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Joint DNA‑based disaster victim 
identification
Magnus D. Vigeland1* & Thore Egeland2

We address computational and statistical aspects of DNA-based identification of victims in the 
aftermath of disasters. Current methods and software for such identification typically consider each 
victim individually, leading to suboptimal power of identification and potential inconsistencies in the 
statistical summary of the evidence. We resolve these problems by performing joint identification of 
all victims, using the complete genetic data set. Individual identification probabilities, conditional 
on all available information, are derived from the joint solution in the form of posterior pairing 
probabilities. A closed formula is obtained for the a priori number of possible joint solutions to a given 
DVI problem. This number increases quickly with the number of victims and missing persons, posing 
computational challenges for brute force approaches. We address this complexity with a preparatory 
sequential step aiming to reduce the search space. The examples show that realistic cases are handled 
efficiently. User-friendly implementations of all methods are provided in the R package dvir, freely 
available on all platforms.

DNA-based disaster victim identification (DVI) is a rapidly developing field in forensic genetics, with important 
applications all around the world. Recent, high-profile cases include the after-math of the 1990-s Balkan conflicts1, 
drowned migrants in Italy2, the World Trade Center attack, USA3, Thailand tsunami 20044, and the search for 
missing grandchildren in Argentina5.

In a broader context, DVI involves a variety of data sources and experts from several branches of forensic 
science, including anthropology, odontology, pathology as well as genetics. The genetic data typically consists 
of post mortem (PM) DNA from victim samples and ante mortem (AM) DNA from relatives of the missing 
persons. Additional data like the sex and age is used if available. Extensive background and general guidelines 
for handling DVI problems are given in papers6–8. In this paper we restrict our attention to computational and 
statistical aspects of identification cases involving multiple victims, often called mass identifications in the lit-
erature. A simple example of such a case is shown in Fig. 1.

Current approaches to mass identification typically employ either a (i) one-to-one, (ii) PM-driven, or (iii) 
AM-driven search strategy9. The one-to-one approach simply amounts to comparing each PM profile to each AM 
reference, looking for evidence of a close relationship. This method is widely used, at least for an initial screen-
ing, since easy cases, like direct matches and parent-child, often can be reliably resolved in this way2,9. In more 
complex cases, however, the one-to-one strategy is not sufficient. For a trivial example, observe that this method 
cannot identify the missing person M1 in Fig. 1, who is not genetically related to any of the reference individuals.

The PM-driven and AM-driven approaches proceed sequentially, considering one victim (PM-driven) or one 
family (AM-driven) at the time. We concentrate on the PM-driven in the following. Briefly, the idea is to start 
with any victim V , and to calculate the likelihood ratio (LR) comparing V to each missing person M . The largest 
LR points to the most likely match for V , and a successful identification is declared if this largest LR exceeds a 
prescribed threshold. Also, if priors are specified the LRs can be converted to posterior probabilities10.

The above description glosses over several important points with potential impact on the output solutions. 
Detailed descriptions of two possible implementations of the PM-driven sequential approach are given in the 
Methods section.

While sequential methods may be useful in certain scenarios, they are not optimal from a statistical viewpoint 
and may lead to ambiguous results. The three approaches (i)–(iii) are all restricted, in the sense that they utilise 
only parts of the data in each step. A simple example of how this may cause missed identifications is given in 
Fig. 2, where we show that the missing person ( M1 ) cannot be identified unless the data are considered jointly 
(see “Results”). The take-home message is that the best match for one individual may obstruct the most likely 
overall solution.
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Another problem with restricted methods is that they may produce inconsistent results. For example, since 
conclusions are reached independently for each victim (or family), it may happen that a victim is classified as 
being the most likely member of two different families.

Our goal has been to present methods and implementations that provide consistent solutions to DVI prob-
lems, by considering all available data simultaneously. This is achieved by Algorithm 3 in the Methods section, 
which finds the most likely solution among all possible, while keeping the need for brute force calculations to 
a minimum.

Decision makers and the legal system often require independent conclusions for each missing person. In 
response to this, we provide formulas for posterior pairing probabilities for each victim - missing person pair.

To the best of our knowledge, no freely available software offer joint DVI computations. The restricted strate-
gies mentioned above are implemented in Familias11, but currently allow only one missing person in each family. 
Commercial software like Bonaparte12,13 and DNA View3 provide similar functionality, but precise details on the 
implementation are not publically available.

To rectify this we have developed the R package dvir, based on the ped suite ecosystem for pedigree analysis 
in R14. The data sets analysed in this paper are included as part of dvir, and further examples are given in the 
documentation. The source code is freely available from https://​github.​com/​thoree/​dvir.

