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Intestinal barrier dysfunction is an important clinical problem in various acute and chronic
pathological conditions. Ferulic acid (FA) can attenuate the intestinal epithelial barrier
dysfunction, however, the underlying mechanism remains unclear. The present study
aimed to uncover the protective effect of FA on intestinal epithelial barrier dysfunction in a
Caco-2 cell model of lipopolysaccharide (LPS) stimulation and the underlying mechanism.
Caco-2 cells were pretreated with FA and then exposed to LPS stimulation. The barrier
function of Caco-2 cells was evaluated by measuring trans-epithelial resistance (TER) and
4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4) flux, and analyzing the tight junction
protein expression and structure. The results showed that decreased TER and increased
FITC-FD4 flux were observed in Caco-2 cells stimulated with LPS, but these effects were
attenuated by FA pretreatment. FA pretreatment inhibited LPS-induced decrease in
occludin and ZO-1 mRNA and protein expression. LPS stimulation decreased miR-
200c-3p expression, whereas this decrease was inhibited by FA pretreatment.
Furthermore, overexpression of miR-200c-3p strengthened the protective effects of FA
on LPS-induced Caco-2 cell barrier dysfunction by decreasing epithelial permeability,
increasing occludin and ZO-1 protein expression, and maintaining of ZO-1 protein
distribution, while suppression of miR-200c-3p reversed the protective effects of FA.
LPS treatment increased the expression of PTEN protein and decreased expression of
phosphorylated PI3K and AKT proteins. However, pretreatment of FA inhibited
expression of PTEN protein and promoted activation of PI3K/AKT signaling pathway in
the LPS-treated Caco-2 cells, and this regulatory effect of FA on the PTEN/PI3K/AKT
signaling pathway was strengthened or weakened by miR-200c-3p overexpression or
suppression, respectively. Our findings suggested that in Caco-2 cells, FA promotes
activation of PI3K/AKT pathway by miR-200c-3p-mediated suppression of the negative
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mediator PTEN, which, in turn, maintains TJ function and thus ameliorates LPS-induced
intestinal epithelial barrier dysfunction.
Keywords: ferulic acid, intestinal epithelial barrier, Caco-2 cells, miR-200c-3p, PTEN/PI3K/Akt pathway
INTRODUCTION

The intestinal tract is lined with a single layer of epithelial cells
that acts as a selective barrier, allowing absorption of nutrients,
electrolytes, and water while preventing the transfer of intestinal
pathogens, antigens and toxins from the luminal environment to
blood circulation and mesenteric lymph (Odenwald and Turner,
2017). Dysfunction of intestinal epithelial barrier may lead to
increased permeability of intestinal mucosa, subsequent
translocation of intestinal pathogenic bacteria or toxins, which
in turn aggravates the damage of intestinal barrier integrity,
resulting in local intestinal or systemic disease such as
inflammatory bowel diseases, multiple organ dysfunction
syndromes and sepsis (Michielan and D’Inca, 2015; Zhou and
Verne, 2018). Therefore, maintenance of the intestinal epithelial
barrier function is very important in the clinical treatment of
various acute and chronic diseases.

Tight junctions (TJs), located at the apical side of the lateral
membranes of intestinal epithelial cells, are the primary factors in
determining of paracellular permeability (Buckley and Turner,
2018). TJs are composed of a variety of proteins, in which the
transmembrane protein occludin and the cytoplasmic protein
zonula occludens-1 (ZO-1) are key proteins that maintain TJs
structure and intestinal epithelial barrier function (Costantini
et al., 2009). TJs can be compromised by luminal noxious
antigens, one of which is lipopolysaccharides (LPS), the main
component of the outer membrane of Gram-negative bacteria.
Growing investigations indicate that LPS triggers an inflammatory
signaling cascade to reduce tight junction protein expression,
leading to increased intestinal permeability and disrupting
intestinal epithelial barrier function (He et al., 2019; Tunisi et al.,
2019). Clinical study also demonstrated that circulating blood LPS
levels are elevated in Crohn’s disease and sepsis patients, and
contribute to the pathogenesis of intestinal and systemic
inflammatory response (Guo et al., 2015).

Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a
natural phytochemical widely found in vegetables and fruits, and
also is the main active ingredient in many traditional Chinese
medicines, such as Angelica sinensis, Ligusticum chuanxiong, and
Cimicifuga foetida (Mancuso and Santangelo, 2014). It is a
derivative of curcumin and has the necessary pharmacokinetic
properties to be retained for several hours in general circulation
(Ghosh et al., 2017). A great amount of evidence indicates that
FA has strong antioxidant, anti-inflammatory and anti-apoptotic
pharmacological properties (Shanthakumar et al., 2012; Mhillaj
et al., 2018). It is also shown that FA has protective effects against
Alzheimer’s disease, cardiovascular diseases, and sepsis (Bacanli
et al., 2014; Sgarbossa et al., 2015). However, the underlying
in.org 2
mechanisms by which FA attenuates LPS-induced intestinal
epithelial barrier dysfunction have not been clarified.

