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Abstract

The human leukocyte antigen (HLA) gene complex, one of the most diverse gene com-

plexes found in the human genome, largely dictates how our immune systems recognize

pathogens. Specifically, HLA genetic variability has been linked to vaccine effectiveness in

humans and it has likely played some role in the shortcomings of the numerous human vac-

cines that have failed clinical trials. This variability is largely impossible to evaluate in animal

models, however, as their immune systems generally 1) lack the diversity of the HLA com-

plex and/or 2) express major histocompatibility complex (MHC) receptors that differ in speci-

ficity when compared to human MHC. In order to effectively engage the majority of human

MHC receptors during vaccine design, here, we describe the use of HLA population fre-

quency data from the USA and MHC epitope prediction software to facilitate the in silico min-

ing of universal helper T cell epitopes and the subsequent design of a universal human

immunogen using these predictions. This research highlights a novel approach to using in

silico prediction software and data processing to direct vaccine development efforts.

Introduction

The human leucocyte antigen (HLA) system, located on the short arm of chromosome 6, con-

tains many genes that are essential to the initiation and maintenance of our immune systems.

Specifically, the genes that code for major histocompatibility complex (MHC) class I molecules

(HLA-A, HLA-B, and HLA-C) and MHC class II molecules (HLA-DP, HLA-DM, HLA-DO,

HLA-DQ, and HLA-DR) reside here. These molecules activate cytotoxic T cells (TC cells, via

MHC I pathway) or helper T cells (TH cells, via MHC II pathway) when abnormal intracellular

or extracellular polypeptide species, respectively, are encountered and presented on the surface

of any nucleated cell (in the case of MHC class I pathway) or specifically on antigen presenting

cells (APCs, in the case of MHC class II pathway). In fact, the majority of adaptive immune

system effector functions must be initiated by an MHC pathway at some point in time [1].

It is easy to understand how the evolutionary pressures placed on these pathways have cul-

minated in one of the most diverse gene systems in the human genome. While this grand level

of diversity is extremely beneficial when considering species survival, it becomes less beneficial
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on an individual basis when designing and implementing immunotherapies [2]. HLA allele

variation has been implicated in malignancies, infections, and immunotherapeutic outcomes

in many independent studies [3]. Some examples include the association of a specific allele

with the occurrence of cancer, the association of HLA-DRB1 heterozygosity with better out-

comes in viral infections, and the association of HLA class I homozygosity with checkpoint

inhibitor inefficacy in cancer therapies [4–7]. Particularly in the case of vaccines, significant

associations between HLA haplotype and vaccine outcome have been observed [8–11]. Causa-

tion in these studies, however, has not been established and it is important to note that other

genes have also been linked to vaccine inefficacy [12]. Nonetheless, a new age of vaccine design

has been born around the targeting of MHC molecules with epitopes that have been derived

either experimentally or computationally using models based on pooled in vivo and in vitro
data [13,14].

In any vaccine, it is possible that an antigen (or antigens) will lack epitopes specific for host

MHC receptors. Without the loading of processed epitope onto MHC and the subsequent pre-

sentation of the peptide-MHC complex to T cell receptors (TCRs), there can be no activation

of TH and/or TC cells. Consequently, the adaptive immune response to a vaccine in such situa-

tions will be severely impaired [15]. However, as the knowledgebase concerning these MHC

activation systems continues to expand and mature, it is becoming more and more feasible

and prudent to use all of the information we have to insure (in the case of vaccines) or prevent

(in the case of biologics) the activation of T cells and the resultant adaptive immune response.

Many converging factors support the implementation of such an approach in the field of

vaccinology. First, considerable variability in subjects’ response to a particular vaccine is a

common occurrence and has been a deciding factor in the ultimate failure of some clinical tri-

als [16–23]. The inevitability of acquiring variable outcomes when dealing with variable sys-

tems, however, can possibly be avoided by applying a more personalized approach to

vaccination, particularly one that targets a large number of MHC molecules. Second, interspe-

cies differences in HLA genotype and MHC specificity present as serious confounding ele-

ments when attempting to use animal studies as corollaries to success in future clinical trials

[24]. Consequently, considering the MHC epitope content of antigen(s) prior to human stud-

ies may provide more insight into the likely outcome of clinical trials. Third, ample amounts

of easily accessible software and data now exist online that can support an in silico approach to

vaccine design. In fact, others have already begun the modulation of antigen immunogenicity

based on these resources [25–27]. Last, there is an ever-present need to minimize the use of in
vivo studies and adopt alternative vaccine quantitative methods. While animal studies are criti-

cal in evaluating the efficacy of a vaccine, in silico design and/or evaluation of vaccine candi-

dates prior to human studies provides a plausible and acceptable alternative to in vivo testing.

