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ABSTRACT

Coronavirus (which is also known as COVID-19) is severely impacting the wellness and lives of many
across the globe. There are several methods currently to detect and monitor the progress of the disease
such as radiological image from patients’ chests, measuring the symptoms and applying polymerase chain
reaction (RT-PCR) test. X-ray imaging is one of the popular techniques used to visualise the impact of the
virus on the lungs. Although manual detection of this disease using radiology images is more popular,
it can be time-consuming, and is prone to human errors. Hence, automated detection of lung patholo-
gies due to COVID-19 utilising deep learning (Bowles et al.) techniques can assist with yielding accurate
results for huge databases. Large volumes of data are needed to achieve generalizable DL models; how-
ever, there are very few public databases available for detecting COVID-19 disease pathologies automat-
ically. Standard data augmentation method can be used to enhance the models’ generalizability. In this
research, the Extensive COVID-19 X-ray and CT Chest Images Dataset has been used and generative adver-
sarial network (GAN) coupled with trained, semi-supervised CycleGAN (SSA- CycleGAN) has been applied
to augment the training dataset. Then a newly designed and finetuned Inception V3 transfer learning
model has been developed to train the algorithm for detecting COVID-19 pandemic. The obtained results
from the proposed Inception-CycleGAN model indicated Accuracy = 94.2%, Area under Curve = 92.2%,
Mean Squared Error = 0.27, Mean Absolute Error = 0.16. The developed Inception-CycleGAN framework
is ready to be tested with further COVID-19 X-Ray images of the chest.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

which may increase the risk of COVID-19 virus infection [1]. There
are some other disadvantages in applying RT-PCR as well includ-

Coronavirus-2 (SARS-CoV-2) causes lung disease and by fast
spreading affects the well-being of the global population. Iden-
tifying on-time the COVID-19 cases and monitoring the disease
progress could prevent spreading it in the society and speed up
treatment process [1]. Recently, polymerase chain reaction (RT-
PCR) testing method employed to detect COVID-19 and identify
SARS-CoV-2 ribonucleic acid (RNA) from respiratory specimens.
The RT-PCR testing currently is the one of the top standards in
detecting COVID-19, but it is very time-consuming, painful, and
bit complicated manual process. Healthcare staff are required to
engage in close contact with individuals to perform RT-PCR tests
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ing, insufficient numbers of available test Kits, costs, threats to the
healthcare staff safety, and waiting time of test results [2].

An alternative method in identifying COVID-19 are chest imag-
ing investigations, such as X-ray or computed tomography (CT)
imaging which are analyzed by specialist radiologists to identify
visual indicators associated with COVID-19 biological infection [2].
Early studies showed patients showed abnormalities in patients’
chest radiology images in COVID-19 infection such as ground-glass
opacity, bilateral or interstitial abnormalities in chest X-Ray and
CT scans. The radiology scans required to analysis by radiologist
to identify COVID-19 from the images. Artificial intelligence (Al)
based tools could improve the performance of the radiologist anal-
ysis. The Al and machine learning algorithms recently demonstrate
remarkable progress in image-recognition tasks [2].


https://doi.org/10.1016/j.patrec.2021.11.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.11.020&domain=pdf
mailto:Xujuan.zhou@usq.edu.au
https://doi.org/10.1016/j.patrec.2021.11.020

