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Abstract

In-scanner head motion systematically reduces estimated regional gray matter vol-

umes obtained from structural brain MRI. Here, we investigate how head motion

affects structural covariance networks that are derived from regional gray matter vol-

umetric estimates. We acquired motion-affected and low-motion whole brain

T1-weighted MRI in 29 healthy adult subjects and estimated relative regional gray

matter volumes using a voxel-based morphometry approach. Structural covariance

network analyses were undertaken while systematically increasing the number of

included motion-affected scans. We demonstrate that the standard deviation in

regional gray matter estimates increases as the number of motion-affected scans

increases. This increases pairwise correlations between regions, a key determinant

for construction of structural covariance networks. We further demonstrate that

head motion systematically alters graph theoretic metrics derived from these net-

works. Finally, we present evidence that weighting correlations using image quality

metrics can mitigate the effects of head motion. Our findings suggest that in-scanner

head motion is a source of error that violates the assumption that structural covari-

ance networks reflect neuroanatomical connectivity between brain regions. Results

of structural covariance studies should be interpreted with caution, particularly when

subject groups are likely to move their heads in the scanner.
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1 | INTRODUCTION

Analysis of the covariance of regional grey matter volume and related

morphometric measures across subjects is a widely used MRI-based

network analysis technique that is used to investigate neuroanatomi-

cal changes in disease and healthy aging (Alexander-Bloch et al., 2010;

Alexander-Bloch, Giedd, et al., 2013; Alexander-Bloch, Raznahan,

et al., 2013; Bassett et al., 2008; Bernhardt et al., 2009; Bethlehem

et al., 2017; Coppen et al., 2016; DuPre & Spreng, 2017; He

et al., 2008; Irimia & Van Horn, 2013; Montembeault et al., 2012;

Montembeault et al., 2016; Romero-Garcia et al., 2018; Valk

et al., 2015; Zhang et al., 2019). The primary underlying assumption of

structural covariance analyses is that regional covariation of morpho-

metric estimates reflects neuroanatomical connectivity between brain

regions. In this study, we test this assumption by investigating the

effect of in-scanner head motion on construction and graph theoretic

analysis of structural covariance networks.

In-scanner head motion has been previously demonstrated to

cause brain-wide changes in morphometric estimates derived from

structural MRI scans (Alexander-Bloch et al., 2016; Pardoe

et al., 2016; Reuter et al., 2015; Savalia et al., 2017). Increased head

motion is generally associated with brain-wide apparent reductions in
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cortical thickness and regional gray matter volume. Previous studies

have shown that head motion is typically increased in disease groups

relative to healthy controls and varies by age, with children and

elderly adults showing increased head motion relative to adults aged

between 15 and 40 years (Pardoe et al., 2016; Savalia et al., 2017).

Although the effect of head motion on MRI-based estimates of

regional cortical thickness, volume and related neuroanatomical mea-

sures has been extensively described recently, the effect of motion on

higher order multivariate analytical approaches such as structural

covariance analysis is yet to be established.

Structural covariance networks are inferred by measuring the cor-

relation of regional volume or other morphometric estimates between

pairs of brain regions across subjects. Because head motion increases

variability in regional morphometric estimates across the whole brain,

it is likely that the concurrent variation in members of any pair of

regional estimates is increased, increasing the measured correlation

between these pairs. This effect can be conceptualized as a corollary

of the restricted range phenomenon, in which the measured correla-

tion between two variables is reduced if the sample is drawn from a

limited range of the population (Goodwin & Leech, 2006). In the case

of in-scanner head motion, we hypothesize that the inclusion of

motion-affected scans will increase variability in morphometric esti-

mates across subjects and subsequently increase the measured corre-

lation between pairs of brain regions.