In this study, common immunogen primary sequences were mined for HLA-DR and

HLA-DQ epitopes using HLA population frequency data and MHC class II epitope prediction

software. Other important human isotypes, such as the HLA-DP isotype, that code for MHC

class II molecules were not included in this study due to lack of available epitope prediction

methods and/or lack of sufficient population frequency data [13,28]. Murine IAd and IEd iso-

types were analyzed in order to make inter-method and inter-species prediction output com-

parisons. MHC class II epitopes were chosen for analysis due to their role as facilitators of

humoral immune responses via the activation of TH cells. This activation is crucial to antibody

production and as such plays an important role in the success of vaccines that are dependent

on antibody effector functions, such as vaccines against drugs of abuse [29,30]. Using the out-

put from these predictions, ‘universal’ chimeric antigens (UCAs) were designed that can be

used to target mouse models with IAd and/or IEd isotype, and using HLA-DQB1 and

HLA-DRB1 allele frequency data, 99% of the US population based on HLA-DQ and HLA-DR

PLOS ONE Computational mining of MHC class II epitopes

PLOS ONE | https://doi.org/10.1371/journal.pone.0265644 March 29, 2022 2 / 17

User Workshop. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0265644


isotypes. To the best of our knowledge, this represents the first to attempt to design UCAs

using HLA population frequencies and MHC class II epitope predictions. By making slight

modifications to the approach, these UCAs could also be used to target certain demographics

and/or individual subjects.

Materials and methods

HLA-DQB1 and HLA-DRB1 frequency analysis

Human HLA-DQB1 and HLA-DRB1 allele frequency data with race/ethnic associations were

acquired from the National Bone Marrow Transplant (NBMW) / Be The Match bioinformatics

database [28]. Data were sorted based on overall population frequency, and the most common

beta alleles accounting for at least 99% of the database test population were selected as targets

for MHC class II epitope predictions. Since only population frequency data for beta chains

were available, alpha-beta pairing was done post-hoc and did not represent population fre-

quencies for complete MHC class II molecules (which consist of one alpha chain and one beta

chain and can be subject to various levels of genetic linkage).

Source immunogen selection

The most common immunogens used in vaccine formulations were identified from a thor-

ough literature review. Some of these have been approved for use in human vaccines by the

FDA, such as diphtheria toxoid (DT), tetanus toxoid (TT), and the HPV 16 L1 protein (HPV).

Others, such as keyhole limpet hemocyanin 1 and keyhole limpet hemocyanin 2 (KLH1 and

KLH2) and bovine serum albumin (BSA) are typically only used in proof-of-concept, animal

studies. Human serum albumin (HSA) and mouse serum albumin (MSA) were selected as

benchmark proteins for the analysis of the other selected immunogens. In total, the 15 most

common immunogens encountered during the literature review were chosen as MHC class II

epitope sources. In addition to the six immunogens already mentioned, the additional nine

were the Q-beta capsid protein (QB), Pseudomonas aeruginosa exoprotein A (EPA), cholera

toxin subunit B (CTB), heat labile enterotoxin B (LTB), outer membrane protein C (OMPC),

Influenza A hemagglutinin (HA), hepatitis B core antigen (HBC), MS2 capsid protein (MS2),

and hepatitis C core antigen (HCC). Sequences were obtained from the UniProt website [31].

A summary of these immunogens can be found in Table 1.

MHC class II epitope predictions

MHC class II epitope predictions were performed using software downloaded from the

Immune Epitope Database and Analysis Resource (IEDB.org, v2.22.1) [13]. Specifically, pre-

dictions were run for each immunogen-isotype pairing using neural network-based NetMH-

CIIPan 3.2 method (DQ, DR, and IAd predictions) and the stabilization matrix alignment-

based SMM-align method (IAd and IEd predictions) [32,33]. Both of these prediction methods

have been shown to have high accuracy in the past [34,35]. IAd and IEd predictions were

included in the analysis in order to 1) compare between prediction methods (NetMHCIIPan

vs. SMM-align), 2) compare between species (human and mouse), and 3) set up for in vivo
evaluation of this immunogen design approach. An additional parameter, peptide length, was

specified as 15–20 amino acids for the predictions. This range of epitope lengths (which falls

within the 9–23 residue range of lengths defined for most MHC class II epitopes) was chosen

in order to introduce diversity into the prediction, thus helping to eliminate any output bias

that might be due to input of a single epitope length [36].
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Epitope scoring and anchor residue identification

Epitope scoring was achieved by completing an unweighted summation (no core residue bias)

of transformed percentile rankings (100-x) for each amino acid within each predicted epitope.

The final sums were normalized by dividing by the average residue score for the endogenous,

HSA protein, and an ‘immunogenicity threshold’ was established at one for these normalized

values. Alternately, MSA was used as the benchmark when establishing immunogenicity

thresholds for the IAd and IEd predictions. Anchor residues, which are defined as the amino

acids contained within an epitope that have a high affinity for cognate MHC class II molecule

relative to their neighbors, were identified in a similar fashion [35]. The only differences

between the two scoring mechanisms were that a weighted summation (four to one core resi-

due to non-core residue weighting) and an ‘anchor residue’ threshold value of four were used

for anchor residue identification purposes. Both the ‘unweighted, normalized, and cumulative’

(UNC) and ‘weighted, normalized, and cumulative’ (WNC) methods resulted in proteins

being assessed based on the 13 HLA-DQB1 and 40 HLA-DRB1 alleles specified in the fre-

quency analysis, even though predictions for the HLA-DQ epitopes also required the specifica-

tion of an alpha chain. As a result, predictions made for HLA-DQ epitopes may not have

targeted the most frequent alpha-beta pairs, though 99% of the sample population should have

been targeted nonetheless. The mean and standard deviation for summed residue immunoge-

nicity values were calculated for each protein using UNC and WNC results, respectively. These

values were then plotted against residue number. All prediction output analyses were per-

formed and all plots were generated using Matlab (ver. R2019a).