G. Bargshady, X. Zhou, PD. Barua et al.

Wang et al. [2] have developed the COVID-Net, which is a deep
convolutional neural network (DCNN) method to identify patients
with COVID-19 from X-ray imaging. The applied chest radiography
images dataset contains COVID-19, viral and bacterial pneumonia,
and other infection classes. The overall accuracy obtained by their
method is 83.5% in four classes and 92.4% overall accuracy for bi-
nary classes (i.e., COVID-19, and non-COVID groups). Hemdan et al.
[3] have developed the COVIDX-Net Al algorithm to assist radiol-
ogists in identifying COVID-19 through chest X-rays. They intro-
duced seven deep learning models involving VGG19, MobileNetV2,
DenseNet201, ResNetV2, InceptionResNetV2, Xception and Incep-
tionV3 applied these models in the COVIDX-Net algorithm. The re-
sults indicated that the effectiveness of the VGG19 and DenseNet
was similar in terms of measuring F;-scores (0.91 and 0.89 respec-
tively). On the other hand, Sethy and Behera [4] proposed a deep
learning technique in X-ray scans database for the same issue by
achieving an accuracy of 95.38%. Ozturk et al. [5] presented Dark-
Net or DarkCOVIDNet model and the proposed model has provided
diagnoses for 3 classes, including positive COVID-19 cases, all types
of pneumonia, and healthy classes. The model has been trained for
binary classification, including COVID-19 and normal cases as well.
The accuracy of 3-class classification is 87.02% and 98.08% for two
classes.

CoroNet consists of a convolution neural network (CNN) has
been introduced by Khan, Shah, et al. [6] for detecting COVID-19.
The experimental results have an overall accuracy of 89.6% from
X-ray and 95% from CT radiology images for four classes including
bacterial pneumonia, COVID-19, other pneumonias, and normal. It
also trained and evaluated three classes including COVID-19, pneu-
monia, and normal (or benign) cases. There is some other research
in the same area that based on CT scans image analysis. For ex-
ample, COVNet introduced by Li et al. [7] uses ResNet50 to clas-
sify COVID-19 from 4356 chest CT images and DeepPneumonia in-
troduced by Song et al. [8] classifies patients into three groups:
COVID-19, bacterial pneumonia, and healthy.

Although many deep learning techniques have been proposed
to detect COVID-19 accurately [9,10,11,12,13,14], it is still chal-
lenging to detect it accurately using x-ray images alone. The cur-
rent main issue in applying deep learning methods is that there
are limited number of publicly available COVID-19 chest image
databases available. The big data is needed to train the deep
convolutional networks and generalize the developed models. To
solve the limited availability of COVID-19 chest X-ray databases
and for considering use of deep learning models to detect COVID-
19, a new CycleGAN-Inception approach is proposed in this paper.
Fig. 1 shows the proposed model’s framework in COVID-19 auto-
mated detection. The Extensive COVID-19 X-ray and CT Chest Im-
ages Dataset [15] has been used for validation of the proposed
model however for the training set we used the dataset in addi-
tion augmented data by CycleGAN has added to training dataset to
train the proposed model. The database has collected from several
COVID-19 radiological databases including the “Extensive-COVID-
19-X-ray-and-CT-Chest-Images Dataset” [16] and the “Chest-Xray-
Dataset” [17].

For better performance of the proposed model, CycleGAN
[18] has been used to generate and augment data by translating
COVID-19 images to normal images and normal to COVID-19 im-
ages. The GAN methods have been previously used to produce new
training images [19], refine synthetic image [20] and improve brain
segmentation [21].

As shown in Fig. 1, data flow has four steps. Stream (x) presents
all COVID-19 original X-ray image data from collected databases
and stream (y) provides all non-COVID-19 original X-ray image
data from the selected databases. The Dx and Dy are the gener-
ated translated data by CycleGAN. All original and generated X-ray
image data are fed to the pre-processing section of the proposed
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Fig. 1. Proposed CycleGAN-Inception model. All COVID-19 (stream X) and non-
COVID-19 (stream Y) X-ray images are from the selected databases. Dx and Dy data
flow are the translated data by CycleGAN to deal with the data limitation problem.

model to undergo normalization, resizing, and centralization. The
pre-processing section processes data to make it more suitable to
feed the data to the proposed pre-trained Inception V3. The pro-
posed Inception V3 pre-trained model is modified and fine-tuned
by freezing fully connected layers and adding two fine-tuned fully
contacted layers. The primary utility and significance of this work
are listed as follows:

¢ A novel data augmentation approach is developed to generate
images with COVID-19 and normal characteristic using Cycle-
GAN.

o The developed novel model is trained and evaluated using orig-
inal and translated image data using CycleGAN.

o The newly designed model can identify positive COVID-19 cases
from chest X-ray radiological images effectively and with high
accuracy.