We investigated the effect of head motion on structural covari-

ance networks by obtaining both motion-affected and low-motion

whole brain T1-weighted MRI scans in healthy adult subjects. The

scans described as “low-motion” can be considered equivalent to

scans obtained in a typical clinical imaging setting. Our imaging

dataset was used to obtain regional gray matter volume estimates fol-

lowing a voxel-based morphometry (VBM) approach similar to that

used in a number of prior studies (Bassett et al., 2008; Coppen

et al., 2016; DuPre & Spreng, 2017; Montembeault et al., 2012;

Montembeault et al., 2016; Zhang et al., 2019). We systematically var-

ied the number of motion-affected scans included in each group and

assessed how this influenced metrics related to network construction

and commonly used graph theoretic measures. Our primary analyses

used the widely used AAL parcellation scheme; however, we also car-

ried out additional analyses using a novel automated parcellation

scheme that systematically varied the number of nodes used to

parcellate a template.

Finally, we describe a postprocessing method for ameliorating the

influence of subject motion on structural covariance networks. Our

proposed approach used image quality metrics to weight GM volume

estimates that were used to estimate interregional correlations, as

opposed to using standard nonweighted correlations. Weighted corre-

lations were derived from datasets that included motion-affected

scans and compared these with ground-truth correlations derived

from datasets that only included low-motion scans. If weighted corre-

lations were closer to ground truth low-motion correlations than their

standard unweighted equivalent, this provided supporting evidence

that the approach may be a useful technique for addressing the prob-

lem of systematic errors in structural covariance networks due to in-

scanner head motion.

If the inclusion of motion-affected scans affects the construction

of structural covariance networks and derived metrics, regional covari-

ance of volumes and related morphometric measures across subjects

may not always reflect anatomical connectivity. In general, if subject

groups differ in the amount of in-scanner head motion, differences in

graph theoretic network metrics derived from structural covariance

analyses of these groups may not be due to neurobiological

differences.

2 | METHODS

Whole brain T1w MRI scans were obtained in 29 healthy control sub-

jects recruited via community advertisement (mean age 33 ± 13 years,

13 female). Approval for the study was obtained from the NYU

Langone Health Institutional Review Board, and written informed con-

sent was obtained from all study participants. MRI scans and scripts

associated with the analyses presented in this study are provided at

https://openneuro.org/datasets/ds003639 (Pardoe & Martin, 2021).

Participants were imaged on a Siemens 3 T Prisma MRI scanner.

Two T1w MPRAGE MRI scans were acquired per participant in each

imaging session; a motion-affected scan, in which participants moved

their heads in stereotyped prompted motions during the scan, and a

low motion scan in which participants held their head still. For a sub-

set of study participants (N = 23) the motion-affected and low-motion

acquisitions were repeated in the same scanning session, yielding four

T1-weighted MRI scans per participant (2 � motion-affected, 2 �
low-motion). The low-motion scans from the subset of participants

with repeat scans were used to assess the test–retest reliability of

regional correlations used to construct structural covariance. For the

motion-affected scans, in-scanner head motion was prompted using a

video presented to participants during the scan. Participants were

instructed to shake their head in a “no” type motion, equivalent to roll

around the long axis of the MRI scanner. Low-motion scans were not

rejected or repeated if subtle head motion artifacts were present. For

all cases, the motion-affected scans had substantially more visually

detectable motion artifacts than the low-motion scans.

Image acquisition parameters: MRI scans were acquired in the

sagittal plane with a 256 mm2 field of view, 176 slices with 1 mm slice

thickness to yield a 1 mm isotropic voxel size. Echo time (TE) = 3 ms,

flip angle = 8�, inversion time (TI) = 0.9 s, repetition time = 2.5 s.

Image quality was quantitatively assessed using (i) the weighted

overall image quality index obtained from the CAT12 SPM toolbox

(version CAT12.8-Beta (r1844), http://www.neuro.uni-jena.de/cat12-

html/cat_methods_QA.html) and (ii) the Euler number, derived from

cortical surface reconstructions obtained using the Freesurfer soft-

ware package (v6.0; Dale et al., 1999). The latter measure summarizes

the topological complexity of the surface delineating the boundary

between white and gray matter and has been shown to reliably detect

reduced image quality in T1-weighted MRI scans (Rosen et al., 2018).

For our analysis, we calculated the Euler number using the left and

right cortical surfaces obtained prior to the Freesurfer topological

defect correction routines; the surfaces are named “lh.nofix.orig” and

“rh.nofix.orig,” respectively. The composite Euler numbers were then
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averaged across hemispheres as per the approach described by Rosen

et al (Rosen et al., 2018). The CAT12-based image quality indices and

Euler numbers were compared between motion-affected and low-

motion groups using linear models.