Unweighted epitope score analyses, ranking, and excision

UNC outputs were subjected to a moving mean analysis (MMA, n = 13) of modified prediction

values that incorporated both the mean (positive, indicated likely epitope region) and the stan-

dard deviation (negative, indicated intra-isotype discrepancies between prediction outputs) of

the residue scores. The rational for the prediction value modification, which was achieved by

Table 1. Common immunogen information.

Protein Abbr. Residues UniProt Source

Cholera toxin subunit B CTB 104 Q55DA8

Heat labile enterotoxin B LTB 124 A05XG5

MS2 capsid protein MS2 130 P03612

Q-beta capsin protein Qb 133 P03615

Hepatitis C core antigen HBcAg 150 Q68842

Hepatitis B core antigen HBcAg 185 P03148

Influenza A hemogglutinin HA 328 P04664

Outer membrane protein C OMPC 367 C6K7N1

Human papillomavirus 16 L1 HPV16L1 505 A0A161GUX4

Diphtheria toxin DT 560 Q6NK15

Bovine serum albumin BSA 607 P02769

Murine serum albumin MSA 608 P07724

Human serum albumin HAS 609 P02768

Pseudomonas aeruginosa exoprotein A EPA 638 P11439

Tetanus toxin TT 1315 P04958

Keyhole limpet hemocyanin 1 KLH1 3125 Q6KC56

Keyhole limpet hemocyanin 2 KLH2 3421 Q6KC55

https://doi.org/10.1371/journal.pone.0265644.t001
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subtracting 3x the standard deviation from the mean for each residue, was that regions within

the analyzed immunogens most likely to display both immunogenicity AND promiscuity as

MHC II epitopes were of most interest. Local maximums were identified within UNC MMAs

and excised with 12 flanking residues on each side. These 25 amino acids long ‘epitope candi-

dates’ were then ranked based on the summation of the scores of their composing residues.

Additional data was also recorded, such as the epicenter residue location, the amino acid

sequence, the local maximum value, and the number(s) and location(s) of the anchor residues

present within the excised epitope candidate. Epitope scoring and excision was performed

using Matlab (ver. R2019a) and ranking was performed using Microsoft Excel (ver. 1808).

Conception and analysis of isotype-specific, universal immunogens

Chimeric proteins designed to maximize immunogenicity for HLA-DR, HLA-DQ, IAd, and

IEd isotypes were constructed by concatenating the twenty highest scoring epitopes from post-

prediction UNC MMAs with interspacing di-glycine-lysine linkers (for hapten attachment,

KGGKGGK) flanked by cathepsin S-sensitive sequences (to facilitate processing by APCs,

GGVVRGG) [37,38]. It is important to note that the inclusion of cathepsin S-sensitive sequences

should promote site-specific proteolysis, though the extent of antigenic processing is largely

beyond the control of initial immunogen design due to the presence of multiple protease species

(all characterized by varying levels of specificity and activity) in lysosomal compartments

[39,40]. Host-derived epitopes and those that lacked predicted anchor residues, however, were

removed from the ranking pool. Using a similar approach, non-antigenic, chimeric proteins

(UCnAs) were engineered by replacing the highest scoring epitopes with those that had the low-

est UNC MMA scores. For comparative purposes, a random protein sequence that was the same

length as the antigenic and non-antigenic chimeric proteins was also generated in Matlab and

analyzed in parallel with the UCAs and UCnAs. All three of these proteins (the antigenic, non-

antigenic, and random) were then processed using the epitope prediction, scoring, and analysis

methods previously described. Results from this step were used to generate line charts based on

means (and standard deviations, if available) for all UCAs, UCnAs, and the random protein and

heat maps for final HLA-DR and HLA-DQ isotype-specific outputs in Matlab (ver. R2019a).

Comparing prediction methods and outputs

Differences between method/isotype-specific prediction outputs were quantified using three

methods. The first approach involved taking the difference between mean residue scores (aver-

aged over all of the isoforms within the isotype) and then subsequently finding the overall

mean and standard deviation of these values. This method was performed for all method/iso-

type combinations. The second method involved taking the absolute value of the difference

between mean residue scores (averaged over all of the isoforms within the isotype) and then

subsequently finding the overall mean and standard deviation of these values. This method was

also performed for all method/isotype combinations. The third method involved finding the

overall mean and standard deviation for all normalized, isotype-specific residues scores. Statis-

tical comparisons were made, when possible, in SAS JMP Pro 14 using Tukey’s HSD method.

A schematic overview of the methodologies followed here can be found in Fig 1A and 1B.

Results

Input data collection and setup

Common immunogens were successfully identified in the literature and their sequences were

obtained from the UniProt website. Additionally, population frequency data for HLA-DQB1
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and HLA-DRB1 alleles were sorted and target alleles were successfully identified. These fre-

quencies, both cumulative and for each race/ethnicity, are shown in Fig 2A and 2B for

HLA-DQB1 and HLA-DRB1 alleles, respectively. A tabulated version of this data can also be

found in S1 Table. In total, the top 13 HLA-DQB1 alleles were necessary in order to achieve

99% total population coverage. With 28 possible HLA-DQA1 chains, the total number of

MHC class II isoforms that were needed for the HLA-DQ prediction input was therefore 364.

On the other hand, the top 40 HLA-DRB1 alleles were necessary in order to achieve 99% total

population coverage. With only one possible HLA-DRA1 chain, the total number of MHC

class II isoforms that were needed for the HLA-DR prediction input remained at 40. Since IAd

and IEd are single isoforms that represent complete HLA isotypes, their epitope prediction

runs only required a single input.