Methods
The starting point of our investigations is a DVI situation involving s victim samples, hypothesised to belong 
to some or all of m missing persons (MPs). Identification is done by genetic matching against relatives of the 
missing persons, using a battery of forensic markers.

In our examples we assume all markers to be independent autosomal markers in Hardy–Weinberg Equi-
librium (HWE). However, it should be noted that the overall approach applies very generally; in fact the only 
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Figure 1.   A toy DVI problem. The PM data consists of 3 victim samples to be matched against 3 missing 
persons (red) belonging to two different families. The AM data contains profiles from the reference individuals 
R1 and R2 (blue), one from each family. Squares and circles represent males and females, respectively. The 
hatched individuals are typed with a single marker, with genotypes as shown.
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Figure 2.   A simple case where sequential approaches fail. Samples from three victims ( V1, V2, V3 ) are matched 
against three missing family members ( M1,M2,M3 ), using the grandmother R1 as reference. Genotypes for a 
single marker are shown.

https://github.com/thoree/dvir
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requirement is that likelihoods can be calculated. Some extensions are conceptually simple, like mutation model-
ling or X-chromosomal markers, while others are more challenging, as accommodating linkage disequilibrium. 
In our R package dvir, likelihoods calculations are internally handled with the pedprobr package, which is based 
on the Elston–Stewart algorithm and allows many of these generalisations(14, Chapter 5).

We proceed to describe the input data in a bit more detail, and introduce some important notation. 

PM data	� The post mortem (PM) samples are denoted V1, . . . , Vs . We assume throughout that these belong to 
different individuals. In practice, samples gathered from disaster victims often contain duplicates, 
requiring a preprocessing step in order to identify and merge these15. In our examples we also assume 
that the sex of each Vi is known, with sF females and sM males so that sF + sM = s . We note that this 
assumption is not vital to our methods, but helps to narrow the search space.

AM data	� The ante mortem (AM) data consist of one or more reference families, each containing at least one 
missing person (denoted M1,M2, . . . ,Mm ) and at least one genotyped reference member (denoted 
R1, R2, . . . ). Again we assume known sex of all family members. In particular, let mF and mM be the 
number of female and male missing persons, respectively, with mF +mM = m.

A possible solution, referred to as an assignment, to the DVI problem we are addressing, is a one-to-one cor-
respondence between a subset of V = {V1, . . . , Vs} and a subset of M = {M1, . . . ,Mm} , with the requirement 
that all identifications are sex consistent. For example, in Fig. 1, a consistent assignment is {V1 = M2,V3 = M3} . 
Alternatively, we may write this more compactly as a tuple (M2, ∗,M3) , whose i’th element is the match for Vi , 
or ‘ ∗ ‘ if the assignment does not include a match for Vi . In the case of Fig. 1 there are in total 14 assignments, as 
listed in the first three columns of Table 1.

Note that the empty assignment (∗, ∗, ∗) is a valid solution, referred to as the null model below.
The likelihood L(a) of an assignment a is defined as the probability

where the fixed parameters � include the reference pedigrees, marker allele frequencies and mutation models. To 
simplify the notation we write L0 for the likelihood of the empty assignment, i.e., corresponding to the hypothesis 
that all victims are unrelated to all the missing persons. Moreover, we define LRi,j = L(Vi = Mj)/L0 to be the 
likelihood ratio of the assignment {Vi = Mj} , giving rise to the pairwise LR matrix,

It should be noted that the likelihoods appearing in the definition of LRi,j involve the complete PM and AM 
datasets. However, simpler calculations are obtained by considering the reduced DVI problem (PM i  , AM j ), 
where PM i  is just Vi , and AM j consists of data from the relatives of Mj . Then it is straightforward to show that

In the simple case shown in Fig. 1, the matrix B can be computed by hand. Let us assume that the marker has 
10 alleles 1,2, …, 10, with equal frequencies p1 = · · · = p10 = 1/10 . We then have

L(a) = P(PM and AM data | a,�),

(1)

LRi,j =
P(PMi, AMj | Vi = Mj)

P(PMi, AMj | Vi unrelated to Mj)
.

Table 1.   The 14 possible assignments for the DVI problem in Fig. 1, ranked according to LR.