MRI scans were segmented and co-registered using the DARTEL

toolbox provided in the SPM12 software package (Ashburner, 2007).

A custom template was created from the motion-free dataset. Scans

were segmented using a six-compartment model, with the first two

compartments comprising gray matter (GM) and white matter (WM).

The GM and WM segments were coregistered to MNI space via

nonrigid coregistration to the custom template. GM segments were

smoothed using an 8 mm Gaussian smoothing filter. Regional GM vol-

umes were estimated by calculating the mean GM value within each

region defined in the AAL atlas (Tzourio-Mazoyer et al., 2002). We

excluded cerebellar brain regions from our analyses, thereby yielding

GM volume estimates in 90 brain regions. Covariance matrices were

estimated from regional GM values across subjects by measuring the

Pearson correlation (r) between brain regions. Matrices were

thresholded and binarized to construct undirected adjacency matrices.

Undirected adjacency matrices were thresholded by calculating the

Pearson r value threshold that corresponded to a fixed target edge

density; this is a standard approach used in a number of previous

studies (Alexander-Bloch et al., 2010; Alexander-Bloch, Raznahan,

et al., 2013; Bethlehem et al., 2017; He et al., 2008; Romero-Garcia

et al., 2018). Subject groups were formed by systematically increasing

the number of motion-affected scans in each group, ranging from no

motion-affected scans to all motion-affected scans.

Prior to our primary analysis of the effect of in-scanner motion on

structural covariance networks, we investigated the test–retest reli-

ability of structural covariance networks constructed using the VBM

approach described above as well as cortical thickness and regional

volume estimates derived from Freesurfer. These analyses were car-

ried out to determine whether morphometric estimates derived from

our sample were suitable for our goal of investigating the effect of

head motion on structural covariance networks. Recent prior research

suggested that our overall sample size of N = 29 subjects is close to

the lower limit for reliable structural covariance network estimation,

and that covariance networks estimated using regional cortical thick-

ness estimates have lower reliability than those constructed from vol-

ume estimates when the same sample size is used (Carmon

et al., 2020).

Our test–retest analyses used the N = 23 subset of our study

population who had four MRI scans acquired per imaging session,

comprising 2 � motion-affected scans and 2 � low-motion scans.

MRI scans were processed using the longitudinal processing stream of

Freesurfer v6.0 (Reuter et al., 2012) with default settings. Regional

cortical thickness and volume estimates were obtained using the

Desikan–Killiany atlas (Desikan et al., 2006), yielding 68 regional esti-

mates per MRI scan. Covariance matrices were constructed by mea-

suring the Pearson correlation between brain regions as per the

previously described VBM approach. Test–retest reliability was

assessed by comparing region-wise r values in the repeated low-

motion datasets using the intraclass correlation coefficient (ICC). For

our analyses, we used the single score intraclass correlation method

implemented in the “irr” R software toolbox (Gamer et al., 2019). Mor-

phometric estimates were deemed appropriate for subsequent analy-

sis if the lower bound for the 95% ICC confidence interval was

above 0.9.

We investigated how in-scanner head motion-affected structural

covariance network construction by measuring the following as the

number of motion-affected scans included in each dataset increased:

(i) the variability in volume estimates, assessed by measuring the stan-

dard deviation in each brain region across subjects; (ii) Pearson corre-

lation coefficients (r) between volumes of brain regions; and (iii) the

Pearson r thresholds required to obtain fixed edge densities = 0.1,

0.15, and 0.2. We also investigated how commonly used graph theo-

retic network metrics, consisting of (i) global clustering coefficient

(transitivity), (ii) modularity, (iii) global efficiency, and (iv) small world

index varied as a function of the number of motion-affected scans in

each group. These analyses are described in more detail below. Ana-

lyses were carried out using the R software package with the iGraph,

brainGraph, and qgraph libraries (Csardi & Nepusz, 2006; Epskamp

et al., 2012; Team, R.C., 2020; Watson, 2020).

