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Abstract

We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes

a corrupted sinogram along the metal trace region. When metal implants are located inside

a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation

of metals, which significantly degrades the image quality. To fill in the metal trace region effi-

ciently, the proposed algorithm uses multiple prior images with residual error compensation

in sinogram space. Multiple prior images are generated by applying a recursive active con-

tour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear

interpolation, where the number of prior image is controlled by RAC depending on the object

complexity. A sinogram basis is then acquired by forward projection of the prior images. The

metal trace region of the original sinogram is replaced by the linearly combined sinogram of

the prior images. Then, the additional correction in the metal trace region is performed to

compensate the residual errors occurred by non-ideal data acquisition condition. The perfor-

mance of the proposed MAR algorithm is compared with MAR with linear interpolation and

the normalized MAR algorithm using simulated and experimental data. The results show

that the proposed algorithm outperforms other MAR algorithms, especially when the object

is complex with multiple bone objects.

Introduction

Metal artifacts are one of the most common problems in computed tomography (CT). Various

metal implants in the human body such as dental fillings [1], orthopedic implants [2], hip

prostheses [3], and implanted marker bins [4], generate dark and bright streaks owing to the

high attenuation of metals, which degrade the image quality and diagnostic value of CT

images. To reduce metal artifacts, several metal artifact reduction (MAR) algorithms have

been developed [5]. These are classified into two groups: projection completion methods and

iterative methods.
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Projection completion methods treat projections through the metal trace region as missing

data and estimate them using neighboring measured data by linear [6], higher-order [7–9],

wavelet [10, 11], prior knowledge [12, 13], and diffusion [14, 15] approximations. Interpola-

tion-based MAR algorithms are simple, but produce additional artifacts when large metal

implants are present. To prevent this, MAR algorithms utilizing a prior image have been sug-

gested [16–20]. In these algorithms, the metal trace region is replaced by the forward projec-

tion of the prior image obtained by applying thresholding on the pre-corrected CT images

[16–19] with the assumption that pixel values do not vary substantially within materials.

Instead of using simple thresholding, Zhang et al. [20] used a TV minimization regularized

algebraic reconstruction technique (ART) to find the prior image. In general, MAR algorithms

with prior images demonstrate better performance in artifact reduction, but acquiring a high

quality prior image is essential.

Iterative methods attempt to iteratively reduce the mismatch between measured data and

forward projection of the object [21–27]. By excluding data in the metal trace region of the

sinogram, MAR with iterative methods becomes an ill-posed problem that is stabilized by

using a priori knowledge of the image as a regularization term [21–24]. Wang et al. [21] pro-

posed two iterative deblurring algorithms that used an expectation maximization (EM)

formula and ART adapted for MAR. Williamson et al. [22] proposed statistical iterative recon-

struction using prior information about the geometry of metal objects and the detector

response model. Choi et al. [23] and Zhang et al. [24] proposed iterative MAR based on con-

strained optimization with total variation (TV) and a quadratic smoothness function as a regu-

larizer, respectively. Verburg and Seco [25] used a regularized iterative method only applied

on a high-Z implants traced sinogram. Lemmens et al. [26] used maximum a posteriori

(MAP) reconstruction with thresholding-based multimodal prior, and Nasirudin et al. [27]

used material decomposed images of spectral CT as priors, and reduced the metal artifacts by

regularized maximum likelihood approach. Compared to the projection completion methods,

MAR with iterative methods are robust to noise because they are controlled by a regularization

term. However, the high computational cost is a practical obstacle.