MicroRNAs (miRNAs) are a series of small non-coding RNA
molecules (containing 20–25 nucleotides) found in eukaryotes
that participate in RNA silencing, post-transcriptional, and
translational regulation of gene expression (Ambros, 2004).
Recent evidence has shown that miRNAs play a vital role in
controlling intestinal epithelial barrier function, in part by
regulating the expression of tight junction proteins (Martinez
et al., 2017). MiR-200c is a member of the miR-200 family, in
which miR-200b and miR-429 have been shown to be involved in
the regulation of intestinal epithelial barrier function (Yu et al.,
2016; Shen et al., 2017). Many reports revealed that miR-200c
plays a key role in the epithelial-mesenchymal transition,
apoptosis, proliferation, and metastasis of various cancer cells
(Mutlu et al., 2016; Zhou et al., 2018). However, the role of miR-
200c in intestinal epithelial barrier function remains unclear.

PTEN, a dual-specificity phosphatase, has been demonstrated
to be a possible target of miR-200c (Liao et al., 2013). It is well
known that PTEN competes with the PI3K/AKT activity.
Activated AKT pathway regulates multiple biological processes
such as cell survival, autophagy, and apoptosis (Liao et al., 2013).
Our previous studies showed that FA has a protective effect on
intestinal epithelial barrier function in IEC-6 cells suffering from
heat stress, which is associated with activation of the antioxidant
PI3K/AKT/Nrf2/HO-1 signaling pathway (He et al., 2016; He
et al., 2018). In the present study, we investigated the underlying
mechanism by which FA regulates intestinal epithelial barrier
function viamiR-200c-3p/PTEN/PI3K/AKT pathway in an LPS-
induced Caco-2 monolayer barrier dysfunction model.
MATERIALS AND METHODS

Cell Culture and Treatment
The human colon cancer cell lines (Caco-2) were obtained from
the Cell Resource Center, Peking Union Medical College
(Beijing, China). Cells were maintained in Rosewell Park
Memorial Institute (RPMI) 1640 medium (Gibco, NY, USA)
containing 20% fetal bovine serum (FBS, Gibco), 100 U/ml
penicillin and 0.1 mg/ml streptomycin in a humidified (37°C
and 5% CO2) incubator. For LPS treatment, Caco-2 cells were
incubated in RPMI 1640 and different concentrations of LPS
(Sigma-Aldrich, St. Louis, USA) for 24 h.

FA (99% purity, CAS 110773-201614), purchased from the
National Institutes for Food and Drug Control (Beijing, China),
was dissolved in RPMI 1640 to 10 mM as a stock solution. The
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experiment concentrations of FA were 0, 25, 50, and 100 mM.
Cells were pretreatment with FA for 2 h before LPS treatment.

Intestinal Epithelial Barrier Function
Determination
Transepithelial electrical resistance (TER) of filter-grown Caco-2
monolayers was measured using a Millicell-ERS system
(Millipore, Bedford, USA). Cells were seeded on transwell
inserts (Corning, Cambridge, USA) with polyethylene
terephthalate membrane (0.33 cm2, 0.4 mm pore size) at a
density of 1.0 ×106 cells/well and monitored daily for about 21
days. When cells reached confluence and completely
differentiated, different concentration FA (25, 50, or 100 mM)
were added to the apical of the filter for 2 h and then treated with
or without LPS. Changes in TER under experimental conditions
were expressed as a percentage of the corresponding basal values.
Determinations were repeatedly operated on three different sites
transwell insert, respectively.

The permeability of the epithelial across Caco-2 cell monolayers
was quantified by measuring the flux of the FITC-labeled dextran
of molecular mass 4 kDa (FD4; Sigma-Aldrich, St. Louis, USA). In
brief, 1 mg/ml of FD4 was added to the apical chamber and the
medium was collected from the basolateral chamber after 2 h’s
incubation. Fluorescence intensity of FITC was quantified using a
fluorescence plate reader (BioTek, Winooski, USA) with excitation
at 492 nm and emission at 520 nm.

Cell Viability Assay
Cell viability was determined using Cell Counting Kit-8 (CCK-8;
Dojindo, Kumamoto, Japan) assay according to the
manufacturer’s instructions. In brief, Caco-2 cells (1 × 104

cells) were plated on a 96-well plate and incubated at 37°C
with 5% CO2 for 24 h. Cells were then washed twice with PBS
and incubated with LPS (0.001, 0.01, 0.1, 1, 10, or 100 mg/ml) for
24 h or FA (1, 5, 10, 20, 50, 100, 200, or 500 mM) for 48 h. The
cells were then treated with 10 µl/well of CCK-8, and incubated
at 37°C for 2 h. Absorbance was detected at 450 nm using a
microplate reader (PerkinElmer, Inc., Waltham, USA).

Transmission Electron Microscopy (TEM)
Fully confluent cultured Caco-2 cells were pretreated with 100
mM FA for 2 h and then subjected with LPS for 24 h. Cells were
scraped off and centrifuged at 1500 rpm for 10 min. The samples
fixed in overnight with 4% glutaraldehyde and then post-fixed in
cold 1% osmium tetroxide for 1 h, followed by three cacodylate
buffer washes. After dehydration in graded ethanol solutions,
cells were embedded in Epon-Araldite (EPON 812, Emicron,
Shanghai, China). Ultra-thin sections were stained with
saturated uranyl acetate in 50% ethanol and lead citrate and
examined with transmission electron microscopy (H7650,
Hitachi, Ltd., Tokyo, Japan).