The global clustering coefficient or transitivity is the ratio of the

number of closed triplets (triangles) to the total number of triplets in

the network. We calculated this property using the iGraph toolbox

(Csardi & Nepusz, 2006). Modularity summarizes how a network is

subdivided into communities; networks with high modularity contain

subgraphs (communities) that are highly connected with each other

but sparsely connected to other subgraphs. For our analyses, commu-

nities were detected using the fast greedy modularity algorithm

implemented in the iGraph toolbox (Clauset et al., 2004; Csardi &

Nepusz, 2006). Global efficiency is related to how network structure

influences how information can be transmitted across a network and

was calculated using the brainGraph toolbox following the formulation

presented by Latora and Marchiori (Latora & Marchiori, 2001;

Watson, 2020). Small world index was estimated using the qgraph

toolbox following the methods described byWatts and Strogatz

(Epskamp et al., 2012; Watts & Strogatz, 1998).

A bootstrapping approach was used to estimate how GM esti-

mates derived from motion-affected scans affected (i) the across-

subject standard deviation in each brain region and (ii) the Pearson

correlation r between pairs of brain regions. The number of motion-

affected scans included was systematically increased from zero

(no motion-affected scans) to 29 (all motion-affected scans). For each

iteration, N = 5000 samples were drawn with replacement and (i) the

across-subject standard deviation in each brain region and (ii) pairwise

correlations in mean GM values between brain regions were calcu-

lated (Figure 1). The relationship between average standard deviation

across brain regions and the percentage of motion-affected scans was

tested using a linear model. In order to assess the spatial distribution

of this relationship we also carried out this inference on a per-node

basis, and mapped the correlation between the percentage of motion-

affected scans included and (i) regional average GM and (ii) regional

standard deviation to color scales to generate maps showing the

regional distribution of these changes. The relationship between
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average pairwise correlation across all nodes and the percentage of

motion-affected scans was also tested using a linear model.

We investigated how the inclusion of motion-affected scans

affected the threshold r value required to obtain undirected adjacency

matrices with a prespecified fixed edge density. Target edge densities

of 0.1, 0.15, and 0.2 were used. As in previous analyses, a boot-

strapping approach was used to estimate the average r value required

to obtain the target densities as the number of motion-affected scans

increased. The 5000 samples were drawn with replacement for each

iteration as the number of motion-affected scans in the dataset was

increased. The relationship between threshold r value and percentage

of motion-affected scans was tested using a linear model.

We also investigated how in-scanner head motion affects graph

theoretic network measures that are commonly used in structural

covariance studies to assess differences between subject groups. Spe-

cific metrics included measures of network segregation, consisting of

transitivity (also known as clustering coefficient) and modularity, mea-

sures of network integration including global efficiency and small

world index. For these analyses, the graph theoretic estimates were

obtained from graphs constructed from adjacency matrices that were

thresholded to obtain target edge densities = 0.1, 0.15, and 0.2. As in

the previous analyses, 5000 samples were drawn with replacement as

the number of motion-affected scans increased, with the four graph

theoretic metrics calculated for each sample.

Given that structural covariance assesses relationships between

brain regions, we investigated how the correlation and subsequent

inferred connections between nodes varies as a function of internode

distance in the presence of head motion. We measured the average

Euclidean distance between connected nodes from structural covari-

ance networks while systematically increasing the number of motion-

affected scans as per the previous analyses. If proximal connections

were preserved or removed as the number of motion-affected scans

increased, we should observe systematic changes in the average spa-

tial distance between connected nodes. If the average spatial distance

increased, it meant that distal connections were preserved

(or conversely proximal connections were removed); likewise, if the

average distance decreased it would suggest that distal connections

were removed.

We investigated how varying the parcellation scheme affects the

relationship between structural covariance networks and head

motion. The same custom template used for the prior analyses was

parcellated using the following approach. A binary GM segment was

derived from the probabilistic custom template using a thresh-

old = 0.01. The number of nodes for each parcellation nSeed was set

to 200, 250, 300, 350, and 400. For each value of nSeed, the GM seg-

ment was unwrapped from 3D into a 1D vector and seeded nSeed

times evenly spaced over the 1D vector. The 1D vector was then re-

mapped back into 3D space and the seed labels were expanded using

the “expand_label” function provided as part of the scikit-image

python image-processing module (van der Walt et al., 2014). This

approach yielded custom parcellations with systematically reduced

size of individual regions of interest as the number of nodes increased

(Figure 2).