The proposed MAR algorithm is categorized in the projection completion group. To

reduce estimation errors in the metal trace region, we generate multiple prior images by

applying a recursive active contour (RAC) segmentation technique to the MAR image with

linear interpolation [6], where the number of prior image is controlled by the RAC depend-

ing on the object complexity. A sinogram basis is acquired by conducting forward projection

of prior images. The metal trace region of the original sinogram is then replaced by the line-

arly combined sinogram of prior images. When the object is heterogeneous and the data

acquisition condition is not ideal, residual errors occur between the original sinogram and

the linearly combined sinogram. Additional correction is performed to compensate. We

iteratively continue the process until the norm of the residual errors is minimized. As a

result, the proposed algorithm finds good prior images and effectively reduces metal arti-

facts. To evaluate the performance of the proposed MAR algorithm, both numerical and

physical experiments are conducted. Quantitative evaluations are performed and compared

with the MAR algorithm with linear interpolation (LIN) [6] and normalized MAR (NMAR)

algorithm [18].

Materials and methods

In this section, we briefly review the RAC segmentation technique and then describe the pro-

posed MAR algorithm.

A MAR algorithm in CT using multiple priors by RAC
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Recursive active contour segmentation

RAC segmentation is based on classical active contour segmentation proposed by Chan-Vese

[28]. The active contour model uses a level set function to divide an image into two separate

regions.

Let I be a given image on O � R3 such that I : O! R. The active contour model mini-

mizes the following equation [28]:

min
φ

FðφÞ ¼
Z

O

fjI � c1j
2HðφÞ þ jI � c2j

2
ð1 � HðφÞÞg þ m

Z

O

DHðφÞ; ð1Þ

where H is the Heaviside function and D is the distributional derivative. A function φ is the

levelset function which separates an image into two subregions, and c1 and c2 are mean values

of corresponding subregions; μ is a regularization parameter to control the length of the active

contour and segmentation sensitivity.

Image segmentation into multiple subregions can be performed by recursively applying the

active contour model. Suppose image I0 has two objects with different intensities as shown in

Fig 1(a). By applying the active contour model to I0, two objects are separated together from

the background by the levelset function. To further segment subregions, the background val-

ues in I0 are replaced by the minimum value of the foreground regions in I0. Then a new

image I1 is acquired as shown in Fig 1(b). By continuing the segmentation process until the

entire image is filled with a constant as shown in Fig 1(c), multiple subregions are segmented.

Note that red lines in Fig 1 indicate a region where the values of the levelset function are zero.

The levelset function has positive values in the foreground regions.

The main advantage of the RAC technique is that the number of subregions is determined

adaptively during the segmentation process. Although we describe image segmentation using

a piecewise linear object, the RAC technique is still applicable to heterogeneous objects by con-

trolling the regularization parameter μ in Eq (1) [29]. Since the regularization parameter con-

trols the segmentation sensitivity [29], small μ is needed for the segmentation of low contrast

intensity object, which increases the number of segmented subregions. Fig 2 illustrates the seg-

mentation results depending on the regularization parameter, where the background intensity

increases gradually from zero to one toward the right direction.

Fig 1. Concept of recursive active contour segmentation. (a) I0: initial image, (b) I1: image obtained by replacing the background values of I0 with

one, and (c) I2: image by replacing the background values of I1 with two.

https://doi.org/10.1371/journal.pone.0179022.g001
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Proposed method

The proposed MAR algorithm consists of three steps as described in Fig 3. In the first step, the

initial image is reconstructed by the Feldkamp, David and Kress (FDK) algorithm using the

original sinogram p0, and metal regions are segmented by the active contour [28]. Note that

the active contour technique is more effective in metal segmentation than the simple thresh-

olding technique when multiple metals are present. Then, the metal trace region, TM, is identi-

fied by the forward projection of the segmented metals within the sinogram domain O. The

initial corrected image, fk for k = 1, is acquired by applying linear interpolation on the metal

trace region TM [6].

In the second step, fk is divided into N subregions, I1, . . ., IN by RAC. In our implementa-

tion, we chose the regularization parameter in Eq (1) as 0.1, and the number of subregions N is

determined accordingly. The segmented subregions are used as prior images, which have the

intensity as one; thus, finding the proper coefficient dj for each subregion Ij is necessary to sat-

isfy the following equation:

RðfkÞ ffi
XN

j¼1

djbj; ð2Þ

where R is the Radon transform operator and bj ¼ RðIjÞ.