V1 V2 V3 Loglik LR Posterior

1 M1 M2 M3 − 16.12 250.00 0.72

2 M1 M2 * − 17.73 50.00 0.14

3 * M2 M3 − 18.42 25.00 0.07

4 M1 * M3 − 20.03 5.00 0.01

5 * M1 M3 − 20.03 5.00 0.01

6 * M2 * − 20.03 5.00 0.01

7 * * M3 − 20.03 5.00 0.01

8 M1 * * − 21.64 1.00 0.00

9 * M1 * − 21.64 1.00 0.00

10 * * * − 21.64 1.00 0.00

11 M2 M1 M3 − Inf 0.00 0.00

12 M2 M1 * − Inf 0.00 0.00

13 M2 * M3 − Inf 0.00 0.00

14 M2 * * − Inf 0.00 0.00
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For example, the element LR2,2 is the LR when V2 = M2 is tested against the hypothesis that V2 and M2 are 
unrelated. This gives LR = p1/(2p1p2) = 5 . Obviously, convincing LRs cannot be expected in this case, with 
only a single marker.

The zero elements of B correspond to sex-inconsistent pairings or exclusions. Furthermore, we see that the 
DNA data is uninformative for some of the pairings. The entries LR1,1 = LR2,1 = 1 result from the fact that 
M1 is not related to either of the reference individuals, and imply that he can never be identified unless M2 is 
identified first.

The number of assignments.  Let A be the set of all sex-consistent assignments for a given DVI problem. 
The total number of elements, n = |A | , is a good measure of the problem’s size, and may indicate whether a 
brute force approach is feasible. Consider first the situation where sex is not known neither for victims nor MPs. 
The total number of assignments is then

 The reasoning is as follows: For each k, there are 
(

s
k

)

 different subsets of k victims. Each of these can be assigned 

to 
(

m
k

)

 different subsets of the m missing persons. Finally, each assignment can be shuffled in k! ways.

When the sexes are known, formula (3) applies to females and males independently, and the total number 
becomes

Unsurprisingly, n increases rapidly with the number of victims and missing persons, but depends strongly 
on the distribution of sexes. To illustrate, Table 2 tabulates the number of assignments with 8 victims and 5 MPs, 
for all combinations of males/females. The total of 19081 assignments when all victims and MPs have the same 
sex, is considerably higher than in all other cases.

Sequential approaches.  Here we describe two natural implementations of the PM-driven search strategy. 
As alluded to in the introduction this sequential approach is suboptimal in several ways, but it may be the best 
option in very large-scale applications. The motivation for including these algorithms here is to expose and 
clarify implementational details, and to serve as reference for the novel methods described later.

Algorithm 1: sequential (without updates).  Input A DVI problem; a threshold T > 1.
Output A proposed solution to the DVI case in the form of an assignment a. (In case of ties, more than one 

assignment may result.)
Procedure 

	 (i)	 Compute the pairwise LR matrix B.

(2)

(3)
min(s,m)
∑

k=0

(

s

k

)(

m

k

)

k!.

(4)n = n(sF , sM ,mF ,mM) =


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�

k=0

�

sF

k

��

mF

k

�
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







min(sM ,mM )
�

k=0

�
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k

��

mM

k

�

k!


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Table 2.   The number of sex-consistent assignments in a DVI case with 5 victims and 8 MPs. The variables sF 
and mF denote the number of female victims and MPs, respectively.

mF

sF

0 1 2 3 4 5

0 19,081 3393 529 73 9 1

1 9276 3922 1074 228 40 6

2 4051 3135 1603 559 147 31

3 1546 2004 1768 1054 438 136

4 501 1045 1533 1533 1045 501

5 136 438 1054 1768 2004 1546

6 31 147 559 1603 3135 4051

7 6 40 228 1074 3922 9276

8 1 9 73 529 3393 19,081
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	 (ii)	 If all elements of B are below T, then stop. Otherwise, let LRi,j be the maximal element of B and store 
the identification Vi = Mj . If there are multiple maximal elements, branch off and proceed with one at 
a time.

	 (iii)	 Update B by deleting the row and column corresponding to LRi,j.
	 (iv)	 Repeat steps (ii) - (iii) until the procedure stops.

To illustrate Algorithm 1, consider our running example from Fig. 1, for which the pairwise LR matrix was given 
in (2). If T > 5 , no identifications are made. For any T ≤ 5 , the above algorithm identifies V2 = M2 and V3 = M3 
(both with LR = 5 ), after which the procedure stops. Hence the reported solution is (∗,M2,M3) . As remarked 
earlier, M1 cannot be identified with this approach.

The next algorithm is a refinement of Algorithm 1, with the crucial difference that the LR matrix is now 
recomputed in each step.

