a large number of 
transplanted MSCs, which further hinders the 
therapeutic effect of MSC therapy [33, 55, 56]. 
Oxidative stress results from the excessive production 
of reactive oxygen species (ROS), which triggers many 
cellular and molecular events, leading to the oxidation 
of proteins and lipids and ultimately to neuronal 
death [57-59]. Mitochondria are the main organelles 
responsible for ROS production [60]. Therefore, 
oxidant/antioxidant imbalance and mitochondrial 
dysfunction are the basic triggers of neuronal injury in 
IS. Studies have shown that some target genes 
(UBIAD1, SOCS-3, CUEDC2, SRC3) or specific 
miRNAs (microrNA-25, Mir-132-3p) can target 
specific antioxidant enzymes [61] or activate the 
PI3K/Akt/eNOS pathway [62]. This can increase the 
ratio of antioxidant enzyme to oxidase and inhibit 
oxidative stress reaction [28, 29, 63, 64], thus enabling 
MSCs or their exosomes to obtain a stronger 
antioxidant effect. In addition, when neurons and 
astrocytes are exposed to excessive ROS, 
mitochondria more efficiently transfer from 
mesenchymal stem cells to the damaged cells [65, 66]. 
Interestingly, mitochondrial movement from MSCs to 
damaged brain regions during oxidative stress was 
enhanced through genetic modification of MSCs [67]. 
At the same time, different types of MSCs have 
different adaptability in the harsh environment of 
oxidative stress. For example, umbilical cord derived 
mesenchymal stem cells showed more adaptability 
[68]. 

Anti-inflammatory 
In the acute stage of cerebral ischemia, the 

progression of cerebral infarction and the formation of 
cerebral edema are closely related to the strong 
inflammatory response. It is characterized by rapid 
microglial activation, production of pro-inflammatory 
mediators, and infiltration of inflammatory cells into 
injured brain tissue [69, 70]. The anti-inflammatory 
effects of MSCs are characterized by down-regulation 
of secretion of anti-inflammatory molecules by 
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pro-inflammatory cytokines [71], prevention of 
leukocyte infiltration [72], and promotion of 
polarization of the M2 phenotype of microglia [73]. 
Inhibition of inflammation can stabilize blood brain 
barrier (BBB) function and inhibit neuronal apoptosis. 

As mentioned above, MSCs play an 
anti-inflammatory role by secreting IL-6 and reducing 
the pro-inflammatory factor TNF-α. This signaling 
pathway may be related to the inhibition of NF-κB by 
MSCs [74]. Meanwhile, the immunomodulatory 
cytokine IL-23/IL-17 of MSCs play a role in ischemic 
stroke [75]. 

MSCs can induce pro-inflammatory M1 
microglia to differentiate into anti-inflammatory M2 
microglia after IS. It has been reported that MSCs 
cause low expression of microglia activation markers 
(ED1 and Iba) and astrocyte proliferation markers 
(GFAP) [76]. These results suggest that the immuno-
modulatory effect of MSCs may be related to the 
inhibition of microglia and astrocytes residing in the 
brain, which may be related to the non- 
phosphorylation of STAT3 in the atypical JAK-STAT 
signaling pathway [77]. 

MSCs can reduce the release of neutrophil 
matrix metalloproteinase-9 (MMP-9), maintain the 
integrity of the blood-brain barrier, and reduce the 
infiltration of inflammatory cells in brain parenchyma 
[78]. In addition, MSCs reduce Monocyte chemotactic 
protein-1 (McP-1) production by secreting the anti- 
inflammatory cytokine TGF-β, thereby blocking the 
migration of CD68 + immune cells to ischemic regions 
[79]. 

Overexpression of anti-inflammatory factors 
enhanced the anti-inflammatory effect of MSCs, 
leading to enhanced neuroprotective function. In 
addition, IL-10 overexpressed MSCs can delay the 
time window for MSC therapy without affecting 
serum IL-10 levels, which may reduce the risk of 
systemic IL-10-induced adverse reactions such as 
anemia, thrombocytopenia, and immunosuppression 
[27, 80-82]. At the same time, MSCs activated by 
interferon gamma showed a better effect in the 
treatment of acute IS, resulting in a significant 
reduction of CD68 + monocytes and microglia [83] 
(Table 1). 