The optimal coefficients dj are estimated by solving the following minimization problem:

d ¼ arg min
dj�0
k p0 �

XN

i¼1

djbjkTc
M
þ a k rp0 �

XN

i¼1

djrbjk@TM
; ð3Þ

where d = (d1, . . ., dN)T, Tc
M is the complement of TM, and @TM is the boundary of TM. The

first term in Eq (3) minimizes the mismatch between the original sinogram and the linearly

combined sinogram on Tc
M , and the second term regulates the smoothness along the boundary

with the regularization parameter α> 0. In this work, the minimization problem is solved

using Nelder-Mead simplex direct search [30] with α = 0.1. The mean value of each segmented

subregion is used as an initial guess for solving Eq (3). With computed coefficients dj, a new

linearly combined sinogram p̂ ¼
P

j djbj is generated.

If the segmentation is performed without errors and the coefficients dj are estimated cor-

rectly, p̂ is equivalent to p0 on Tc
M with ideal data acquisition condition. However, real

Fig 2. Segmentation results with different regularization parameter μ.

https://doi.org/10.1371/journal.pone.0179022.g002
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projectin data are polychromatic and contain some amount of scatter, and thus residual errors

(i.e., d ¼ p0 � p̂) still exist on Tc
M ; thus, using data in the metal trace region of p̂ is suboptimal

for metal artifact reduction. In step three, the residual errors in the metal trace region are com-

pensated by adding a linearly interpolated sinogram d̂ of δ on the metal trace region and p̂.

The new sinogram p̂ þ d̂ coincides with the original sinogram on Tc
M since d̂ is equivalent to δ

on Tc
M .

Then, k is updated by k + 1, and steps two and three are repeated using the reconstructed

image fk of p̂ þ d̂. This process continues until the norm of the residual errors kdkTc
M

is less

than tolerance τ.

In NMAR, interpolation errors in the metal trace region are minimized by using a normal-

ized sinogram. If the object is piecewise constant and the X-ray spectrum is monochromatic,

NMAR and the proposed method produce the same MAR results. When the object is hetero-

geneous and the X-ray spectrum is polychromatic, the denormalization step of NMAR may

Fig 3. Flowchart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0179022.g003
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amplify the interpolation errors. This effect will be more significant when the metals exist on

the surface of the object. In contrast, our approach is more stable since the interpolation errors

are minimized by error subtraction. This effect will be described more clearly in our result

section.

Experiments

Both numerical and physical experiments were conducted to evaluate the performance of the

proposed MAR algorithm.

Numerical simulations. The numerical simulations were performed with a fan beam CT

geometry using Shepp-Logan, jaw and abdomen phantoms. A Shepp-Logan phantom (shown

in Fig 4(a)) contains two rectangular gold inserts, a jaw phantom (shown in Fig 4(b)) contains

three gold implants, and an abdomen phantom (Fig 4(c)) has two gold implants. For each

phantom, polychromatic projection data were acquired with a 120 kVp tube voltage using the

Siemens X-ray spectrum [31]. Attenuation coefficients of muscle, bone, and gold were

obtained from the NIST X-ray Attenuation Database (ICRU-44) [32]. Each detector cell

received 106 photons without the object, and Poisson noise was simulated. Each phantom con-

sists of 512 × 512 pixels with a 0.2 × 0.2 mm2 pixel size. To obtain the reference images, noise-

less projection data of tissues and bones were reconstructed using a polychromatic X-ray

spectrum. The simulation parameters are summarized in Table 1.

Fig 4. Three numerical phantoms. (a) Shepp-Logan phantom with two rectangular gold inserts indicated by

blue squares, (b) jaw phantom with three gold implants indicated by blue circles, and (c) abdomen phantom

with two gold implants indicated by blue circles.

https://doi.org/10.1371/journal.pone.0179022.g004

Table 1. Simulation parameters.