Algorithm 2: sequential (with updates).  Input A DVI problem; a threshold T > 1.
Output A proposed solution to the DVI problem in the form of an assignment a. (In case of ties, more than 

one assignment may result.)
Procedure As Algorithm 1, but where step (iii) is replaced with the following: 

	 (iii)	 Update B by deleting the row and column corresponding to LRi,j , and recomputing the remaining LR 
values conditional on all previous identifications.

When this strategy is applied to the example in Fig. 1, the sequence of updated LR matrices becomes as 
follows:

 In both cases, the identified solution is (M1,M2,M3).

The joint approach.  We now consider the possibility (and feasibility) of joint identification of the victims. 
Among the list A of all a priori possible assignments, we seek the one that maximises the overall likelihood: An 
assignment a∗ is an optimal solution if L(a∗) ≥ L(a) for all a ∈ A . In smaller cases where |A | [as given by for-
mula (4)] is manageable , this may be solved by brute force, i.e., by calculating the likelihood of each assignment, 
and sorting them in descending order.

Applying this to our running example in Fig. 1, Table 1 lists the likelihoods of all 14 possibilities. It shows that 
assignment (M1,M2,M3) is a clear winner, five times more likely than the runner-up. In this case all calculations 
may be done manually. For example, under the null model (∗, ∗, ∗) all five genotyped individuals are unrelated, 
giving the likelihood L0 = 4 · (0.1)10 and (natural) log-likelihood log(L0) = −21.64 as shown in line 10 of Table 1.

Combined approach.  In larger cases the number of possible assignments may be prohibitive for brute force 
calculations. In this case, we propose the combination approach described below. In brief, the idea is to first use a 
modified version of Algorithm 2 in order to find undisputed pairings, and then use brute force on the remaining 
problem. A pairing (Vi,Mj) is said to be undisputed if its pairwise-search LR reaches the given threshold T, while 
all other LR values involving Vi or Mj are small.

Algorithm 3: undisputed + joint.  Input A DVI problem; a threshold T > 1.
Output A list of assignments, ranked by likelihood.
Procedure 

Step 1	 Sequential. 

	 (i)	 Compute the pairwise LR matrix B.
	 (ii)	 Identify all undisputed pairings Vi = Mj , characterised by LRi,j ≥ T while all other entries in the 

same row and column are ≤ 1 . If no such elements are found, the procedure stops.
	 (iii)	 Update B by deleting rows and columns corresponding to undisputed pairings and recomputing 

the remaining LR s conditional on the same.
	 (iv)	 Repeat steps (ii)–(iii) until the procedure stops.

Step 2	 Joint. 

	 (i)	 Create a list A of sex-consistent assignments involving the remaining individuals.

(5)
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	 (ii)	 Remove from A all impossible assignments, i.e., corresponding to zeroes in the updated LR matrix 
B.

	 (iii)	 Compute the likelihood of the remaining assignments in A , conditional on the undisputed find-
ings, and rank the output.

The combined approach may still fail if there are too many assignments to consider in Step 2. A practical solution 
is then to reduce the threshold T so that the number of undisputed matches is increased, leaving fewer remaining 
individuals for the joint analysis.

Posterior pairing probabilities.  In this section we derive the posterior pairing probabilities 
qi,j = P(Vi = Mj | D) for i = 1 . . . , s and j = 1, . . . ,m , where D denotes the PM and AM data. For each victim 
Vi we also compute the posterior non-pairing probability, qi,∗ = P(Vi = ∗ | D) , i.e., the probability that Vi does 
not match any of the missing persons.

These probabilities are relevant since decisions often need to be made for each individual independently. 
Importantly, this approach opens for incorporating non-DNA information via a prior distribution. For any 
assignment a ∈ A , let π(a) denote the prior probability of a.

For a given pair (Vi,Mj) , let Ai,j denote the subset of A consisting of all assignments containing the pairing 
Vi = Mj . Bayes’ theorem then gives

where, as before, L(a) is the likelihood of a. Often a flat prior π(a) = 1/|A | is used, in which case (6) can be 
written in terms of likelihood ratios:

Here, LRa denotes the likelihood ratio comparing a to the empty (null) assignment.
The posterior non-pairing probabilities are computed similarly: If Ai,∗ denotes the set of assignments with 

no match for Vi , we have

where the latter equality assumes a flat prior.
For our running example in Fig. 1, the posterior probabilities with a flat prior are given in Table 3. Note that 

these probabilities are directly calculable from the LR column of Table 1, which provides the likelihood ratios 
required by formulas (7) and (8). For example, the top left entry is

It is reasonable to conclude that Vi = Mj if qi,j > α for some α close to 1, say α = 0.99 . A less stringent 
threshold α = 0.5 could be used if the objective is only to find the most likely match. Importantly, as long as 
α > 0.5 any pairings obtained in this way are consistent, in the sense that two victims cannot be paired with the 
same missing person. To show this, let Vi and Vi′ denote two different victims. Then for any j the sets Ai,j and 
Ai′ ,j are disjoint, so that

 This implies that qi,j and qi′ ,j cannot both exceed 0.5.