The rest of the paper is organized as the following: In
Section 2 the structure and concepts of the proposed CycleGAN-
Inception model is presented. Section 3 provides the experimental
configuration, evaluation metrics, and collected data. Section 4 de-
scribes discussion and results of the trained and evaluated the
CGAN-Inception proposed model and demonstrates its effective-
ness. Finally, Section 5 presents the summary of the paper.

2. The proposed CycleGAN-Inception model

The CycleGAN-Inception model is developed to categorize chest
X-ray images with or without COVID-19 characteristics (Fig. 1). The
proposed approach has two steps: (i) data augmentation technique,
the model generates extra X-ray images by applying CycleGAN in-
troduced by Zhu et al. [18]. Then all data transfer to image pre-
processing section for normalization and resizing input data. In the
next step, all data transfer to the proposed and modified Inception
V3 pre-trained model. More details of the components of the pro-
posed model were described in the following subsections.
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2.1. Data augmentation non COVID-19 to COVID-19 CycleGAN

A CycleGAN was introduced by Zhu et al. [18] as a model of
training the deep CNNs in an image-to-image translation format.
It also identifies dissimilar other generative adversarial networks
developed by Goodfellow et al. [22] for image translation, allow-
ing the CycleGAN to learn mapping between one image domain
and another through an unsupervised approach [18]. The Cycle-
GANs facilitates learning mapping from one area (X) to another
area (Y), without identifying the matched training pairs. It is also
often used in data augmentation. Sandfort et al. [23] evaluated the
CycleGAN for data augmentation purpose by training CycleGAN in
converting contrast CT scan images into non-contrast scans. GANs
have been used in the past for data extension to produce unique
training images set for classification purpose [19], refine synthetic
images [20] and improve brain segmentation [21].

Since labelled medical imaging data can be both difficult and
expensive to obtain, access to big medical data is essential in
achieving an accurate and robust deep learning algorithm. Stan-
dard data augmentation is a routinely performed process which is
used to increase generalizability. However, the GANs could offer a
novel approach of data extension. Therefore, the newly trained Cy-
cleGAN with COVID-19 X-ray radiological images is applied in this
work to augment existing models using non-contrast images.

Zhu et al. [18] and Godard et al. [24] used cycle consistency
loss to supervise CNN training. Zhu et al. [18] have introduced a
parallel loss to drive G and F with same coherence. Their model
consists of mapping G: X—Y and F: Y—X by introducing adversar-
ial discriminators of Dx and Dy. To distinguish between images {x}
and translated images {F(y)}, Dx and to discriminate between {y}
and {G(x)} Dy are applied. For more information about the prin-
ciples and concepts of it the reader could refer to the Zhu et al.
[18]. As a summary the definitions of components are describing
mathematically as follows.

The adversarial losses are definition in Eq. (1):

Lean(G, Dy, X, Y) = Eyp,.nltog Dy (v)] T Ex~paaa 01108(1-Dy (G(x))]
(1)

3x3x32 B
Conv

3x3x32
Conv

3x3x64
Conv

>

3x3 Max
Pooling
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In This formula, G generates images G(x) that appears like im-
ages from field Y and Dy observes between translated samples G(x)
and original samples y.

The cycle consistency loss is defined as following in Eq. (2) as
per an image y from domain Y, G and F are satisfying backward
cycle consistency:

y—-Fy) — G(f) ~y (2)

The cycle consistency loss is formulated (see Eq. (3)) as follow:

Leye (G F) = Ex—pye 01IF G0 ~xl11] T Ey~paaa0IGF @)~y 111 (3)

Therefore,

L(G,F,Dx,Dy) = Lean(G, Dy, X, Y) + Lean(F, Dx,Y,X)

+ ILeye(G, F) (4)

here J conducts the relation of the two objectives. CycleGAN has
been applied in the proposed model to translation of non-COVID-
19 to COVID-19 images and vice versa as following:

The discriminators Dy and Dy are CNNs that read an image and
classify it as true or false (real or fake). “True” is indicated by an
output close to 1 and “false” as close to 0. The proposed architec-
ture consists of five convolutional layers, which generate a single
logit to detect whether the image is real or not. The architecture
does not include a fully connected layer. The convolutional layers
are then supported by batch normalization, and the rectified linear
activation function (ReLU) for hidden units.