Analysis of miRNA Expression Profile
Total RNA from Caco-2 cells was extracted using Trizol reagent
(Life Technologies, Carlsbad, USA) according to the
manufacturer’s protocol. The quality and quantity of the RNA
samples were assessed on a Bioanalyzer 2100 system (Agilent
Frontiers in Pharmacology | www.frontiersin.org 3
Technologies, Santa Clara, USA) using an RNA 6000 Nano kit
(Agilent Technologies). Small RNA libraries were generated
according to the protocol of Illumina TruSeq™ Small RNA
Sample Preparation kit (Agilent Technologies). Affymetrix
GeneChip miRNA array analysis was conducted to detect the
expression pattern of miRNAs, which were provided by
Shanghai Biotechnology Corporation (Shanghai, China).
Bioinformatic analyses and visualization of microarray data
were performed with MultiExperiment Viewer (MEV) software
v.4.6 (TIGR, La Jolla, USA).

Cell Transfection
Lentivirus-miR-200c-3p (Lv-miR-200c-3p) or lentivirus-miR-
200c-3p sponge (Lv-miR-200c-3p spong) were transfected into
Caco-2 cells in order to increase or inhibit miR-200c-3p
expression, respectively, and lentivirus-negative control (Lv-
NC) was used as negative control. The Lv-miR-200c-3p, Lv-
miR-200c-3p spong and Lv-NC were designed and synthesized
by Hanheng Biotechnology Corporation (Shanghai, China).
Concisely, 293T cells were co-transfected with viral packaging
vector pMD2.G and psPAX2 (Addgene, Cambridge MA), along
with a lentiviral construct expressing a specific miR-200c-3p,
miR-200c-3p spong or the empty vector, using LipoFitter™
transfection reagent (Hanheng Biotechnology Corporation)
according to the manufacturer’s instructions. The procedure of
miR-491-3p synthesis was the same as that of miR-200c-3p. The
transfection medium was replaced after 6 h with fresh Dulbecco’s
Modified Eagle Medium (Gibco, NY, USA) containing 10% FBS,
100 U/ml penicillin and 0.1 mg/ml streptomycin. At 48 h after
incubation, the supernatant of lentivirus was ultracentrifuged,
concentrated and used to infect cells, as previously described
(Wu et al., 2019). In brief, Caco-2 cells (1 × 106 cells/well) seeded
on a 6-well plate were transfected with Lv-miR-200c-3p, Lv-miR-
200c-3p spong or Lv-NC at a multiplicity of infection (MOI) of
15, or transfected with Lv- miR-491-3p, Lv- miR-491-3p spong
or Lv-NC at a MOI of 20, and incubated at 37°C with 5% CO2 for
48 h. Transfection efficiency was confirmed by quantitative
reverse transcription PCR. Then, the cells were treated
according to different test requirements.

Quantitative Real-Time PCR
Total RNA was extracted using TRIzol Reagent (Life Technologies)
according to the manufacturer’s protocol. The cDNA was
reverse transcribed using the revert aid first-strand
cDNA Synthesis kit (Thermo Fisher Scientific). Real-time
PCR was performed using SYBR Green qPCR Master
Mix (Applied Biosystems). The Occludin, ZO-1 and b-
actin primer sequences were synthesized by Sangon
Biotech (Shanghai, China). The primers sets were as
follows: Occludin, 5′-GCAAAGTGAATGACAAGCGG-3′
(F) and 5′-CACAGGCGAAGTTAATGGAAG-3′ (R); ZO-1, 5′-
CGAAGGAGTTGAGCAGGAAA-3′ (F) and 5′-ACAGG
CTTCAGGAACTTGAG-3 ′ (R ) ; b - a c t in , 5 ′ -TGCA
GAAAGAGATCACCGC-3′ (F) and 5′-CCGATCCAC
ACCGAGTATTTG-3′ (R). To generate cDNA of miR-200c-3p,
total RNA was reverse transcribed using a miRcute miRNA cDNA
Kit (TIANGEN BIOTECH, Beijing, China) according to the
April 2020 | Volume 11 | Article 376
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manufacturer’s protocol. Real-time PCR was performed using
miRcute miRNA (TIANGEN BIOTECH) according to the
manufacturer’s protocol. The primers of miR-200c-3p and U6 were
purchased fromGuangzhou Ruibo Biotechnology Co. LTD. All real-
time qPCR analyses were conducted using the 7500 Real-Time PCR
system(AppliedBiosystems).RelativeexpressionofmRNAandmiR-
200c-3pwere normalized using the endogenous controls b-actin and
U6, respectively.Theamplificationprotocolswereas follows: 95°Cfor
10 min, 40 cycles of 95°C for 15 s, 60°C for 34 s, and 72°C for 34 s.
Relative expression fold changes were calculated using the
2−DDCT method.