Fig 1. Schematic overview of methodology. (A) The overall study methodology and (B) the epitope scoring

methodology. In the epitope scoring methodology, excerpts of NetMHCIIPan prediction output for the HLA-DQ/DT

isotype/immunogen pairing are provided for reference. Binning of residue scores (calculated using epitope

predictions) was achieved via iteration through epitope residues and epitopes within an isoform. This was the first step

in both the UNC and WNC analysis and was performed for each isoform. Non-normalized residue scores (UnNC and

WnNC) were then calculated by summing the score components of each residue bin. Normalized scores were

calculated by dividing the non-normalized values by the average non-normalized residue scores for an endogenous

immunogen (either HSA or MSA, depending upon the prediction isotype). UNC MMA scores were calculated by

taking the mean of normalized residue scores from all isoforms within an isotype, subtracting three standard devi-

ations, and applying a moving average (n = 13).

https://doi.org/10.1371/journal.pone.0265644.g001
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MHC class II epitope predictions, scoring, and analysis

In total, 6,919 epitope predictions were necessary in order to achieve target population cover-

age. The breakdown for this total was 6,188 HLA-DQ predictions (364x17), 680 HLA-DR pre-

dictions (40x17), and 17 IAd (NetMHCIIPan), IAd (SMM), and IEd predictions each. All of

these epitope predictions were completed successfully, though there were sizeable variations in

prediction run times due to differences in protein length and isoform input requirements.

Epitope scoring (using UNC prediction outcomes) and anchor residue identification (using

WNC prediction outcomes) were also completed successfully. Line plots (and dot plots) of the

unweighted (and weighted) results from this step for each immunogen/isotype pairing can be

found in S1 and S2 Figs. Plots that combined the UNC results of all isotypes within a single

plot for each immunogen can be found in S3 Fig. An example of the prediction and analysis

outputs, using DT as the model immunogen, can be found in Fig 3. According to both raw

and processed prediction output, all of the immunogens analyzed contained at least one MHC

class II epitope. Additionally, the WNC analysis results revealed that each immunogen con-

tained multiple predicted anchor residues. Inter-species, inter-isotype, and inter-method dif-

ferences were all observed when comparing UNC and WNC outputs for each immunogen. A

summary of the prediction, scoring, and analysis results can be found in Table 2. Within the

table, ‘hits’ indicate the number of outputs generated by the prediction software and ‘epitopes’

indicate the number of protein regions determined to be immunogenic post-UNC processing.

As expected, MMA of the UNC results revealed discrepancies between HLA-DQ and

HLA-DR isotype-specific epitope predictions. There were also stretches within the target

immunogens’ primary sequence that were shown to have a considerable degree of intra-iso-

type (and sometimes even inter-isotype) promiscuity. For example, multiple regions of diph-

theria toxin were found to be highly promiscuous and as such were included in the isotype-

specific UCA design and analysis process. Among these, the highest rated HLA-DQ 25-mer

Fig 2. HLA population frequencies. (A) HLA-DQB1 and (B) HLA-DRB1 cumulative (line graphs with race/ethnicity

data) and individual allele (bar graphs) population frequency information is displayed here. Cumulative frequency

plots display summed frequencies of sequentially ordered HLA beta alleles (greatest to smallest for total population) vs.

the number of alleles included in the sum. Individual allele plots display HLA alleles vs. their respective overall

population frequency.

https://doi.org/10.1371/journal.pone.0265644.g002
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Fig 3. HLA-DQ/DT epitope analysis results. (A) DT epitope scoring (UNC) and anchor residue identification

(WNC) results for the HLA-DQ isotype. Scores, in line form (black, UNC) or dot form (red, WNC), are plotted against

residue number. For HLA-DQ (1st from left) and HLA-DR (2nd from left) results, the center line represents the mean

score and the shaded area represents ±1 standard deviation. For IAd NetMHC (3rd from left), IAd SMM (4th from

left), and IEd SMM (5th from left) results, lines represent the mean score. (B) DT UNC results for all isotypes are

plotted together here for easier comparison. Scores are plotted in line form against residue number. For HLA-DQ and

HLA-DR results, the shaded area represents the mean score ±1 standard deviation. For IAd NetMHC, IAd SMM, and

IEd SMM results, lines represent the mean score. In both parts, shaded areas representing standard deviation could not

be incorporated with the IAd and IEd results due to lack of diversity within the isotypes (these plots summarize a single

immunogen/isoform prediction run). UNC, WNC, and combined results for other isotype/immunogen combinations

can be found in Supporting Information.

https://doi.org/10.1371/journal.pone.0265644.g003

Table 2. Overview of prediction outcomes.