Regional GM volumes and structural covariance networks were

estimated by calculating (i) the mean GM values within each region

and (ii) the Pearson correlation between regions for each custom

parcellation, following the previously described analyses that used the

AAL atlas. We investigated how the use of different parcellations

modified the standard deviation of regional GM values in the presence

of motion-affected scans; how the between-node Pearson correlation

F IGURE 1 A schematic diagram of our bootstrapping approach to estimating how the inclusion of motion-affected scans affects structural
covariance networks. The original sample of 29 participants with motion-affected (red circles) and low motion (blue circles) was resampled with
systematically increasing numbers of motion-affected scans. For each sample, the following parameters were estimated: (i) within-region of
interest (ROI) standard deviation across all regions; (ii) between-ROI correlation (r) across all pairs of ROIs; (iii) graph theoretic metrics derived
from structural covariance networks constructed from each sample. Five thousand resamples were taken for each setting of the number of
motion-affected scans to be included in the analyses.
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varied when using different parcellations; and how the previously

described graph theoretic metrics varied when different parcellations

were used. For the latter analyses, a fixed edge density = 0.1 was

used to construct the networks.

For our proposed weighted correlation method for correcting for

in-scanner head motion, interregional correlations were estimated

while systematically increasing the number of motion-affected scans

included in each dataset. The AAL atlas was used to define regional

GM volumetric estimates for these analyses. The previously described

resampling approach was used to obtain robust estimates. Weighted

correlations were estimated using the “weights” R package

(Pasek, 2021). We used both the CAT12 weighted image quality index

and average Euler number as image quality metrics. Both IQMs were

inverted so that higher quality less motion-affected scans had a higher

score and were therefore more heavily weighted. The following inter-

regional correlation matrices were estimated: (i) ground truth esti-

mates derived from low-motion scans, (ii) unweighted correlations

derived from datasets containing motion-affected scans,

(iii) correlations weighted using inverted CAT12 IQMs, and

(iv) correlations weighted using inverted Euler number IQMs. The

region-wise difference and mean absolute error (MAE) between gro-

und truth low-motion correlations and weighted/unweighted motion-

affected correlations was calculated. If the proposed weighted corre-

lation approach is effective for correcting for the effects of in-scanner

motion, we would expect the MAE associated with weighted correla-

tions derived from motion-affected datasets to be lower than the

MAE for the equivalent unweighted correlations.

3 | RESULTS

Quantitative assessment of image quality in the motion-affected and

low-motion scan groups indicated substantially reduced image quality

in the motion-affected scans when using the weighted image quality

metric from the CAT12 SPM toolbox and the Euler number derived

from Freesurfer-based cortical surface reconstructions (Figure 3). The

test–retest reliability of structural covariance networks constructed

from repeat low-motion scans was high for both the VBM-based AAL

atlas approach and regional volume estimates obtained using

Freesurfer, with an average ICC of 0.95 and 0.97, respectively. The

ICC of regional cortical thickness estimates was significantly lower,

with a mean ICC = 0.79. The mean ICC values and 95% confidence

intervals for these estimates are shown in Figure 4. Given the lower

test–retest reliability of between-region correlations estimated using

cortical thickness estimates, all subsequent analyses on the effects of

head motion used structural covariance networks derived from volu-

metric estimates only.

As expected from previous studies the measured GM volumetric

estimates generally reduced as the number of motion-affected scans

included in our analyses increased (Figure 5). The average across-

subject standard deviation systematically increased as the number of

motion-affected scans included in an analysis increased, with an

increase of 1.9 � 10�4 SD per percent change in the number of

motion-affected scans (Figure 5; p < < .001). The change in standard

deviation as a function of the number of motion-affected scans, both

per-region and averaged across all brain regions, is shown in Figure 6.