Parameter Value

Source to iso-center distance 929.19, mm

Detector to iso-center distance 525.24, mm

Detector pixel size 0.388 × 0.388 mm2

Detector array size 1024

X-ray focal spot size 0.6 × 0.6 mm2

Number of source and detector lets 17 × 17

Rotation circular 360˚

Number of views 1080

Reconstructed image size 102.4 × 102.4 mm2

Reconstructed pixel size 0.2 × 0.2 mm2

(512 × 512)

https://doi.org/10.1371/journal.pone.0179022.t001
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Physical experiments. For the physical experiments, a tooth and polymethylmethacrylate

(PMMA) phantoms were used. As shown in Fig 5(a), the tooth phantom consists of an ortho-

dontic bracket with one silver clip at the fore tooth and two gold rings at the cheek tooth. A

PMMA phantom consists of a 10 cm-diameter cylinder with five holes and a 16 cm diameter

extension annulus with four holes (Fig 5(b)). A metal bar was placed at the center of the

PMMA phantom, and two screws were placed at the edge of the PMMA phantom. Projection

data were acquired from the bench-top cone beam CT (CBCT) system. The bench-top system

includes a generator (Indico 100, CPI Communication & Medical Products Division, George-

town, ON, Canada), a tungsten target X-ray source (Varian G-1592, Varian X-ray Product,

Salt Lake City, UT, USA) with a 0.6 × 0.6 mm2 focal spot, and a 400 × 300 mm2 flat-panel

detector (PaxScan 4030CB, Varian Medical Systems, Salt Lake City, UT, USA) with a tube volt-

age of 120 kVp and current of 5 mA. The experimental parameters are summarized in Table 2.

Performance comparison

We compared the performance of the proposed algorithm with LIN [6] and NMAR [18]. The

performance of NMAR was evaluated using three different prior images: prior image by simple

thresholding (NMARth), prior image by RAC segmentation of LIN (NMARsegs
), and the same

prior image with the proposed algorithm (NMARsege
). In NMARth, the thresholding value

was chosen by the attenuation coefficient of the material (i.e., air = 0, soft tissue = 0.28, and

Fig 5. Two physical phantoms. (a) Tooth phantom containing an orthodontic bracket and three metals, and

(b) PMMA phantom with a metal bar and two screws.

https://doi.org/10.1371/journal.pone.0179022.g005

Table 2. Experiment parameters.

Parameter Value

Tube Voltage 120 kVp

Current 5 mA

Source to iso-center distance 929.19 mm

Detector to iso-center distance 525.24 mm

Detector pixel size 0.388 × 0.388 mm2

Detector array size 1024 × 768

Rotation circular 360˚

Number of views 1080

Reconstructed volume size 204.8 × 204.8 × 51.2 mm3

Reconstructed voxel size 0.2 × 0.2 × 0.2 mm3

(1024 × 1024 × 256)

https://doi.org/10.1371/journal.pone.0179022.t002

A MAR algorithm in CT using multiple priors by RAC

PLOS ONE | https://doi.org/10.1371/journal.pone.0179022 June 12, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0179022.g005
https://doi.org/10.1371/journal.pone.0179022.t002
https://doi.org/10.1371/journal.pone.0179022


bone = 0.4). In NMARsegs
and NMARsege

, the coefficients of the prior images were chosen as

the mean value of the corresponding subregions.

For the quantitative evaluation, the mean square error (MSE) and standard deviation were

used. For the simulation data, the MSE between the reference image and each MAR image was

computed using the entire image except the metal region. For the experimental phantoms, the

region of interest (ROI) was selected within homogeneous regions, and the standard deviation

was calculated for each MAR image.