Western Blotting
Total proteins from Caco-2 cells were extracted on ice using
RIPA buffer (Beyotime Company, Beijing, China) supplemented
with protease inhibitors (Roche, Basel, Switzerland). The
concentration of total proteins was measured using the BCA
protein assay kit (Beyotime, Jiangsu, China). Then, specified
amounts of protein samples were separated by SDS-PAGE and
electrotransferred onto nitrocellulose membranes (Pierce,
Waltham, MA). After blocking with Odyssey blocking buffer
(LI-COR Biosciences, NE, USA) for 2 h, the membranes were
incubated with primary antibodies rabbit anti-occludin (1:100,
71–1500, Invitrogen, Carlsbad, USA), rabbit anti-ZO-1 (1:500,
21773-1-AP, Proteintech, Wuhan, China), rabbit anti-PTEN
(1:1000, 9559, Cell Signaling Technology, Danvers, MA), rabbit
anti-PI3K (1:1000, ab191606, Abcam, Cambridge, United
Kingdom), rabbit anti-phospho-PI3K (1:1000, ab182651,
Abcam), rabbit anti-Akt (1:1000, 4685, Cell Signaling
Technology), rabbit anti-phospho-Akt (1:1000, 4060, Cell
Signaling Technology), and rabbit anti-b-actin (1:2000, 4970,
Cell Signaling Technology) overnight at 4°C. The membranes
were washed three times and incubated with horseradish
peroxidase (HRP)-conjugated goat-anti-rabbit IgG secondary
antibody (1:5000, A8275, Sigma-Aldrich) for 30 min at room
temperature. Then, the protein bands were visualized using
enhanced electrogenerated chemiluminescence western blotting
detection reagents (Pierce Corporation, Rockford, IL). The gray
Frontiers in Pharmacology | www.frontiersin.org 4
values of the target band of proteins were quantified using Image
J (National Institutes of Health, Bethesda, MD).

Immunofluorescence Staining
Caco-2 cells were cultured on coverslips to fully confluence and
subjected to various experimental conditions. After treatment,
cells were washed with PBS three times and fixed with 4%
paraformaldehyde for 10 minutes at room temperature. Then
cells were permeated with 0.1% Triton X-100 for 5 min, followed
by blocking with 3% BSA for 1 h at room temperature. Caco-2
cells were incubated with rabbit anti-ZO-1 antibody (1:50,
21773-1-AP, Proteintech) at 4°C overnight. Coverslips were
washed and incubated with a secondary antibody Alexa Fluor
488 goat anti-rabbit IgG (1:400, A-11008, Life Technologies,
Carlsbad, USA) for 40 min at room temperature in the dark.
Then, Cells were counterstained with 4′,6-diamidino-2-
phenylindole (DAPI) (Beyotime, Jiangsu, China) for 5 min at
room temperature and visualized with a fluorescence microscope
(Olympus IX71, Tokyo, Japan).

Statistical Analysis
All data were represented as means ± standard deviation (SD).
Statistical analysis was performed using the GraphPad Prism 7
program (GraphPad, La Jolla, USA). For data from assay
evaluating the effect of LPS on TER values and FD4 flux, the
unpaired t test was used. One-way analysis of variance
(ANOVA) was performed to compare the statistical differences
of data among three or more groups. A P-value of <0.05 was
considered statistically significant. All experiments in this study
were repeated at least three times.
RESULTS

LPS Induced Intestinal Epithelial Barrier
Dysfunction in Caco-2 Cells
Firstly, the effects of different concentrations of LPS (0.001− 100mg/ml)
on epithelial paracellular permeability and cell viability were
A B C

FIGURE 1 | Effects of LPS on TER and FD4 permeability in Caco-2 monolayers. Caco-2 cells grown on transwell inserts were treated with various concentrations
(0.001 − 100 mg/ml) of LPS for 24 h. TER (A) and FD4 flux (B) across cell monolayers were measured. (C) The CCK-8 assay was used to detect the viability of cells
infected with LPS (0.001, 0.01, 0.1, 1, 10, or 100 mg/ml). Data are presented as means ± SD from three independent experiments. Statistical analyzed using the
unpaired t test. *P < 0.05, **P < 0.01.
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determined by measuring TER values and FD4 flux in Caco-2 cell
monolayers. Figure 1A displayed that LPS at a concentration of above
10 mg/ml significantly decreased the TER value (P < 0.01), whereas LPS
at a concentration of below 10 mg/ml had no significant effect on the
TER.Figure 1B presented that 10mg/ml or 100mg/ml LPS significantly
increased the FD4 flux fromCaco-2monolayer apical to the basolateral
chamber (P < 0.01). Figure 1C showed that 10 mg/ml LPS had no effect
on the cell viability, while 100 mg/ml LPS decreased the cell viability.
Consequently, we applied 10 mg/ml LPS concentration to induce
intestinal epithelial barrier dysfunction for subsequent experiments.

FA Alleviated LPS-Induced Intestinal
Epithelial Barrier Dysfunction
Effects of FA on LPS-induced intestinal epithelial barrier
dysfunction were subsequently explored. To determine whether
FA had toxic effects, Caco-2 cells were incubated with 0−500 mM
FA for 48 h and cell viability was assessed. In Figure 2A, there
were no statistical differences in cell viability, regardless of dose
of FA, indicating 0−500 mM FA showed no cytotoxic effects on
Caco-2 cells. Then, Caco-2 cells were pretreated with FA (25, 50,
and 100 mM) for 2 h, followed by LPS stimulation. Figure 2B
displayed that compared with LPS-treated cells, cells pretreated
with 50 and 100 mM FA had higher TER values (P < 0.05 and P <
0.01). Similarly, the LPS-induced increase in FD4 flux across the
Caco-2 monolayer was significantly attenuated by 50 and 100
mM FA (P < 0.05 and P < 0.01, Figure 2C).