For example, if 20% of the scans in a dataset were motion affected,

the standard deviation increased on average by 23%. The average cor-

relation between GM regions also systematically increased as the

number of motion-affected scans included increased, with an increase

of 5.1 � 10�4 in r per percent change in the number of motion-

affected scans (p < < .001; Figure 7). As an example, we have provided

scatterplots showing the change in the correlation between the left

pallidum and left inferior temporal gyrus as the number of motion-

affected scans increased (Figure 8). The figure shows that the Pearson

F IGURE 3 Quantitative image quality indices show that brain
MRI quality is reduced (higher weighted image quality index and
lower Euler number, p < < .001 for both analyses) in the motion-
affected group. Note that the y-axis on the Euler number plot is
reversed.

F IGURE 2 Custom parcellations used to investigate how parcellation schemes influence structural covariance networks in the presence of
motion-affected scans. The images show parcellations with number of nodes (from left to right) = 200, 250, 300, 350, and 400.
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correlation increased from r = .57 if no motion-affected scans are

included to r = .71 if six subjects (20% of the sample) are motion

affected. The average threshold r value required to obtain adjacency

matrices with the prespecified edge densities systematically increased

as the number of motion-affected scans included in the analyses

increased; this was observed across the three target densities investi-

gated in our study (Figure 9).

Both modularity and efficiency systematically increased as the

number of motion-affected scans increased. These changes were con-

sistent across the range of edge densities used in our analyses

(Figure 10). Small world index generally decreased as the number of

motion-affected scans increased, although the higher edge densi-

ties = 0.15, 0.2 showed a small peak in small world index when a low

number of motion-affected scans was increased. The relationship

between transitivity and number of motion-affected scans depended

on edge density, with the shape of the density = 0.1 curve markedly

different to curves for edge densities = 0.15 and 0.2. For the higher

edge density values, the transitivity decreased as the number of

F IGURE 5 The spatial distribution of changes in measured node-wise average GM volume (top row) and node-wise standard deviation
(bottom row) as the number of motion-affected scans increases. The measured GM volume generally decreases as the number of motion-affected
scans increases; the standard deviation in all regions increases as the number of included motion-affected scans increases.

F IGURE 6 Variability in regional gray matter volume estimates
across subjects increases with the number of motion-affected scans
included in a dataset. The standard deviation averaged across all brain
regions is shown in orange, with standard deviation in individual brain
regions is shown in green.

F IGURE 4 Test–retest variability is higher (lower ICC) when
constructing structural covariance networks using cortical thickness
estimates compared to volumetric estimates derived from surface-
based (FS volume) and voxel-based morphometry (VBM AAL)
approaches. The 95% confidence intervals for volumetric estimates
are smaller than the size of the plot labels.

4340 PARDOE AND MARTIN



motion-affected scans increased. When examining changes in graph

theoretic metrics for a single edge density = 0.15, it can be seen that

the most substantial changes in transitivity, modularity, and efficiency

occur when a small number of motion-affected scans are included in

the analysis (Figure 11).

For our analyses of the effect of internode distance on networks

constructed in the presence of increasing head motion, we found that

there appears to be preservation of distal connections as the number

of motion-affected scans increase until they comprise half of the sam-

ple, with removal of distal connections as the number of motion-

affected scans exceeds the number of low-motion scans. This effect is

subtle, however, with a maximal average shift of only �0.5 mm (see

Supplementary Material).

When the number of nodes and associated node size was varied

via the use of our custom parcellation scheme, the change in average

within-node standard deviation of GM values followed a qualitatively

similar monotonic increase as the number of motion-affected scans

increased, independent of the number of nodes (Figure 12). The aver-

age within-node standard deviation systematically increased as the

number of nodes increased. For between-region correlations, the rela-

tionship between r and the number of motion-affected scans was

consistent across the different parcellations. As the number of nodes

used for the parcellation scheme increased the between-node correla-

tions systematically decreased; this systematic change appears partic-

ularly large for the lower number of nodes (n = 200–250), but the

difference was reduced when parcellations with a larger number of

nodes were used; for example, there was no apparent difference in

average Pearson correlation when comparing n = 350 and n = 400

parcellation schemes.