Results
A comparison of methods.  The purpose of the example is to illustrate that the joint approach may succeed 
in cases where the sequential methods fail.

(6)qi,j = P(Vi = Mj | D) =

∑

a∈Ai,j
L(a)π(a)

∑

a∈A L(a)π(a)
,

(7)qi,j =

∑

a∈Ai,j
LRa

∑

a∈A LRa
.

(8)qi,∗ = P(Vi = ∗ | D) =

∑

a∈Ai,∗
L(a)π(a)

∑

a∈A L(a)π(a)
=

∑

a∈Ai,∗
LRa

∑

a∈A LRa
,

q1,1 =
250+ 50+ 5+ 1

250+ 50+ 25+ 5+ 5+ 5+ 5+ 1+ 1+ 1
≈ 0.88.

qi,j + qi′ ,j = P(Vi = Mj | D)+ P(Vi′ = Mj | D) =
∑

a∈Ai,j

P(a | D)+
∑

a∈Ai′ ,j

P(a | D) ≤
∑

a∈A

P(a | D) = 1.

Table 3.   Posterior pairing probabilities for the toy example in Fig. 1.

M1 M2 M3 ∗

V1 0.88 0.00 0.00 0.12

V2 0.02 0.95 0.00 0.03

V3 0.00 0.00 0.83 0.17
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Consider the DVI problem shown in Fig. 2, where the genotypes correspond to a marker with alleles 1, 2, and 
3, with frequencies 0.05, 0.05 and 0.9 respectively. (The precise values of these frequencies are not important.) 
Given this information, the pairwise LR matrix is found to be

As a first observation we note that the column of 1’s corresponding to M1 implies that M1 cannot identified 
by any method which uses data from only one victim at a time, such as Algorithm 1.

Next we consider the more reasonable Algorithm 2, which updates B after each new pairing. Clearly, since 
LR1,2 = 20 is the highest entry, the procedure starts by identifying V1 = M2 . But this means that M2 has genotype 
1/1, which effectively blocks V2 (who is 2/2) from being identified as M1 or M3 . In full detail, the sequence of 
updated LR matrices becomes as follows:

 We conclude that Algorithm 2 produces two equally likely assignments, (M2, ∗,M1) and (M2, ∗,M3).
By contrast, Table 4 shows that the optimal solution, when all the data is considered jointly, is the assignment 

(M3,M1,M2) . In fact, this is 2, 000/200 = 10 times more likely than either of the solutions found by the sequential 
method above. Table 5 lists the posterior pairing probabilities under a flat prior.

In order to investigate the practical relevance of joint identification, we conducted a series of simulation 
experiments based on standard set of forensic markers. After all, the genotypes in Fig. 2 were particularly chosen 
so as to illustrate the effect, and with multiple markers one might expect such anomalies to be drowned. Unfor-
tunately, this is not the case. Figure 3 compares how the true positive rates (TPR) of Algorithms 1–3 vary with 
the number of markers, depending on the true solution as indicated in the title of each panel. In each case, 500 
sets of DNA profiles were simulated for the set of 35 autosomal markers comprising the database Norwegian-
Frequencies available and documented in the R package forrel. The simulations were performed with the 
forrel function profileSim. All subsequent identifications used LR threshold T = 10, 000 (for Algorithm 3, 
the threshold applied to the highest joint LR compared with the null). In addition to the three algorithms previ-
ously described, we included the TPR of the most likely solution reported by Algorithm 3, whether or not its LR 
exceeded T.

Figure 3 reveals that for this particular DVI problem, the joint method (Algorithm 3) has a TPR near 1 
already with 5 markers, while the best sequential (Algorithm 2) needs 20 markers to reach the same. Overall, 
Algorithm 3 clearly outperforms the others in all cases shown in the top row of Fig. 3. Moreover, it is the only 
method to reliably reach a conclusion when the true assignment is (M1, ∗,M3).

Case study 1: plane crash.  In this and the next section we demonstrate the adequacy of joint identifica-
tion in real-life scenarios, by analysing two realistic DVI datasets. The first case is based on a simulated plane 
crash, and features multiple reference families with a single missing individual. The second case involves a large 
pedigree with many missing members.

(9)

(10)

Table 4.   The most likely assignments in Fig. 2.