Compared with control cells, decreased mRNA (P < 0.01,
Figure 2D) and protein (P < 0.01, Figure 2E) expression levels of
occludin and ZO-1 were observed in LPS-treated cells, but not in
cells pretreated with 100 mM FA. Compared with LPS-treated
cells, 100 mM FA pretreatment increased the mRNA and protein
expression of occludin and ZO-1 (P < 0.01). TJs ultrastructure of
Caco-2 cells was investigated by transmission electron
microcopy (Figure 2F). In the control of Caco-2 cells, TJ
structure between adjoining cells was intact and densely
connected. In LPS-treated Caco-2 cells, the TJ structure was
obviously damaged with large gaps between adjoining Caco-2
cells and the electron-dense material was reduced. However,
pretreatment with 100 mM FA significantly alleviated LPS-
induced TJs disruption.

FA increased miR-200c-3p Expression in
Caco-2 Cells Stimulated With LPS
The miRNA expression profiles of Caco-2 cells treated with LPS
and FA were evaluated by microarray hybridization. Using
hierarchical clustering, 19 miRNAs were found to be
significantly altered in the cells pretreated with FA compared
with the cells treated with LPS alone. Of these miRNAs, 10 were
up-regulated and nine down-regulated (Figure 3A; Table S1).
The miRNA expression profiles showed that the expression of
miR-200c-3p was up-regulated 3.87-fold change in the cells
pretreated with FA compared with the cells treated with LPS
alone. Furthermore, we validated the expression of miR-200c-3p
by qRT-PCR. The results revealed that pretreatment with FA
attenuated LPS-induced reduction of miR-200c-3p expression
induced by LPS in Caco-2 cells (P < 0.01; Figure 3B).
Frontiers in Pharmacology | www.frontiersin.org 5
FA Protected Caco-2 Cells Against
LPS-Induced Intestinal Epithelial Barrier
Dysfunction via miR-200c-3p
The effect of miR-200c-3p or miR-491-3p on the protective
effects of FA on LPS-induced intestinal epithelial barrier
dysfunction was explored. Overexpression or suppression of
miR-491-3p had no effect on the expression of occludin and
ZO-1 (Figure S1). Further, Figure 4A showed that compared
with Lv-NC transfection, the expression level of miR-200c-3p
was significantly enhanced by Lv-miR-200c-3p, but was notably
reduced by transfection with Lv-miR-200c-3p spong in Caco-2
cells (P < 0.01). Then, TER values, FD4 flux, tight junction-
associated protein occludin, and ZO-1 expression were
determined in transfected Caco-2 cells. The protecting effects
of FA on intestinal epithelial barrier function were enhanced by
transfection with Lv-miR-200c-3p, as shown by elevated TER
values (P < 0.01, Figure 4B), decreased FD4 flux (P < 0.01,
Figure 4C), and increased occludin and ZO-1 proteins
expression (P < 0.01, Figure 4D). However, these results were
reversed by suppression of miR-200c-3p (P < 0.05 and P < 0.01,
Figures 4B−D).

Additionally, immunofluorescence staining was employed to
detect the change of ZO-1 distribution in Caco-2 cells (Figure
4E). In the control group, ZO-1 staining appeared characteristically
continuous belt-like pattern around the apical membrane of Caco-2
cells. As expected, there were striking changes in the distributions of
ZO-1 in the LPS-treated cells, exhibiting irregularly undulating and
staining intensity decreasing. In Caco-2 cells pretreated with FA, the
rearrangements of ZO-1 were markedly attenuated, presenting a
relatively unambiguous profile. Moreover, miR-200c-3p
overexpression further improved the distributions of ZO-1.
However, suppression of miR-200c-3p weakened the protective
effects of FA on LPS-induced ZO-1 distributions.

FA Attenuated LPS-Induced Intestinal
Epithelial Barrier Dysfunction via
Activating microRNA-200c-3p-Mediated
PI3K/AKT Pathway
To clarify the mechanism underlying FA protecting Caco-2 cells
against LPS-induced intestinal epithelial barrier dysfunction, the
PTEN/PI3K/AKT pathway was examined by western blotting.
As shown in Figure 5A, LPS treatment increased PTEN protein
expression (P < 0.01) and decreased expression of
phosphorylated PI3K and AKT (P < 0.01). However, compared
with LPS-treated cells, cells pretreated with FA had lower
expression of PTEN and higher expression of phosphorylated
PI3K and AKT (P < 0.01). FA alone increased the expression of
phosphorylated PI3K and AKT (Figure S2). Moreover, the
overexpression of miR-200c-3p significantly strengthened the
effect of FA on the PTEN/PI3K/AKT pathway (P < 0.01).
However, suppression of miR-200c-3p notably inhibited the
effect of FA on PTEN/PI3K/AKT pathway in LPS-treated cells
(P < 0.05 or P < 0.01).