Results

Numerical simulations

Fig 6(a) shows the MAR results of the Shepp-Logan phantom. Due to significant beam

hardening artifacts in the uncorrected image, high quality prior images could not be

acquired by simple thresholding (shown in Fig 6(b)). As a result, the NMARth image con-

tained severe streak artifacts. Using good prior images improved the image quality as

shown in the NMARsegs
image, and further improvement was observed in the NMARsege

image. It is also shown that the proposed MAR image shows similar performance to the

NMARsege
image since the error amplification in the denormalization step of NMAR is not

significant because of the negligible beam hardening effect of the soft tissues in the original

sinogram.

Fig 7(a) shows the MAR results of the jaw phantom and Fig 7(b) compares the prior images

acquired by a simple thresholding and RAC technique. Unlike the Shepp-Logan results, the

proposed MAR method shows better performance than the NMARsege
image. Fig 8(a)–8(f)

show the sinogram of the reference image, prior images by simple thresholding, the NMARth

image, prior images by the RAC technique, the NMARsege
image, and the proposed MAR

image, respectively. Profiles of the sinogram images (indicated by the magenta line in Fig 8(a))

are also compared. As shown in Fig 8(g) and 8(h), the NMARth produces significant errors

within the metal trace region. Using good prior images reduces the estimation errors in the

metal trace region as shown in Fig 8(i). However, residual errors still exist in the profile of

NMARsege
as shown in Fig 8(j). Note that the original sinogram contains beam hardening

effects generated from multiple bones; thus, the denormalization step of NMAR amplifies the

interpolation errors on the metal trace region. The proposed MAR algorithm reduces the

residual errors by the additional residual error correction step (i.e., Step 3 in Fig 3), and thus,

further improvement in MAR can be achieved.

Fig 9(a) shows the MAR results of the abdomen phantom. Compared to the previous

numerical phantoms, the abdomen phantom is more heterogeneous, and thus more accurate

prior images would be required to reduce metal artifacts effectively. However, due to the severe

noise and metal artifacts in the uncorrected image, prior images generated by simple thresh-

olding miss details of inner structures in the abdomen phantom (shown in Fig 9(b)). As a

result, the NMARth image contains severe streak artifacts. In contrast, prior images generated

by the RAC technique contain more details, which improve the performance of the NMAR.

While all other MAR algorithms contain residual streaks artifacts between two metals, the pro-

posed algorithm reduces them effectively.

In simulations, the number of prior images was chosen by RAC automatically, and the tol-

erance τ was set to 10% of the first norm of the residual errors. Table 3 summarizes the number

of prior image and coefficients for numerical simulations, and Table 4 summarizes the MSE

values for different MAR images. For all numerical phantoms, the proposed algorithm shows

the best performance in metal artifact reduction.

A MAR algorithm in CT using multiple priors by RAC
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Physical experiment

For the tooth phantom, three slices from the reconstructed three-dimensional volume were

chosen. Fig 10 shows MAR results and prior images of slice 17. Notice that the NMARth image

Fig 6. Results of the Shepp-Logan phantom (C = 250 HU/W = 750 HU). (a) Top row: reconstruction

images by (left) Uncorrected, (middle) LIN, and (right) NMARth images. Bottom row: reconstruction images by

(left) NMARsegs
, (middle) NMARsege

, and (right) the proposed MAR. (b) Prior images by (top) simple

thresholding, (middle) RAC segmentation of the LIN image, and (bottom) RAC segmentation of the final

iteration image.

https://doi.org/10.1371/journal.pone.0179022.g006

A MAR algorithm in CT using multiple priors by RAC
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contains significant streak artifacts owing to the poor quality of the prior images. Although

the streak artifacts are reduced in the NMARsegs
and NMARsege

images, residual streak artifacts

are still observed. Since the tooth phantom contains the metals on the surface of the object,

small interpolation errors in the metal trace region are significantly amplified during the

Fig 7. Results of the jaw phantom (C = 250 HU/W = 750 HU). (a) Top row: reconstruction images by (left)

Uncorrected, (middle) LIN, and (right) NMARth images. Bottom row: reconstruction images by (left) NMARsegs
,

(middle) NMARsege
, and (right) the proposed MAR. (b) Prior images by (top) simple thresholding, (middle)

RAC segmentation of the LIN image, and (bottom) RAC segmentation of the final iteration image.

https://doi.org/10.1371/journal.pone.0179022.g007
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denormalization step of the NMAR algorithm. In contrast, the proposed MAR algorithm effec-

tively reduces the streak artifacts.