V1 V2 V3 Loglik LR Posterior

1 M3 M1 M2 -15.67 2,000.00 0.69

2 M2 ∗ M1 -17.97 200.00 0.07

3 M2 ∗ M3 -17.97 200.00 0.07

4 ∗ M1 M2 -17.97 200.00 0.07

5 M3 ∗ M2 -18.67 100.00 0.03

6 ∗ M3 M2 -18.67 100.00 0.03

Table 5.   Posterior pairing probabilities for the case in Fig. 2. Values exceeding 0.5 are shown in bold.

M1 M2 M3 ∗

V1 0.004 0.145 0.736 0.115

V2 0.766 0.000 0.036 0.198

V3 0.076 0.831 0.078 0.015
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Figure 4 lays out the components of a DVI problem in the aftermath of a plane crash. DNA profiles with 15 
standard forensic markers are available from 8 victims and 5 reference families. The complete dataset is included 
in the R package dvir under the name planecrash. Further information, including marker names, allele 
frequencies and simulation details can be found in the package documentation.

In accordance with Algorithm 3, we start by computing the pairwise LR values, with the results given in 
Table 6. We observe that the identifications V2 = M3 , V4 = M5 and V6 = M2 are undisputed (in the sense defined 
in Algorithm 3), when applying the threshold T = 10, 000 . In addition, V1 = M1 also has a high LR , but does not 
reach the threshold. Based on these observations we anticipate the solution (M1,M3, ∗,M5, ∗,M2, ∗, ∗) . Indeed, 
this assignment is the optimal solution found in the joint analysis, presented in Table 7. It is noteworthy that the 
many impossible and undisputed pairings in the pairwise LR matrix (Table 6) leave only two assignments for 
consideration in the joint step. Hence the computational cost of this step is virtually ignorable.

Next we introduce a mutation model, motivated by the possibility that a mutation may explain the lack of 
identification for M4 . In fact, an examination of the data reveals that V3 and R4 share alleles at all but one marker, 
suggesting that these may have a parent-child relationship.

(M1, *, *) (*, M2, *) (*, *, M3) (*, *, *)

(M1, M2, M3) (M1, M2, *) (M1, *, M3) (*, M2, M3)

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

# markers

TP
R

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 3 (most likely)

Figure 3.   A comparison of the true positive rates (TPR) of different DVI algorithms. Each point is the result 
of 500 simulations conditional on the assignment indicated in the panel title. For instance, the assignment 
(∗,M2,M3) in the top right panel signifies that V1 is unidentified, while V2 = M2 and V3 = M3 . The x-axis 
indicates the number of markers used, in the order listed in the database NorwegianFrequencies (see main text). 
A slight vertical jitter was applied to the points in order to increase visibility.
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Figure 4.   The plane crash scenario. Eight victims are to be matched against five reference families. Each family 
has one missing person and one reference individual.
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We use a proportional model with mutation rate 0.00116. The choice of model is not significant here, but we 
note that the property of stationarity enjoyed by proportional models facilitates validation against other imple-
mentations. Under this model, the pairwise LR for V3 = M4 changes from 0 to 249. A joint analysis produces 
the top list shown in Table 8. We see that the identification V3 = M4 is now convincingly included in the most 
likely assignment. This observation is reinforced by the posterior pairing probabilities given in Table 9, calculated 
with a flat prior of π(a) = 1/19081.

Case study 2: a large reference family.  Our second main example involves the pedigree in Fig. 5, fea-
turing twelve missing individuals ( M1, . . . ,M12 ) and six typed references ( R1, . . . , R6 ). Five victim samples 
( V1, . . . , V5 ) are to be matched against these. The case is based on an example from a workshop organized by the 
International Society for Forensic Genetics (ISFG)17, but we have adapted the pedigree slightly for notational 
consistency and simulated new marker data. The simulations were performed using 13 CODIS markers, assum-

Table 6.   Pairwise LRs for the plane crash example. Only nonzero elements are shown; entries reaching the 
threshold T = 10, 000 are highlighted.

M1 M2 M3 M4 M5

V1 9.29e+02 9.03e−04 2.77e−01

V2 6.75e−02 6.79e+04 6.66e−02

V3 1.03e−04 3.82e−03

V4 3.78e−05 3.19e+07

V5 9.62e−04 3.92e−03

V6 1.08e+06 1.29e−05

V7 5.90e−04 1.90e−01

V8 1.91e−04 2.72e−01

Table 7.   Results of joint analysis of the plane crash example, without mutation modelling.