Subsequently, LY294002, the inhibitors of PI3K/Akt signaling
pathway was used to suppress PI3K/Akt activity. The expressions
of occludin and ZO-1 proteins were then examined. Compared
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A B

C D

E

F

FIGURE 2 | The protective effects of FA on LPS-induced intestinal epithelial barrier dysfunction. (A) Caco-2 cells were incubated with FA (0 - 500 mM) for 48 h and
then CCK-8 assay was used to detect cell viability. (B, C) Cells were pretreated with FA (25, 50, 100 mM) for 2 h and then stimulated with LPS for 24 h. TER and
FD4 flux were measured to evaluate the paracellular permeability. (D, E) Caco-2 cells were pretreated with 100 mM FA for 2 h and then stimulated with LPS for 24 h.
The mRNA and protein expression levels of occludin and ZO-1 were determined by qRT-PCR and Western blot analysis. (F) Ultrastructure of TJs in Caco-2
monolayers cell was observed with a transmission electron microscope (black arrow indicated, Scale bar = 500 nm). Data were presented as means ± SD from three
independent experiments and differences between means were compared using one-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05, **P < 0.01.
Frontiers in Pharmacology | www.frontiersin.org April 2020 | Volume 11 | Article 3766
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with control cells, increased expression of occludin and ZO-1
proteins were observed in Caco-2 cells pretreated with FA alone,
but not in cells treated with LY294002 alone (P < 0.01, Figure
5B). FA-induced increase in the expression of occludin and ZO-1
proteins was prevented by LY294002 (P < 0.01).
DISCUSSION

Our previous studies using the rat IEC-6 cell model
demonstrated that FA protects against heat stress-induced
intestinal epithelial barrier dysfunction via the PI3K/AKT-
mediated Nrf2/HO-1 signaling pathway (He et al., 2016; He
et al., 2018). In humans, dysfunction of intestinal epithelial
barrier leads to increased permeability of intestinal mucosa,
subsequent translocation of intestinal pathogenic bacteria or
toxins, which in turn aggravates the damage of intestinal
barrier integrity, resulting in local intestinal or systemic disease
such as inflammatory bowel diseases, multiple organ dysfunction
syndromes, and sepsis (Yoseph et al., 2016; Meng et al., 2017).
LPS, a representative biological marker of systemic microbial
translocation, plays an important role in the initiation and
development of intestinal epithelial barrier dysfunction (Nighot
et al., 2017). Caco-2 cells infected with LPS are widely used as an
in vitro model for evaluating intestinal barrier function in
humans. Thus, in the present study, we aimed to investigate
whether FA attenuates LPS-induced barrier dysfunction through
PI3K/AKT signaling in Caco-2 cells. The results demonstrated
that FA pretreatment inhibited LPS-induced increase in
intestinal permeability and restored tight junction structure
integrity in Caco-2 cells. Moreover, FA enhanced the
expression of miR-200c-3p in Caco-2 cells treated with LPS,
which negatively regulates the PTEN activity and thus promoted
Frontiers in Pharmacology | www.frontiersin.org 7
the downstream activation of PI3K/AKT pathway. Our study
provided the first clarification into the potential mechanism
underlying FA protection against LPS-induced intestinal
epithelial barrier dysfunction via microRNA-200c-3p-mediated
activation of PI3K/AKT signaling pathway.

We found that LPS strikingly disrupted intestinal barrier
function of Caco-2 cells, accompanied by decreased TER
values, elevated FD4 flux, and decreased occludin and ZO-1
protein expression. It was reported that FA competitively binds
to monocarboxylic acid transporter to inhibit the transepithelial
transport of fluorescein in Caco-2 cells (Konishi et al., 2002). In
LPS-stimulated RAW 264.7 cells, 100 mM FA reduces the
translocation of NF-E2-related factor 2 (Nrf2) and nuclear
transcription factor-kB (NF-kB) into the nuclei through a
reduction of the expression of phosphorylated IKK and
consequently inhibits proinflammatory IL-6 production
(Lampiasi and Montana, 2016; Lampiasi and Montana, 2018).
FA down-regulates mitogen-activated protein kinase signaling
(p38, ERK and JNK) and reserved the antioxidant activity in the
injured lungs induced by LPS stimulation (Zhang et al., 2018).
Several studies also demonstrated that FA may target Toll-like
receptor 4 (TLR4) to inhibit LPS infection. FA has been shown
potentially effective therapeutic agent in the acute kidney injury
model of LPS stimulation through suppression of inflammatory
events by inhibiting TLR-4 mediated NF-kB activation (Mir
et al., 2018). FA suppresses LPS-induced TLR4 activation to
reduce the expression of proinflammatory tumor necrosis factor
a and interleukin 1b in macrophages (Navarrete et al., 2015). FA
interferes with the TLR4/MD2 complex binding site and rescues
LPS-induced neurotoxicity in the mouse hippocampus (Rehman
et al., 2019). However, the effect of FA on LPS-induced intestinal
barrier dysfunction remains unclear. In this study, we found that
FA pretreatment reversed the LPS-induced intestinal epithelial
A B