Figs 11 and 12 show the MAR results and prior images of slice 114 and 155, respectively,

where multiple metals are present. Compared to the other MAR algorithms, the proposed

method reduces metal artifacts more effectively.

For the quantitative evaluation, two ROIs were chosen on the homogeneous region, which

is indicated by the red lines in Figs 10(a)–12(a). The standard deviation of each ROI was calcu-

lated and summarized in Table 5. For the tooth phantom, the proposed MAR algorithm has

the smallest standard deviation for all three slices.

Fig 13 shows MAR results and prior images of the PMMA phantom with three metal

inserts, where the central slice from the reconstructed three-dimensional volume is selected.

Fig 8. Sinogram profiles. (a) reference, (b) Priorth, (c) NMARth, (d) Priorsege
, (e) NMARsege

, and (f) the

proposed algorithm. Comparison of sinogram profiles of (g) reference, Priorth, and NMARth, and (h) enlarged

version of the profiles within metal traces 1 and 2 of Fig 8(g). Comparison of sinogram profiles of (i) reference,

Priorsege
, NMARsege

, and the proposed algorithm, and (j) enlarged version of the profiles within metal traces 1

and 2 of Fig 8(i).

https://doi.org/10.1371/journal.pone.0179022.g008

A MAR algorithm in CT using multiple priors by RAC
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Notice that the prior images by simple thresholding and the RAC technique are very similar

and thus, all NMAR algorithms show similar MAR results with the proposed MAR algorithm.

For the quantitative evaluation, four ROIs were selected on the homogeneous region, which

are indicated by red lines in Fig 13(a). The standard deviation of each ROI was calculated and

summarized in Table 5. Notice that the three NMAR images and the proposed MAR image

show similar standard deviation owing to the simple structure of the PMMA phantom. Table 6

summarizes the number of iterations for each phantom. More iterations are required when the

image quality of LIN is poor. Table 7 summarizes the number of prior image and coefficients

for each experimental phantom.

Fig 9. Results of the abdomen phantom (C = 500 HU/W = 1500 HU). (a) Top row: reconstruction images by

(left) Uncorrected, (middle) LIN, and (right) NMARth images. Bottom row: reconstruction images by (left)

NMARsegs
, (middle) NMARsege

, and (right) the proposed MAR. (b) Prior images by (top) simple thresholding,

(middle) RAC segmentation of the LIN image, and (bottom) RAC segmentation of the final iteration image.

https://doi.org/10.1371/journal.pone.0179022.g009

A MAR algorithm in CT using multiple priors by RAC
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Discussion and conclusion

We presented a new MAR algorithm using multiple prior images with subsequential residual

error correction. Traditional interpolation-based MAR algorithms replace the metal trace

region with neighboring data depending on the distance, which introduces streak artifacts

owing to interpolation errors in the metal trace region. The proposed method minimizes inter-

polation errors by utilizing multiple prior images generated by the RAC technique and addi-

tional residual error correction method in sinogram space. The performance of the proposed

method was compared with LIN and NMAR with different prior images. For the homoge-

neous object, NMAR and the proposed method show similar performance in metal artifact

reduction. However, when the object is complex with multiple bone objects, the proposed

method shows better MAR results. For a complex object, we also showed that the performance

of the NMAR algorithm can be improved significantly using prior images generated by the

RAC technique.