Protein Residues DR

Hits

DR

Epitopes

DQ Hits DQ

Epitopes

IAd(Net)

Hits

IAd(Net)

Epitopes

IAd(SMM)

Hits

IAd(SMM)

Epitopes

IEd(SMM)

Hits

IEd(SMM)

Epitopes

Cholera toxin subunit B 104 21000 2 191100 3 525 2 525 3 525 2

Heat labile enterotoxin

B

124 25800 3 234780 3 645 3 645 3 645 2

MS2 capsid protein 130 27240 3 247884 2 681 2 681 2 681 3

Q-beta capsin protein 133 27960 3 254436 3 699 2 699 2 699 2

Hepatitis C core antigen 150 32040 3 291564 4 801 3 801 3 801 2

Hepatitis B core antigen 185 40440 4 368004 3 801 3 1011 4 1011 5

Influenza A

hemogglutinin

328 74760 8 680316 7 1869 7 1869 7 1869 8

Outer membrane

protein C

367 84120 9 765492 8 2103 8 2103 9 2103 9

Human papillomavirus

16 L1

505 117240 12 1066884 11 2931 13 2931 12 2931 9

Diphtheria toxin 560 130440 15 1187004 16 3261 13 3261 15 3261 12

Bovine serum albumin 607 141720 13 1289652 16 3543 14 3543 11 3543 14

Murine serum albumin 608 141960 13 1291836 18 3549 14 3549 13 3549 13

Human serum albumin 609 142200 13 1294020 15 3555 14 3555 11 3555 15

Pseudomonas

aeruginosa exoprotein A

638 149160 18 1357356 17 3729 17 3729 16 3729 15

Tetanus toxin 1315 311640 31 2835924 33 7791 29 7791 28 7791 27

Keyhole limpet

hemocyanin 1

3125 746040 77 6788964 78 18651 73 18651 67 18651 67

Keyhole limpet

hemocyanin 2

3421 817080 82 7435428 96 20427 85 20427 73 20427 79

https://doi.org/10.1371/journal.pone.0265644.t002
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epitope was found centered at residue 366. An example of the final epitope identification and

excision results (those for the HLA-DQ isotype) can be found in Table 3. All other results (i.e.

those for the HLA-DR, IAd NetMHC, IAd SMM, and IEd SMM isotypes/methods) can be

found in S2 Table.

Isotype-specific UCA design and analysis results

The top twenty epitopes identified for each HLA isotype were successfully used to generate an

isotype-specific UCA. Isotype-specific universal chimeric non-antigens (UCnAs) were also

successfully generated for each HLA isotype using the twenty least immunogenic 25-mer

amino acid stretches found in the UNC MMA results. Analysis of the UNC and WNC results

for the UCAs and UnCAs, in addition to the random sequence protein of equal size, indicated

that promising epitopes (when considering predicted immunogenicity) had been successfully

identified within each immunogen for all of the isotypes included in the study. Finally, analysis

of the isotype-specific HLA-DQ and HLA-DR UNC results using heat maps revealed consider-

able intra-isotype overlap between epitope predictions. The HLA-DQ and HLA-DR results

from these analyses can be found in Fig 4A and 4B, respectively. For the IAdNetMHC,

IAdSMM, and IEdSMM results, please refer to S4 Fig.

Inter-method comparisons

When residue scores for all isoforms within and isotypes/methods were averaged, differences

and comparisons between method/isotype-specific outputs were compared, and a difference

could not be detected between the DQB1 and IAd NetMHC outputs (p = 0.05). These results

can be seen in Fig 5A. General comparisons using the absolute value of the difference between

mean residue scores, however, indicated that all of the method/isotype-specific outputs yielded

different results on an individual residue basis. These results can be seen in Fig 5B. Interest-

ingly, the comparison between NetMHCIIpan and SMM-align methods (both were used to

predict epitopes for the IAd isotype) yielded sizably different results, indicating that, at least

when using the methodologies outlined here, the prediction outputs provided different results

on an individual residue basis. Additionally, general comparison between method/isotype resi-

due scores indicated that NetMHC and SMM prediction methods produced different results

in relation to endogenous benchmark, with NetMHC results falling above the benchmark and

SMM results falling below. These results can be found in Fig 5C.

Discussion

The goal of this project was to create a chimeric, human immunogen based on the concatena-

tion of conjugation sites, cathepsin cleavage sites, and computationally mined MHC class II

epitopes that were predicted to 1) be highly immunogenic, 2) be highly promiscuous, and 3)

contain at least one anchor residue. If enough of these putative epitopes were included within

the primary structure of an engineered immunogen, it is likely that the immunogen would

elicit a sizeable adaptive immune response in the majority of those inoculated. To the best of

our knowledge, this strategy for potentiating conjugate vaccine immunogenicity has not been

previously explored.

Any MHC epitope-based vaccine designed for human use would be impossible to satisfac-

torily evaluate outside of clinical trials (even when considering the plethora of humanized

mouse models available for immunological research) [41,42]. As such, mouse HLA isotypes

IAd and IEd were targeted within the study as well. In this way, the approach outlined for the

development of a universal human immunogen could be evaluated in mice first. The develop-

ment of an MHC epitope-rich, mouse immunogen and its pre-clinical evaluation would

PLOS ONE Computational mining of MHC class II epitopes

PLOS ONE | https://doi.org/10.1371/journal.pone.0265644 March 29, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0265644


Table 3. HLA-DQ epitope ranking and excision results.