For the graph theoretic metrics, the relationships between each

metric and the number of motion-affected scans were similar

regardless of the parcellation scheme used. For the transitivity

metrics, there was no discernable systematic relationship between

the number of nodes in the parcellation and the estimated

F IGURE 7 The correlation between gray matter volume
estimates increases as the number of motion-affected scans included
in a dataset increases. The green line shows the average Pearson
r across all brain regions and the dashed lines indicate the 2.5th (lower
line) and 97.5th (upper line) percentiles for N = 5000 iterations for
each setting of the number of motion-affected scans

F IGURE 8 The effect of in-scanner head motion on the measured
correlation in gray matter volume between the pallidum and the
inferior temporal gyrus. As more motion-affected scans are included
in the sample, the correlation between these brain regions increases
from 0.57 to 0.71.
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transitivity values. Modularity estimates systematically decreased as

the number of nodes in the parcellation scheme increased; effi-

ciency estimates increased as the number of nodes increased; and

the small world index values decreased as the number of nodes

increased.

Weighting between-region GM volume correlations using the

CAT12 weighted image quality index or average Euler number derived

from Freesurfer reduced the mean absolute error relative to

unweighted correlations (Figure 13). Although the weighted correla-

tion analyses mitigate the effects of in-scanner head motion, unsur-

prisingly the MAE increases for both IQMs as the number of motion-

affected scans included in the analysis increased. Our preliminary ana-

lyses suggest that using the average Euler number to weight the cor-

relations has a lower MAE than the CAT12 IQM over most of the

range of motion-affected scans.

4 | DISCUSSION

We have demonstrated that the inclusion of motion-affected scans in

a structural covariance analysis framework causes systematic

increases in the variability of measured gray matter volumes. The

increase in variability subsequently increases the correlation in GM

volumes between brain regions. The increases in regional variability

and measured correlation between brain regions are observed across

the whole brain. These findings suggest that in-scanner head motion

can affect the construction of networks derived from covariance of

the volumes of gray matter regions across subjects. We have also

F IGURE 10 Change in graph
theoretic metrics across edge
density = 0.1, 0.15, 0.2. The
relationship between motion and
transitivity (clustering coefficient)
is variable depending on the edge
density used. Modularity and
efficiency increase as the number
of motion-affected scans
increases. Small world index
generally decreases as the
number of motion-affected scans
increases. The dashed lines
indicate the 95% confidence

interval.

F IGURE 9 The threshold Pearson correlation required to obtain a
predefined network edge density is dependent on the number of
motion-affected scans included in an analysis.
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shown that graph theoretic metrics derived from graphs constructed

based on correlation between brain regions are dependent on the

number of motion-affected scans included in an analysis. Our analyses

suggest that in-scanner head motion is a potential source of error for

structural covariance analyses and violates the primary underlying

assumption that significant correlations in GM volume estimates

between brain regions reflect neuroanatomical connectivity. These

findings suggest that caution should be exercised when interpreting

the results of structural covariance analyses.

Given that we have demonstrated that structural covariance net-

work properties can be affected by in-scanner head motion, it natu-

rally follows that there would be interest in the development of

methods for mitigating this source of error. We have provided prelimi-

nary evidence that weighting correlations using IQMs derived from

the CAT12 toolbox or the average Euler number derived from

Freesurfer-based surface analysis yield estimates that are closer to

ground-truth estimates obtained using only low-motion scans. Our

analyses suggest that the use of average Euler number is modestly

superior to the CAT12 IQM; however, more research is needed to

optimize this candidate approach. Nevertheless, these findings sug-

gest that, despite the fact that in-scanner head motion systematically

affects structural covariance networks, this source of error may be

controlled using postprocessing methods. Additional approaches

could be investigated; for example, based on the scatterplots shown

in Figure 8 the use of outlier detection methods such as Cook's dis-

tance or alternatives to Pearson correlation such as Spearman's rank

correlation coefficient could be beneficial. As with our weighted cor-

relation approach, these techniques may mitigate the effects of

motion but they may not eliminate the effect entirely; for example,

although Cook's distance may correctly identify the clear outlier

shown in orange in the bottom plot of Figure 8, it may not identify

more subtle systematic shifts due to head motion. A similar argument

could be applied to rank-based correlation methods since relative rank

changes could still occur due to head motion. One approach we

believe may be useful would be to match scans based on the image

quality metrics presented in Figure 3; if image quality was similar

across subject groups this would suggest that the groups are matched

for head motion. The methods described are speculative at this stage

and further investigation is warranted. A limitation of our study is that

no direct estimates of head motion were included in our analyses, pri-

marily due to the fact that there are few widely available techniques

for measuring head motion during structural MRI scans. Future stud-

ies incorporating recently proposed direct measures of head motion

could be useful for the development of techniques to ameliorate this

source of error (Frost et al., 2019; Kober et al., 2011; Maclaren

et al., 2012; Pardoe et al., 2021; Tisdall et al., 2016).