V1 V2 V3 V4 V5 V6 V7 V8 Loglik LR Posterior

1 M1 M3 ∗ M5 ∗ M2 ∗ ∗ − 562.80 2.17e+21 0.999

2 ∗ M3 ∗ M5 ∗ M2 ∗ ∗ − 569.64 2.34e+18 0.001

Table 8.   The most likely assignments in the plane crash example, when mutations are modeled.

V1 V2 V3 V4 V5 V6 V7 V8 Loglik LR Posterior

1 M1 M3 M4 M5 ∗ M2 ∗ ∗ − 557.31 5.27e+23 0.995

2 M1 M3 ∗ M5 ∗ M2 ∗ ∗ − 562.83 2.11e+21 0.004

3 ∗ M3 M4 M5 ∗ M2 ∗ ∗ − 564.14 5.69e+20 0.001

4 ∗ M3 M4 M5 M1 M2 ∗ ∗ − 566.54 5.18e+19 0.000

5 M1 ∗ M4 M5 ∗ M2 M3 ∗ − 566.82 3.89e+19 0.000

Table 9.   Posterior pairing probabilities in the plane crash example, calculated using a flat prior and a 
proportional mutational model with rate 0.001.

M1 M2 M3 M4 M5 ∗

V1 0.999 0.001

V2 1.000

V3 0.996 0.004

V4 1.000

V5 1.000

V6 1.000

V7 1.000

V8 1.000
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ing that the true solution is the assignment (M6,M10,M12,M8,M1) . Further details, including marker names 
and allele frequencies, are provided in the documentation of the dvir dataset icmp.

In this case, the pairwise LR matrix (Table 10) shows that there are no undisputed pairings (with T = 10, 000 ). 
Admittedly, the pairing V4 = M8 has a high LR at 2.85 · 106 , but it is disputed (in the sense of Step 1 - (ii) of 
Algorithm 3) by LR4,10 and LR4,11 which both exceed 1. (Relaxations of this step are considered in the Discus-
sion.) Nevertheless, the many zeroes in Table 10 lead to a substantial reduction in the space of assignments, 
manifested in Step 2 - (ii) of Algorithm 3. More precisely, the a priori 9847 assignments given by equation (4) 
(with sF = 3, sM = 2,mF = mM = 6 ) is reduced to 1898 after removal of impossible pairings. Joint analysis of 
these assignments took ∼15 seconds on a standard laptop, and resulted in the top list presented in Table 11.

Note that two assignments tie for the best solutions, differing in their identification of victim V2 . This reflects 
the fact, deducible from Fig. 5, that the pairings {V2 = M10} and {V2 = M11} cannot be distinguished based on 
DNA data. The posterior pairing probabilities with a flat prior are given in Table 12.

Discussion
The main contribution of this paper is to show that joint identification generally outperforms sequential DVI 
methods, and that careful implementation makes the joint approach computationally feasible even in fairly 
large cases.

V1

V2

V3

V4

V5

M1 R1

R2 R3 R4 M2 M3 M4 R5 M5 M6

M7 R6 M8 M9 M10 M11 M12

PM data AM data

Figure 5.   A large reference family with twelve missing individuals.

Table 10.   Pairwise LRs in case study 2. Values below 0.001 are not shown.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

V1 0.0647 1 0.164

V2 0.152 0.152 1.25 1.25

V3 0.124 1 0.0156 2.27

V4 0.792 0.792 2.85e+06 3.08 3.08

V5 17.5 1 0.00666 2.83

Table 11.   The five most likely assignments in case study 2.

V1 V2 V3 V4 V5 Loglik LR Posterior

1 M6 M10 M12 M8 M1 − 312.98 1.14e+24 0.50

2 M6 M11 M12 M8 M1 − 312.98 1.14e+24 0.50

3 M6 M10 M12 M8 M7 − 327.16 7.86e+17 0.00

4 M6 M11 M12 M8 M7 − 327.16 7.86e+17 0.00

5 M6 ∗ M12 M8 M1 − 327.74 4.40e+17 0.00
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From a computational point of view, DVI applications can be viewed as a series of kinship tests. For general 
issues concerning kinship testing, like the assumptions of Hardy-Weinberg equilibrium and independence of 
markers, we therefore refer to the rich literature on this subject18. Problems related to poor quality of DNA are 
also widely discussed in the forensic literature19. In the following we restrict the discussion to aspects that are 
particular to the methods of this paper.