Protein Epicenter Residues Peak Score Cummulative Score Anchor(s) Anchor Location(s)

DT 366 VAQSIALSSLMVAQAIPLVGELVDI 1.244903473 30.00208733 1 363

KLH2 3116 LWLGGTETYSMSSLAFSAYDPVFMI 1.266599245 29.66917927 2 3113;3128

KLH1 2126 LKYALSSLQADTSADGFAAIASFHG 1.203760532 28.79987579 3 2116;2127;2133

TT 683 VLLLEYIPEITLPVIAALSIAESST 1.18984899 28.47710714 1 685

KLH2 3230 LRNQPRVFAGFVLSGIYTSANVKIY 1.155509004 28.26449885 1 3228

EPA 470 GYVFVGYHGTFLEAAQSIVFGGVRA 1.195748733 28.07205997 1 464

KLH2 3030 IPYWDWTKSMIALPAFFADSSNSNP 1.220294602 27.98888619 1 3024

KLH1 1714 ESMKADHSSDGFQAIASFHALPPLC 1.18117356 27.94054821 2 1713;1716

HA 113 DVPDYASLRSLVASSGTLEFITEGF 1.178072602 27.89447046 3 105;112;125

KLH1 752 EDRIYAGFLLAGIRTSANVDIFIKT 1.194509058 27.84109025 2 747;752

KLH2 330 RAAKERTFASFILSGFGGSANVVVY 1.1450165 27.76877714 1 341

KLH1 1995 QEHSRVFAGFLLEGFGTSATVDFQV 1.194575351 27.7396872 2 1983;1994

EPA 496 SQDLDAIWRGFYIAGDPALAYGYAQ 1.157977165 27.72034364 2 491;502

KLH2 2823 KEERTFAAFLLHGFGASADVSFDVC 1.19423916 27.50198956 2 2813;2821

MSA 243 GERAFKAWAVARLSQTFPNADFAEI 1.191126486 27.48352048 1 232

EPA 182 LARDATFFVRAHESNEMQPTLAISH 1.119360222 27.44939067 2 175;192

KLH1 1038 YEIAHNYIHALVGGAQPYGMASLRY 1.140683141 27.35522704 3 1028;1035;1048

TT 268 KQEIYMQHTYPISAEELFTFGGQDA 1.133009845 27.30085116 2 264;272

OMPC 285 WANKAQNFEAVAQYQFDFGLRPSLA 1.148137149 27.2273307 1 289

DT 159 EFIKRFGDGASRVVLSLPFAEGSSS 1.130103304 27.11920376 3 154;159;166

DT 69 QKGIQKPKSGTQGNYDDDWKGFYST 0.750778926 18.86486125 0 -

KLH2 3285 FKYDITEVANRLNMHHDDTFNFRLE 0.710019791 18.6720013 0 -

MSA 275 TKVNKECCHGDLLECADDRAELAKY 0.675856369 18.60844917 0 -

OMPC 226 IGGAISSSKRTDAQNTAAYIGNGDR 0.702058163 18.58162638 0 -

MSA 127 CTKQEPERNECFLQHKDDNPSLPPF 0.72994394 18.41383759 0 -

KLH2 2050 QFDRLYKYDITKTLKDMKLRYDDTF 0.656917303 18.34949986 0 -

QB 74 NYKVQVKIQNPTACTANGSCDPSVT 0.676758453 18.24156848 0 -

TT 1172 GKLNIYYRRLYNGLKFIIKRYTPNN 0.663503833 18.18220649 0 -

BSA 127 CEKQEPERNECFLSHKDDSPDLPKL 0.709074042 17.90439636 0 -

BSA 329 EKDAIPENLPPLTADFAEDKDVCKN 0.682086932 17.8524391 0 -

TT 331 IDSYKQIYQQKYQFDKDSNGQYIVN 0.69292518 17.80870386 0 -

HA 77 TLIDALLGDPHCDVFQDETWDLFVE 0.651700228 17.75576302 0 -

TT 487 LTFIAEKNSFSEEPFQDEIVSYNTK 0.682363508 17.73314233 0 -

HPV 173 CKPPIGEHWGKGSPCTNVAVNPGDC 0.654750628 17.56775931 0 -

HCV 44 YLLPRRGPRLGVRATRKTSERSQPR 0.6604623 17.24324764 0 -

HSA 280 ECCHGDLLECADDRADLAKYICENQ 0.637717696 17.00537164 0 -

HSA 408 KVFDEFKPLVEEPQNLIKQNCELFE 0.632871202 16.65259624 0 -

KLH1 262 DCAQELLHQKMEPFSWEDNDIPLTN 0.631582056 16.4462453 0 -

BSA 280 CCHGDLLECADDRADLAKYICDNQD 0.619778655 16.39374163 0 -

KLH2 1217 WRYDRVYKYEITQQLHDLDLHVGDN 0.602212809 15.85052422 0 -

Epicenter—location (residue number) of epitope center in relation to parent protein sequence.

Peak score—highest residue UNC score found within the indicated epitope.

Cummulative score—the summation of UNC scores for all the residues found within the indicated epitope.

Anchor—a residue that achieved a WNC score of >4; indicates a residue with particular importance in MHC interactions.

Anchor locations—location (residue number) of the anchor residues in relation to the parent protein sequence.

https://doi.org/10.1371/journal.pone.0265644.t003
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effectively allow the assessment of epitope prediction approaches to targeted conjugate vaccine

development. Crucially, however, the isogenic nature of common laboratory mouse strains

(both wild-type and humanized) does not allow for the assessment of targeting genetically

diverse HLA populations with universal epitopes. For this purpose, human studies, or numer-

ous binding assays, would still be necessary.