Our experimental framework used individuals who deliberately

moved their heads in the MRI scanner. The motion-related artifacts in

F IGURE 11 Change in graph
theoretic metrics as a function of
in-scanner motion for edge
density = 0.15. For transitivity,
modularity, and efficiency, the
largest changes occurred when a
small number of motion-affected
scans were included (<20%). The
dashed lines indicate the 95%

confidence interval
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these scans may be greater than those encountered in a typical clinical

imaging study, particularly in studies that have stringent quality con-

trol procedures. Although quality control protocols implemented at

the clinical imaging site are likely to reduce the magnitude of this

source of error, it is unclear whether they would eliminate this effect.

Previous studies have demonstrated that in-scanner head motion in a

clinical setting has a significant effect on cortical thickness and

regional volume even in scans that have been visually rated as being

high quality (Pardoe et al., 2016); this suggests that it is possible that

even subtle in-scanner head motion could have a systematic effect on

structural covariance analyses, particularly in large studies. Recently

developed motion-robust acquisitions (Frost et al., 2019; White

et al., 2010) are likely to ameliorate the effects of in-scanner head

motion described in this work; however, these should be investigated

in future studies.

One interesting finding from our analyses is the interaction

between edge density and transitivity/clustering coefficient as the

number of motion-affected scans increases (Figure 10, top left). We

suspect that this effect is due to the fact that lower density networks,

for example, density = 0.1, are by definition limited to “stronger”

F IGURE 12 The influence of different parcellation schemes on structural covariance network metrics affected by in-scanner head motion.

The plots show that varying the number of nodes, and associated node size, generally results in upward or downward shifts in network
properties; however, the change in these properties as the number of motion-affected scans increases is consistent across parcellations.
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node-node correlations (higher r) than higher density networks. The

global clustering coefficient = Number of closed triplets/Number of

all triplets ; the plot of clustering coefficient against the number

motion-affected scans therefore implies that the number of closed

triplets in low-density networks is relatively stable as the number of

motion-affected scans increases. For higher density networks, the

number of closed triplets decreases substantially as the number of

motion-affected scans increases. This difference may be related to

the volume of the individual nodes that comprise each triplet in the

network, because the relative change in measured volume of large

nodes as motion increases will be smaller than the change in volume

of smaller nodes. We investigated this post hoc hypothesis by mea-

suring the average volume of “robust” closed triplets, that is, those

present in high motion low-density networks (N robust triplets = 610),

versus the average volume of “weak” closed triplets, that is, those

triplets that are present in low-motion high-density networks but fall

out of the network as the number of motion-affected scans increases

(N weak triplets = 2899). We found that the average volume of robust

closed triplets was significantly higher than weak closed triplets

(Volrobust = 1690, Volweak = 1320, p < < .001), which supports our

hypothesis.

For our study, we limited our analysis of graph theoretic metrics

to the most widely used in the literature. There are a number of addi-

tional measures and variants of existing measures that may be derived

from structural covariance networks, including measures of local effi-

ciency, path length, betweenness, closeness, and centrality. Given that

all graph theoretic estimates that we investigated in our study were to

some extent dependent on in-scanner head motion, it is highly likely

that these additional measures will also be affected.

In summary, we have demonstrated that in-scanner head motion

systematically increases the correlation in estimates of regional gray

matter volume as a consequence of increased variability in these esti-

mates. These changes affect graph theory-based metrics typically

used to infer differences in neuroanatomical connectivity between

subject groups. As with mass-univariate analyses of regional brain vol-

ume differences between subject groups, the results of structural

covariance analyses should be interpreted with the knowledge that

head motion is a potential source of error.
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