FIGURE 3 | MiR-200c-3p expression was increased by FA in LPS-induced Caco-2 cells. Cells were pretreated with FA (100 mM) for 2 h and then stimulated with
LPS for 24 h. (A) Heat map evaluation of the distinguishable miRNA expression patterns among the LPS and LPS+FA group samples. Each column represents the
expression pattern of one sample, and the high expression level and the low expression level are indicated by the “red” and “green” lines, respectively. (B) The
expression of miR-200c-3p was measured by qRT-PCR. Data were presented as means ± SD from three independent experiments and differences between means
were compared using one-way ANOVA with Tukey’s multiple comparisons test. **P < 0.01.
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FIGURE 4 | FA protected against LPS-induced intestinal epithelial barrier dysfunction by up-regulation of miR-200c-3p. (A) Caco-2 cells were transfected with Lv-
miR-200c-3p (Lv-200c), Lv-miR-200c-3p spong (Lv-200c spong), and Lv-NC at a MOI of 15 and incubated at 37°C with 5% CO2 for 48 h, the expression levels of
miR-200c-3p were measured by qRT-PCR. (B, C) Cells were transfected with Lv-200c, Lv-200c spong or Lv-NC at an MOI of 15 and incubated at 37°C with 5%
CO2 for 48 h, and then cells were pretreated with FA (100 mM) for 2 h and stimulated with LPS for 24 h. TER values were monitored across the cell monolayers
using Millicell-ERS and permeability of FD4 across the cell monolayer was measured. (D) The protein expression levels of occludin and ZO-1 were determined by
Western blot analysis. Data were presented as means ± SD from three independent experiments and differences between means were compared using one-way
ANOVA with Tukey’s multiple comparisons test. *P < 0.05, **P < 0.01. (E) The distribution and expression of ZO-1 were detected by immunofluorescence assay.
ZO-1 (green) was labeled with fluorescent secondary antibodies and nuclei (blue) were labeled with DAPI (Scale bar = 50 mm).
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barrier dysfunction by decreasing epithelial permeability,
increasing the expression of occludin and ZO-1 proteins, and
maintaining tight junction integrity. These results indicated that
FA has a protective potential to prevent LPS-induced intestinal
epithelial barrier dysfunction.

The important role of miRNAs in regulating intestinal epithelial
barrier function has been well established (Ye et al., 2011). In the
present study, the analysis of miRNA expression sequencing
showed several significantly different miRNAs, including miR-
491-3p (fold change: 16.32), miR-4635 (fold change: 10.33), miR-
Frontiers in Pharmacology | www.frontiersin.org 9
1538 (fold change: –10.11), miR-6734-5p (fold change: –5.36), miR-
7111-5p (fold change: –4.90), miR-4750-5p (fold change: 4.21), and
miR-200c-3p (fold change: 3.87). The function and molecular
mechanism of miR-4635, miR-1538, miR-6734-5p, miR-7111-5p,
or miR-4750-5p have not been reported. Studies suggested that
miR-491-3p may be involved in attenuating multidrug resistance of
hepatocellular carcinoma, or suppressing the growth and invasion
of hepatocellular carcinoma (Rodrigues et al., 2016; Duan et al.,
2017; Zhao et al., 2017). Indeed, we also found that overexpression
or suppression of miR-491-3p had no effect on the expression of
A

B

FIGURE 5 | FA attenuated LPS-induced intestinal epithelial barrier dysfunction via activating miR-200c-3p-mediated PTEN/AKT pathway in Caco-2 cells. (A) Cells
were transfected with Lv-200c, Lv-200c spong and Lv-NC at an MOI of 15 and incubated at 37°C with 5% CO2 for 48 h, and then cells were pretreated with FA
(100 mM) for 2 h and stimulated with LPS for 24 h. The expression levels of PTEN, PI3K, p-PI3K, AKT and p-AKT were evaluated using western blotting. (B) Caco-2
cells were pretreated with 10 mM LY294002 for 1 h and then treated with 100 mM FA for 2 h. The expression levels of occludin and ZO-1 proteins were evaluated
using Western blotting. Data were presented as means ± SD from three independent experiments and differences between means were compared using one-way
ANOVA with Tukey’s multiple comparisons test. *P < 0.05; **P < 0.01.
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occludin and ZO-1. Emerging studies have found that the miR-
200c-3p has an important role in multiple diseases, including
ovarian cancer, breast cancer, and gastric cancer (Sulaiman et al.,
2016; Ghasabi et al., 2019). The miR-200 family includes miR-200a,
miR-200b, miR-200c, miR-141, and miR-429. Among them, it has
been reported that miR-429 can down-regulate the expression of
Ocln by targeting the 3′-UTR of Ocln mRNA, leading to the
destruction of tight junction and enhanced intestinal barrier
permeability (Yu et al., 2016). In addition, miR-200b has been
demonstrated to attenuate tight junction injury induced by tumor
necrosis factor a through targeting c-Jun and MLCK (Shen et al.,
2017). We found that FA significantly inhibited the decreased
expression of miR-200c-3p induced by LPS. Furthermore,
overexpressed miR-200c-3p remarkably enhanced the protective
effect of FA on LPS-induced intestinal barrier dysfunction involving
in increasing cell permeability and maintaining tight junction
protein functions, however, knockdown of miR-200c-3p reversed
the protective effect of FA on LPS-induced intestinal barrier
dysfunction. These findings indicated that FA protected Caco-2
cells from LPS-induced intestinal barrier dysfunction at least in part
by up-regulating the expression of miR-200c-3p. Further study is
needed to explore the mechanism of FA in improving intestinal
diseases via regulating other miRNAs with high fold changes.