In NMAR, interpolation errors in the metal trace region were reduced by performing the

interpolation on the normalized sinogram. However, using poor quality prior images can

degrade the performance of NMAR since the interpolation errors are magnified by the denor-

malization step of the NMAR algorithm. This effect is more significant when the metals lie on

the surface of the objects. Using good prior images improves the performance of the NMAR

algorithm significantly. As shown in the results of NMARsegs
, RAC segmentation improves

NMAR compared to NMARth, but the residual errors caused by the denormalization step still

exist, especially for complex objects containing multiple bone objects. In contrast, the pro-

posed algorithm does not amplify interpolation errors since the metal trace region is filled in

by the summation of linearly combined sinograms of prior images and subsequential residual

error correction.

Table 3. Number of prior image N and coefficients dj in numerical simulations.

Method N d1 d2 d3 d4

Shepp-Logan NMARth 3 0.230 0.311 0.603

NMARsegs
3 0.226 0.340 0.614

NMARsege
3 0.226 0.333 0.612

Proposed 3 0.234 0.309 0.655

Jaw NMARth 3 0.269 0.331 0.525

NMARsegs
3 0.233 0.327 0.512

NMARsege
3 0.241 0.441 0.530

Proposed 3 0.236 0.538 0.630

Abdomen NMARth 3 0.248 0.321 0.485

NMARsegs
4 0.270 0.337 0.426 0.513

NMARsege
4 0.259 0.328 0.474 0.621

Proposed 4 0.294 0.575 0.685 0.757

https://doi.org/10.1371/journal.pone.0179022.t003

Table 4. MSE of numerical simulations.

LIN NMARth NMARsegs
NMARsege

Proposed

Shepp Logan 127.9 195.9 85.9 62.4 59.4

Jaw 280.2 245.1 242.9 110.4 77.5

Abdomen 64.4 66.1 57.8 56.0 54.7

https://doi.org/10.1371/journal.pone.0179022.t004
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Fig 10. Results of tooth phantom with orthodontic bracket, on slice # 17 (C = -250 HU/W = 1250 HU).

(a) Top row: reconstruction images by (left) Uncorrected, (middle) LIN, and (right) NMARth images. Bottom

row: reconstruction images by (left) NMARsegs
, (middle) NMARsege

, and (right) the proposed results. ROI 1

and ROI 2 are indicated by red lines on the uncorrected image. (b) Prior images by (top) simple thresholding,

(middle) RAC segmentation of LIN image, and (bottom) RAC segmentation of final iteration image.

https://doi.org/10.1371/journal.pone.0179022.g010
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Fig 11. Results of tooth phantom with orthodontic bracket, on slice # 114 (C = -250 HU/W = 1250 HU).

(a) Top row: reconstruction images by (left) Uncorrected, (middle) LIN, and (right) NMARth images. Bottom

row: reconstruction images by (left) NMARsegs
, (middle) NMARsege

, and (right) the proposed results. ROI 3

and ROI 4 are indicated by red lines on the uncorrected image. (b) Prior images by (top) simple thresholding,

(middle) RAC segmentation of LIN image, and (bottom) RAC segmentation of final iteration image.

https://doi.org/10.1371/journal.pone.0179022.g011
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Fig 12. Results of tooth phantom with orthodontic bracket, on slice # 155 (C = -250 HU/W = 1250 HU).

(a) Top row: reconstruction images by (left) Uncorrected, (middle) LIN, and (right) NMARth images. Bottom

row: reconstruction images by (left) NMARsegs
, (middle) NMARsege

, and (right) the proposed results. ROI 5

and ROI 6 are indicated by red lines on the uncorrected image. (b) Prior images by (top) simple thresholding,

(middle) RAC segmentation of LIN image, and (bottom) RAC segmentation of final iteration image.

https://doi.org/10.1371/journal.pone.0179022.g012
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Table 5. Standard deviation of the ROIs for physical phantoms.