Fig 4. Design and assessment of DQ- and DR-specific UCAs and UCnAs. The plots and heat maps shown here

summarize epitope scores for (A) HLA-DQ and (B) HLA-DR isotypes. Top plots display scores for UCAs (1st from

left), UCnAs (2nd from left), and a random protein of the same length (3rd from left), in line form (black, UNC) or dot

form (red, WNC), plotted against residue number. Center lines represent mean scores and shaded areas represent ±1

standard deviation. Bottom heat maps display isoform vs. residue number for UCAs (1st from left), UCnAs (2nd from

left), and a random protein of the same length (3rd from left). Lighter regions and darker regions within the heat map

represent lower and higher immunogenicity scores, respectively.

https://doi.org/10.1371/journal.pone.0265644.g004

Fig 5. Comparing between prediction methods. (A) Direct comparison of differences in individual residue scores

(when necessary, averaged over all isoforms within an isotype) between isotypes/methods in boxplot format (first

indicated isotype/method minus second indicated isotype/method). (B) Comparison of the absolute value of the

differences in individual residue scores (when necessary, averaged over all isoforms within an isotype) between

isotypes/methods in boxplot format. (C) Comparison of residue scores of isotypes/methods in boxplot format.

https://doi.org/10.1371/journal.pone.0265644.g005
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It is important to note that the origin of the sample population used to generate the HLA

frequency data was limited to the United States of America (USA). This lack of geographical

diversity, in addition to the over-representation of Caucasians within the dataset, is certainly

not ideal. Race/ethnicity was accounted for within the data, however, so inferences about vac-

cine efficacy outside of the USA can be made. The lowest HLA-DQ allele set coverage exceeded

95% (Asian / Pacific Islander) and the lowest HLA-DR allele set coverage exceeded 96% (Asian

/ Pacific Islander). These numbers suggest that the HLA-DQ and HLA-DR vaccine candidates

proposed in this study would also be effective in non-USA populations.

Common immunogens were chosen due to their success and safety in prior vaccine formu-

lations. The success suggested that ample numbers of MHC class II epitopes were present in

their primary structures and that the epitope prediction step would likely also be a success. It

was possible that these immunogens lacked sufficiently immunogenic and promiscuous epi-

topes to create UCAs. This issue could have been overcome with the simple addition of more

immunogens to the mining process. An approach that used random proteins would also have

worked, but it would have required more computational power and time in order to yield the

same number of high-potential, predicted epitope candidates. There was some concern regard-

ing whether the use of epitopes specific for existing memory T cell pools would culminate in

potentiation or regulation of immune response [43]. In the event that issues such as regulation

are encountered during in vivo vaccine assessment, however, it is important to note that novel

epitopes mined from randomly generated proteins could always be employed in place of com-

mon immunogen-derived epitopes.

The output data files from many of the HLA-DQ and HLA-DR predictions were immense

and as such they were not reviewed in full prior to processing. Review of the first 200 lines of

output for all prediction assignments, however, indicated acceptable data integrity. It was

therefore assumed that any unreviewed output data would have similar, acceptable integrity.

There were many additional caveats associated with the epitope and anchor residue scoring

systems. First, overlapping epitope predictions (even those that had the same core residues)

were interpreted as a positive outcome and should be incorporated in the final epitope analysis

process. This interpretation is contrary to some of the recommendations received from IEDB

staff that supported collecting only the top prediction output established for each unique core.

Second, it was hypothesized that core residues that appeared more often within the prediction

output would play a more sizeable role in epitope-MHC interaction. As such, codes were gen-

erated that could elucidate the presence of potential anchor residues (refer to the WNC analy-

sis). While MHC anchor residues are an established phenomenon, there were no previous

studies that could validate their identification [44]. Third, the chimeric antigen validation sys-

tem presented here used nearly identical methodologies to that of the epitope ranking and

anchor residue identification systems. As such, further epitope validation (both experimental

and computational) should be performed in the future in order to better evaluate the immuno-

genicity and promiscuity assessments established using these methods.

Many interesting observations were made when analyzing the prediction outputs. UNC

results indicated that most immunogens already contained regions with high immunogenicity

scores. Further analysis of the HLA-DQ and HLA-DR UNC results, however, revealed that the

majority of these regions had highly variable immunogenicity scores across different isotypes.

This result indicated that, while all of the immunogens would most likely elicit a sizeable

immune response in some people, responses would be variable, and variable vaccine responses

are generally poor corollaries for success. In fact, as a side note, it would be interesting to see if

these discrepancies correlated with past conjugate vaccine clinical failures, such as the Phase

III trial for NicVAX that used the EPA immunogen, the Phase II trial for AngQb that used the

QB immunogen, or the Phase II trial for TA-NIC that used the CTB immunogen [23,45].
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When compared, the WNC analysis did not appear to completely coincide with the UNC

analysis. That is, some anchor residues seemed to appear in a random manner throughout the

length of each protein. This indicated that, while important, the anchor residues were not the

deciding factor for epitope identification. Interestingly, some of the most immunogenic epi-

topes predicted for the IAd and IEd isotypes were from MSA. This result could indicate that

epitope predictions include motifs that are cognate for regulatory T cells (TReg cells). If this is

in fact the case, more work will need to be done in the future in order to accommodate our

prediction assessments with a means of discriminating between epitopes cognate for TH cells

and TReg cells.