The main arguments favouring the joint approach are of principal nature. From a statistical point of view a 
joint dataset should, by default, be analysed jointly if practically possible. In particular, this avoids inconsist-
ent solutions that may emerge when splitting a joint problem into separate subproblems. However, there are 
also other important benefits, connected with multiple testing and statistical power. The previously published 
sequential approaches typically involve many separate tests using different parts of the data. This makes power 
calculation difficult, if not impossible. In principle one could control for the number of tests performed by 
increasing the LR threshold, resembling classical post-hoc adjustments in multiple significance testing, but this 
approach is rarely practical in DVI contexts. The power of our joint approach is not affected by multiple testing 
issues in the same way, since the problem is not split into many separate tests.

The limiting factor for the utility of joint DVI is the computational burden. Table 2 clearly illustrates the 
rapid growth of the a priori number of assignments, and it is not difficult to construct problems beyond the 
current reach. On the other hand, surprisingly large problems may still be manageable if a sufficient number of 
undisputed matches are found in the first step.

The algorithms we have presented can be modified or tuned in various ways. As in many similar applications, 
the most important parameter is arguably the LR threshold T. For a general discussion we refer to the established 
literature20, also in connection with familial searching21. In the context of DVI we expect the value of T to depend 
both on the particular protocol and external factors. Simulation experiments like the one summarised in Fig. 3 
may provide guidance when deciding the threshold.

We mention one potential modification, which may have a significant impact on the run-time of Algorithm 3. 
Recall that Step 1(ii) of this algorithm used the pairwise LR matrix to identify undisputed pairings Vi = Mj , 
characterised by

LRi,j ≥ T while all other entries in the same row and column are ≤ 1.

The last part of this criterion may be relaxed, for instance by increasing the final limit 1 to LRi,j/T . The effect of 
this change is easily seen in Case Study 2, specifically Table 10, where the pairing V4 = M6 would now be clas-
sified as undisputed.

For simplicity we used autosomal markers in our examples, but there are no methodological obstructions to 
including mtDNA, X or Y markers in joint DVI computations. In fact, our implementation in the dvir package 
already supports X-chromosomal markers. As previous authors have noted, it is not obvious how evidence from 
different types of markers should be reported, and opinions differ22.

A well-known challenge in forensic genetics is that LR calculations are sensitive to misspecified allele frequen-
cies. In some DVI cases it may therefore be difficult to decide on an appropriate frequency database, particularly 
if the individuals originate from different populations. This problem has previously been addressed in the context 
of familial searching23. A practical approach is to do ad hoc sensitivity calculations. If the overall conclusions 
remain unchanged with different databases, this strengthens the confidence in the results. As a general comment 
we note that most autosomal forensic markers have been specifically selected for their relatively stable allele 
frequencies across populations, while this to a lesser extent holds for mtDNA, X or Y markers.

The question of how the statistical evidence should be reported in identification cases is difficult and lacks 
general consensus. Although there is a tradition of specifying priors and reporting posterior probabilities in 
addition to likelihood ratios10, our view is that specifying priors should be left to the decision makers. This is 
supported by ISFG recommendations6, whose point 11 includes:

In DVI work, DNA statistics are best represented as likelihood ratios that permit DNA results to be com-
bined among multiple genetic systems or with other non-DNA evidence.

Nevertheless, we have included in several tables the posteriors with a flat prior, for reference. In real cases, infor-
mation beyond the DNA data can be reflected by the prior.

Another point related to reporting is the choice of reference, i.e., the hypothesis in the denominator of the 
likelihood ratio. In our examples we have chosen to compare with the null, i.e., no relations between the victims 
and the missing persons, but it is not obvious that this is always the best choice. For instance, in order to com-
municate the uniqueness of the solution, a viable alternative is to compare the best solution to the second best. 

Table 12.   Posterior pairing probabilities in Case Study 2. Numbers less than 0.001 are not shown.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 ∗

V1 1.000

V2 0.500 0.500

V3 1.000

V4 1.000

V5 1.000
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We suggest reporting the identification defined by the optimal assignment if its LR compared to closest contender 
exceeds a threshold, say 10,000. Clearly, this ensures that the LR against the null also exceeds the same threshold.

Conclusion
This paper presents and discusses methods for DNA-based identification. Restricted approaches, in which the 
victims are considered separately or sequentially, may give inconsistent, ambiguous results. We therefore gener-
ally recommend the combined approach summarised by Algorithm 3. The idea is simple: first take care of the 
virtually obvious pairings, and then do a complete search to resolve the remaining. The resulting joint solution 
should be supplemented by posterior pairing and non-pairing probabilities, which summarise the evidence for 
each individual identification.

All methods described in this paper are implemented in the R package dvir, which is freely available from 
the official R repository (CRAN) and runs on all platforms. The documentation of the package provides further 
details and instructive examples.
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