 
 
 

 
Figure 1. Possible main mechanisms for improving the therapeutic effect of mesenchymal stem cells in ischemic stroke models. Abbreviations: MSC: Mesenchymal Stem Cells; 
ROS: Reactive Oxygen Species; t-PA: tissue plasminogen activator; BMSCs: bone marrow mesenchymal stem cells; UMSCs: umbilical cord stromal cells; ADSC: Adipogenic 
stromal cells; MCAO: Middle cerebral artery occlusion; BBB: blood brain barrier. 
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Table 1. Target genes that promote migration, homing, antioxidant, anti-inflammatory ability of modified mesenchymal stem cells, MSC 
source, infusion mode, infusion time, and cell number 

  Transplantation Number of transplanted cells Transplantation of time Source of MSC target 
Homing and migration [23] IV 2X10 6 24 after MCAO hBM-MSC CCR2 

[50] IV 1x10 6 1 and 4 days after MCAO hUC-MSC CCL2 
[40] IA 1x10 6 3 days after MCAO hBM-MSC Ngn-1 
[43] IA 5X10 5 24 h after MCAO rBM-MSC ITGA4 

Antioxidant stress [63] IV 5X10 6 24 h after MCAO OM-MSC UBIAD1 
[28] IV 2X10 6 3 h after MCAO rBM-MSC SOCS3 
[29] ICV 2X10 6 24 h after MCAO rBM-MSC CUECD2 
[64]    rBM-MSCs SRC3 
[61] Intrathecal Injection 20ug 1day before Ischemia BM-MSCs microRNA-25 
[62] IV 1 × 1010 particles/100 μL in PBS 90min after MCAO BM-MSCs miR-132-3p 
[67] IV 3 × 106 cells/kg - hMMSC Miro1 

Anti-inflammatory [82] IV 2X10 6 3 h after MCAO rBM-MSC IL-10 
[27] IV 1x10 6 0 or3 h after MCAO hBM-MSC IL-10 
[83] IV 5×106 cells/kg 3 h after MCAO BM-MSC IFN-γ 

Neurogenesis, 
Angiogenesis 

[96] ICV 1x106/2ul 5d after MCAO BM-MSC TrkB-MSC+EA 
[90] IV 1x10 7 3 h after MCAO hBM-MSC PIGF 
[87] ICV 5X10 5 24 h after MCAO hBM-MSC BDNF 
[91] ICV 1x10 6 24 h after MCAO rBM-MSC VEGF 
[88] IV 1x10 7 3 h after MCAO hBM-MSC GDNF 
[86] IV 2X10 6 30 min after MCAO AD-MSC FGF-1 
[30] IV 1x10 6 6 h after MCAO hBM-MSC Ang-1 
[93] IA 2x10 5 24 h after MCAO mBM-MSC miRNA-705 
[92] IV 5X10 6 6 h after MCAO rBM-MSC Noggin 

 

Neurogenesis and Angiogenesis 
It is generally believed that the paracrine effect 

of MSCs plays a role in endogenous neural 
differentiation and proliferation [83]. Although 
endogenous neural stem cells (NSCs) do exhibit an 
acute response to IS, such as increased cell 
proliferation and cell migration, only 10%–20% of 
these cells survive long-term, and only a few of these 
surviving cells can mature into functional cells. 
However, most of them develop into thorny new 
striatal projection neurons or calretinin-positive 
interneurons [84]. This hinders the differentiation of 
MSCs into functional nerve cells after transplantation. 
Neural factors are known to play an important role in 
neurogenesis and vasculogenesis. MSCs genetically 
modified with neural factors can significantly increase 
the content of FGF, BDNF, VEGF, NGF, PIGF, and 
GDNF in the ischemic brain tissue, and promote the 
differentiation and proliferation of NSCs in the SVZ 
region during treatment. In addition to the generation 
of blood vessels, it promotes the generation of mature 
nerve cells and improves nerve function [85-92]. Some 
targeted miRNAs also play an important role in 
functional neurogenesis [93, 94]. MSCs 
overexpressing mirNA-133B were shown to regulate 
CTGF expression in astrocytes and RhoA expression 
in the IBZ region, promoting neurite remodeling and 
improving functional recovery in MCAO rats [94]. In 
addition to the chemical methods, use of physical 
methods may also play an important role. In a study, 
use of ultrasound probe to stimulate the ischemic 
brain tissue was shown to increase the expression of 

P-ERK and P-CREb and significantly promote 
neurogenesis [95]. In addition, the combination of 
chemical and physical methods significantly 
improved the therapeutic effect of modified MSCs on 
neurogenesis and angiogenesis. Studies have shown 
that the combination of overexpression of TRKB in 
MSCs and electroacupuncture stimulation may result 
in successful transdifferentiation of transplanted 
MSCS into functional nerve cells [96]. 