Analysis of the UNC and WNC results for the UCAs and UnCAs, in addition to the ran-

dom sequence protein of equal size, indicated that promising epitopes (when considering pre-

dicted immunogenicity and promiscuity) had been successfully identified within each

immunogen for all of the isotypes included in this study. It is important to note, however, that

the serial concatenation of ranked polypeptides used in this study to generate UCAs and

UnCAs may need re-evaluation in the future. Immune responses can be influenced by all levels

of immunogen structure (primary, secondary, tertiary, and quaternary). It is possible that the

linear organization of the epitopes and linkers proposed in this study constitutes or promotes

a structural configuration that is unsafe or attenuates processing by antigen presenting cells

(15). If animal studies or early clinical studies indicate inefficacy and/or high toxicity, rear-

rangement of the epitopes in the UCA would definitely be warranted.

The comparison of top scoring epitopes and general comparisons between prediction

methods were able to identify similarities and discrepancies between various sub-groups.

Comparison of NetMHCIIPan and SMM-align methods when considering IAd isotype predic-

tions revealed differences on an individual residue basis and discrepancies between top-ranked

epitopes. As such, any strategy for in silico vaccine design is recommended to incorporate pre-

dicted epitopes from various methods, if available. The inter-species differences observed

when comparing both individual residue scores and top-ranking epitopes illuminate the inad-

equacy of using animal models to evaluate epitope-based vaccines designed specifically for

humans. Alternatively, the inter-isotype similarities encountered in the UNC MMA may pres-

age difficulties in establishing specific isotype/epitope effects on immunogenicity if human

studies are ever conducted.

This paper describes the novel application of HLA population genetics and cumulative

assessment of predictions to the variable immunogenicity, which plagued many conjugate vac-

cines in the past. In the future, this approach to epitope identification could also be used for

more than just the development of a universal, chimeric immunogen. For example, the devel-

opment of demographic-specific carrier proteins, individually personalized carrier proteins,

and pathogen-specific, universal immunogens are all possible by using this method. In the

later application, careful consideration of structural conformation would be warranted. Carrier

proteins theoretically benefit from heterogeneous, higher-order structure (barring the event of

inefficient hapten conjugation), as structural diversity discourages the formation of antigenic

determinants that would compete with hapten. Any recombinant immunogen requiring self-

provision of antigenic determinants, however, would likely benefit from efforts to insure

homogeneous, higher-order structure that consistently displays the most relevant conforma-

tional epitopes.

Supporting information

S1 Fig. MHC epitope analysis results for immunogens/benchmarks 1–10. Epitope scoring

(UNC) and anchor residue identification (WNC) results for individual isotypes / prediction
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methods are presented side-by-side. Scores, in line form (UNC) or dot form (WNC), are plot-

ted against residue number. For HLA-DQ and HLA-DR results, the center line represents the

mean score and the shaded area represents ±1 standard deviation. For IAd NetMHC, IAd

SMM, and IEd SMM results, lines represent the mean score.

(PDF)

S2 Fig. MHC epitope analysis results for immunogens/benchmarks 11–17. Epitope scoring

(UNC) and anchor residue identification (WNC) results for individual isotypes / prediction

methods are presented together. Scores, in line form (UNC) or dot form (WNC), are plotted

against residue number. For HLA-DQ and HLA-DR results, the center line represents the

mean score and the shaded area represents ±1 standard deviation. For IAd NetMHC, IAd

SMM, and IEd SMM results, lines represent the mean score.

(PDF)

S3 Fig. Combined MHC epitope analysis results for all immunogens/benchmarks. UNC

results for all isotypes / prediction methods are plotted together for easier comparison. Scores

are plotted in line form against residue number. For HLA-DQ and HLA-DR results, the

shaded area represents the mean score ±1 standard deviation. For IAd NetMHC, IAd SMM,

and IEd SMM results, lines represent the mean score. Shaded areas representing standard

deviation could not be incorporated with the IAd and IEd results due to lack of isotype diver-

sity (these plots summarize a single immunogen / haplotype prediction run).

(PDF)

S4 Fig. Design and assessment of IAd- and IEd-specific UCAs and UCnAs. Plots display

scores for UCAs, UCnAs, and a random protein of the same length, in line form (UNC) or dot

form (WNC), plotted against residue number.

(PDF)

S5 Fig. UCA sequences (A) HLA-DQ, (B) HLA-DR, (C) IAd NetMHC, (D) IAd SMM, and

(E) IEd SMM predictions. Chimeric proteins designed to maximize immunogenicity for

HLA-DR and HLA-DQ isotypes and IAd and IEd haplotypes were constructed by concatenat-

ing the twenty highest scoring epitopes from post-prediction UNC MMAs with interspacing

di-glycine-lysine linkers (for hapten attachment, KGGKGGK) flanked by cathepsin S-sensitive

sequences.

(PDF)

S6 Fig. UCnA sequences from (A) HLA-DQ, (B) HLA-DR, (C) IAd NetMHC, (D) IAd

SMM, and (E) IEd SMM for UNC analyses. Chimeric proteins designed to minimize immu-

nogenicity for HLA-DR and HLA-DQ isotypes and IAd and IEd haplotypes were constructed

by concatenating the twenty lowest scoring epitopes from post-prediction UNC MMAs with

interspacing di-glycine-lysine linkers (for hapten attachment, KGGKGGK) flanked by cathep-

sin S-sensitive sequences.

(PDF)

S7 Fig. Sequence of the Matlab-generated, random protein that was used as a comparator

when assessing UCA and UCnA immunogenicity.

(PDF)

S1 Table. HLA population frequency data.

(PDF)
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S2 Table. Epitope ranking and excision results for HLA-DR, IAd (NetMHC), IAd (SMM),

and IEd (SMM) predictions.

(PDF)
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