MiR-200c-3p regulates multiple biological processes by binding to
different target coding genes. PTEN gene has been reported as a target
of miR-200c-3p. PTEN dephosphorylates phosphatidylinositol−3,4,5
−trisphosphate (PIP3), which recruits AKT to the cell membrane and
is phosphorylated by other kinases dependent on PIP3 and PTEN
negative regulates the PI3K/AKT signaling pathway (Tokuhira et al.,
2015; Hu et al., 2019). Recent literature has shown that PI3K/AKT
signaling pathway contributes to the regulation of tight junctions.
Resveratrol has been reported to attenuate oxidative stress-induced
Frontiers in Pharmacology | www.frontiersin.org 10
intestinal barrier injury via PI3K/AKT-mediated Nrf2 signaling
pathway (Zhuang et al., 2019). PI3K/AKT/mTOR pathway is
involved in the regulation of the blood-brain barrier’s tight junction
proteins during arsenic-induced autophagy in the developmental
mouse cerebral cortex and hippocampus (Manthari et al., 2018).
Activation of the PI3K/AKT pathway as a result of TLR2 activation
has also been shown to enhance epithelial barrier integrity. TLR2
augments the intestinal barrier through ZO-1 protein redistribution
in response to stress-induced damage under control of the PI3K/AKT
pathway (Cario et al., 2007). Several studies suggested that FA inhibits
proliferation and induces apoptosis via down-regulating PI3K/AKT
signaling pathway dose-dependently and exerts anti-cancer properties
in some cancer cells, including 143B and MG63 osteosarcoma cells
(30, 100, and 150 mM treatment) (Wang et al., 2016) and Caski
human cervical carcinoma cells (4–20 mM treatment) (Luo et al.,
2020). FA treatment (10 – 30 mM) reverses P-glycoprotein mediated
multidrug resistance via inhibition of PI3K/AKT/NF-kB signaling
pathway in KB ChR8-5 cells (Muthusamy et al., 2019). A caffeic acid-
ferulic acid hybrid compound attenuates LPS-mediated inflammatory
responses partly through suppressing PI3K/AKT/NF-kB signaling
pathway in murine BV2 and RAW264.7 cells (Kwon et al., 2019). It
was also reported that 5 mM FA protects human umbilical vein
endothelial cells from radiation-induced oxidative stress via activating
PI3K/AKT signaling pathway (Ma et al., 2010). Our previous study
found that FA has a protective effect on intestinal epithelial barrier
function in IEC-6 cells suffering from heat stress, which is associated
with activation of the antioxidant PI3K/AKT/Nrf2/HO-1 signaling
pathway (He et al., 2016; He et al., 2018). In the present study, FA
increased the expression of phosphorylated PI3K and AKT.
Difference of use dose and cell species may contribute to various
physiological function of FA and distinct regulatory effects of FA on
PI3K/AKT signaling pathway. Previous research has demonstrated
FIGURE 6 | FA ameliorated lipopolysaccharide-induced barrier dysfunction via miR-200c-3p-mediated activation of PI3K/AKT pathway in Caco-2 cells. FA exhibited
the protective effects on LPS-induced barrier dysfunction involving in miR-200c-3p and PTEN/PI3K/Akt signaling pathway. FA promotes activation of PI3K/AKT
pathway by miR-200c-3p-mediated suppression of the negative mediator PTEN, which, in turn, maintains TJ function and thus ameliorates LPS-induced intestinal
epithelial barrier dysfunction.
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that miR-21 can regulate intestinal epithelium tight junction
permeability involving in PTEN/PI3K/AKT signaling pathway in
Caco-2 cells (Zhang et al., 2015). Thus, miR-200c-3p might be
participated in the regulation of intestinal barrier function by
regulating the PTEN/PI3K/AKT signaling pathway. In the present
study, we investigated whether FA affected the PTEN/PI3K/AKT
signaling pathway to improve the intestinal barrier function through
regulating miR-200c-3p expression. Results showed that FA
significantly inhibited PTEN activity by LPS and promoted
activation of PI3K/AKT signaling pathway. Moreover, FA-mediated
activation of PI3K/AKT pathway was notably strengthened by miR-
200c-3p overexpression and inhibited by miR-200c-3p suppression.
These findings suggested that FA up-regulates miR-200c-3p and then
negatively regulatory promotes activation of PTEN/PI3K/AKT
pathway, thereby protecting against LPS-induced Caco-2 cell
barrier dysfunction.

In conclusion, the present study demonstrated that in Caco-2 cells,
FA exhibited the protective effects on LPS-induced barrier
dysfunction involving in miR-200c-3p and PTEN/PI3K/Akt
signaling pathway. FA promotes activation of PI3K/AKT pathway
by miR-200c-3p-mediated suppression of the negative mediator
PTEN, which, in turn, maintains TJ function and thus ameliorates
LPS-induced intestinal epithelial barrier dysfunction (Figure 6).
These findings provide new insights for interpreting the potential
molecular mechanisms of FA-mediated protective effects on intestinal
epithelial barrier function. FA may be a candidate drug for the
treatment of intestinal barrier dysfunction-related diseases. More
animal or clinical experiments are essential to further evaluate the
protective effect of FA on intestinal epithelial barrier dysfunction.
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TABLE S1 | List of differentially expressed miRNAs in Caco2 cells of FA
pretreatment compared with the LPS treatment without FA.

FIGURE S1 | The effect of miR-491-3p in FA protection against LPS-induced
intestinal epithelial barrier dysfunction. Caco-2 cells were transfected with Lv-miR-
491-3p and Lv-miR-491-3p spong at an MOI of 20 and incubated for 48 h at 37°C
with 5% CO2. The protein expression levels of occludin and ZO-1 were determined
by Western blot analysis.

FIGURE S2 | FA activated PI3K/AKT pathway in Caco-2 cells. Caco-2 cells were
treated with 100 mM FA for 2 h. The expression levels of PI3K, p-PI3K, AKT, and p-
AKT were evaluated using Western blotting. Data were presented as means ± SD
from three independent experiments and differences between means were
compared using the unpaired t test. **P< 0.01.
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