In conclusion, modification of MSCs by sensitive 
targets has shown a more significant effect in the 
treatment of IS stroke than MSCs alone. 

Clinical research status of modified 
mesenchymal stem cells 

Clinical trials have demonstrated the safety of 
MSC therapy in IS. MSCs derived from allofat were 
found to be safe for treatment in the acute phase of 
ischemia [97], and a Phase IIa clinical trial 
(NCT01678534) has been completed. Other clinical 
trials of MSC allografts are also being recruited 
(NCT04811651) (NCT05008588) (NCT04280003) 
(NCT03384433) (NCT04434768) (NCT04590118) 
(NCT02580019) (NCT04093336). In addition, the 
safety of hypoxic-treated allograft BM-MSCs has been 
demonstrated in the treatment of chronic stroke. In 
addition, there was significant improvement in 
behavioral endpoints [98] (NCT01297413). This 
evidence makes us look forward to the transformation 
of MSCs. 

Some experimental studies suggest the 
feasibility of use of modified MSCs for the treatment 
of IS. In particular, genetically modified MSCs have 
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shown promising therapeutic effects, but not much 
work has been done in clinical transformation. The 
key challenges to clinical transformation include the 
cytotoxicity of vectors such as lentiviruses, 
adenoviruses or retroviruses, and carcinogenicity and 
immunogenicity of viral DNA integration into the 
host genome. However, clinical studies in the context 
of other diseases have demonstrated the safety of the 
treatment process and good results have been 
achieved. For example, in a clinical study of 
neuroblastoma [99], autologous MSCs injected with 
ICoVIR-5 (a novel oncolytic adenovirus) for the 
treatment of metastatic neuroblastoma was found to 
be safe and effective. In addition, the use of transgenic 
autologous MSCs has been shown to improve the 
targeting of tumor cells in the treatment of 
gastrointestinal tumors [100]. In addition to neoplastic 
diseases, there have been some clinical trials of 
inducing MSCs to secrete target proteins in 
degenerative diseases of the nervous system. 
Brain-Storm Cell Therapeutics concluded a phase 
I/IIa clinical trial in patients with amyotrophic lateral 
sclerosis (ALS) using autologous MSCs induced to 
express neurotrophic factor (NurOwn) with mild and 
transient adverse effects reported. Strikingly, treated 
ALS patients demonstrated slowed disease 
progression following the conclusion of the Phase IIa 
trial with improvements in breathing and reduced 
motor decline compared to pre-treatment level [101] 
(NCT01051882) (NCT01777646). In addition, clinical 
studies evaluating MSC/BDNF in a dose-dependent 
manner to demonstrate the safety of transgenic MSCs 
for striate injection transplantation in patients with 
HD are being observed [102] (NCT01937923). In a 
2-year 1/2A study, Gary K Steinberg and his team 
implanted modified bone marrow MSCs (SB623) into 
chronic ischemic brain tissue using transient 
transfection of human Notch-1 intracellular domain. 
They concluded that SB623 cell implantation in 
patients with stable chronic stroke is safe and 
accompanied by improved clinical outcomes [103] 
(NCT01287936). 

In conclusion, allogeneic MSC therapy for IS 
appears safe and feasible. The safety and effectiveness 
of genetically-modified MSCs has been demonstrated 
in clinical trials. The available evidence suggests a 
promising outlook of the use of various gene targets 
or preconditioning of modified allogeneic MSCs for 
the treatment of IS at all stages. 

Outlook 
Advances in the field of biotechnology have 

helped improve the treatment of a wide range of 
diseases. In recent years, the development of 
crisPR-Cas9 and other gene technologies has made 

rapid progress in the treatment of metabolic diseases 
and cancers. Modification of MSCs appears a 
particularly promising approach as a therapeutic 
modality. In conclusion, modification of MSCs for 
ischemic stroke to enhance their targeting ability is a 
feasible and highly applicable research direction for 
future clinical transformation. 

Conclusion 
Ischemic stroke is a disease characterized by 

high morbidity, disability, and mortality. Complex 
pathological changes occurring in the damaged brain 
tissue including inflammatory storm, oxidative stress, 
and nerve cell apoptosis lead to severe neurological 
dysfunction. MSC therapy is a promising treatment 
for IS. However, the harsh ischemic and hypoxic 
microenvironment limits the effectiveness of this 
treatment modality. Modification of MSCs to improve 
their therapeutic ability represents a feasible and 
applicable research direction in clinical 
transformation. 
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