slice # Ori LIN NMARth NMARsegs
NMARsege

Proposed

Tooth #17 ROI1 195.7 33.1 769.9 54.4 43.4 25.8

ROI2 105.0 59.7 651.3 87.7 64.6 41.2

#114 ROI3 252.9 59.4 40.1 40.0 40.5 40.6

ROI4 151.0 46.0 206.1 40.8 44.2 32.4

#155 ROI5 233.1 94.6 153.5 82.0 84.2 81.4

ROI6 232.2 64.3 306.9 50.8 42.5 38.4

PMMA ROI1 313.8 78.3 76.2 73.4 75.9 75.7

ROI2 352.4 75.6 69.4 69.6 70.7 69.3

ROI3 127.9 74.0 66.4 65.8 66.3 66.6

ROI4 129.7 71.3 69.0 69.3 71.1 68.7

https://doi.org/10.1371/journal.pone.0179022.t005

Fig 13. Results of a PMMA phantom (C = 0 HU/W = 600 HU). (a) Top row: reconstruction images by (left)

Uncorrected, (middle) LIN, and (right) NMARth images. Bottom row: reconstruction images by (left) NMARsegs
,

(middle) NMARsege
, and (right) the proposed results. ROI 1- ROI 4 are indicated by red lines on the

uncorrected image. (b) Prior images. Left: prior by simple thresholding, middle: prior by RAC segmentation of

the LIN image, right: prior by RAC segmentation of the final iteration image.

https://doi.org/10.1371/journal.pone.0179022.g013
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The proposed method iteratively reduces interpolation errors. Each iteration consists of

prior image generation, sinogram basis generation, and residual error correction. Each itera-

tion takes approximately 15 s for a two-dimensional image in MATLAB (MathWorks, Natick,

MA) on a work station with an Intel XEON E5-2630V2 processor at 2.6GHz. The number of

iterations depends on the object’s complexity and the quality of the LIN image. Since the pro-

posed algorithm can be applied independently for each slice, the computation time for three-

dimensional volume data would be similar to the two-dimensional case by parallel computing

using a graphics processing unit (GPU). The computation time can be more accelerated by C/

C++ implementation, which is essential for real clinical applications.

In this work, we treated the projection data in the metal trace region as missing or

completely unreliable. However, when the density of metals is not high enough, the metal

trace region may contain available information of the object, and thus, further improvement

of the MAR can be achieved by frequency split MAR (FSMAR) [19]. Comparison of the image

quality improvement with FSMAR with NMAR images and proposed MAR images is a subject

of future research. In conclusion, we presented a new MAR algorithm using multiple prior

images with additional residual error correction. The results show that the proposed algorithm

outperforms other MAR algorithms, especially when the object is complex with multiple bone

objects.

Supporting information

S1 Fig. 2D Shepp Logan phantom. Data related to Fig 6.

(MAT)

S2 Fig. 2D jaw phantom. Data related to Fig 7.

(MAT)

S3 Fig. 2D jaw phantom. Data related to Fig 8.

(MAT)

S4 Fig. 2D abdomen phantom. Data related to Fig 9.

(MAT)

Table 6. Iteration numbers of the proposed algorithm.

Shepp-Logan Jaw Abdomen Tooth PMMA

Iteration No. 19 37 3 5 2

https://doi.org/10.1371/journal.pone.0179022.t006

Table 7. Number of prior image N and coefficients dj in physical phantoms.

Method N d1 d2

Tooth NMARth 1 0.208

NMARsegs
2 0.176 0.214

NMARsege
2 0.184 0.210

Proposed 2 0.215 0.222

PMMA NMARth 1 0.198

NMARsegs
1 0.198

NMARsege
1 0.198

Proposed 1 0.200

https://doi.org/10.1371/journal.pone.0179022.t007
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S5 Fig. 3D orthodontic phantom. Data related to Figs 10–12.

(MAT)

S6 Fig. 3D PMMA phantom. Data related to Fig 13.

(MAT)
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