2.2. Proposed finetuned pretrained Inception V3

In reality, the datasets are often insufficient to train the deep
learning algorithms and obtaining the labelled data can be costly.
Transfer learning techniques are used to achieve higher perfor-
mance of the machine learning algorithms by using labelled data
or getting knowledge from similar domains [25]. It can implement
the knowledge that has been realized in earlier settings. There are
also two popular transfer learning strategies: deep feature extrac-
tion and fine-tuning [26,27].
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Fig. 2. Architecture of Inception V3 [31].
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Fig. 3. Core unit of the Inception module [30].

Transfer learning trains a task similar to the deep neural net-
work. The initial layers of the pre-training network are modi-
fied if needed. The fine-tuning parameters can be applied to the
model’s final layers for learning the features of the new dataset.
The pre-trained model retrains with a new, smaller, dataset, and
the weights of the model are refined according to the new tasks.
Fine-tuning takes place by backpropagation with labels. The learn-
ing to transmit approach is more efficient than the effort required
to train an original, new neural network. The parameters in the
newly developed neural network are not established from scratch.
DL algorithms can achieve a higher function or performance for
many issues -however, they rely upon large amounts of data and
a longer training timeframe [28,29]. Therefore, reusing pre-trained
models for similar tasks can be very beneficial. Accordingly, the
Inception V3 [30,31] has been used as a pre-trained model and
was finetuned with the proposed dataset in this work. A finetuned
Inception V3 is modified and applied as a pre-trained Inception
to classify COVID-19 images from collected and generated data by
CycleGAN. Inception V3 assembles the sparse convolution kernels
into fewer dense sub-convolution kernel groups. The structure of
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the Inception V3 and core unit of Inception is shown in Figs. 2 and
3.

The proposed model architecture is shown in Fig. 4. We re-
moved the Softmax layers and fully connected layers in Inception
V3 and froze trainable layers. Then two fully connected layers of
size 92 and 1028, and activation ReLU are included to train the
model.

2.3. The proposed algorithm

The algorithm used in our proposed model is displayed in Fig. 5
and described below:

Algorithm 1
Proposed CycleGAN-Inception algorithm.

—_

X <« input COVID-19 images
y < input non COVID-19 images
procedure pre-processing (X,y)

X,y < resize (x,y)

X,y < normalize (X,y)
end procedure pre-processing
procedure CycleGAN (X,y)

Xy < G, F
L(G,F,Dx,Dy)=Lgan(G,Dy,X,Y)+Lcan(F.DxY,X)+ALcyc(G,F)
0: end procedure CycleGAN
1 procedure Finetune_Inception (n=10, j=50, FC1 =92, FC2=1028,
activation = ReLU)

—|=lO|o|N|D|ulwWIN

12: remove FC layers Inception V3
13: add_layer (FC1, activation)
14: add_layer (FC2, activation)
15: build model CycleGAN_Inception
16: for k < 0, n do
17: for epoch « 0, j do
18: train CycleGAN_Inception (X, y, Dy, Dy)
19: evaluate CycleGAN_Inception (X, y, Dx, Dy)
20: end for
21: end for
22: end procedure Finetune_Inception
x| [3aas 363 Max
locow| 2Co | Pooling
. - 2
Inception [0 o —n
’ “ & 7 N %
n - ()] (=)
3 Max [ ) ~ P
Pooling U — el S
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Fig. 4. The proposed CycleGAN-Inception model architecture to detect COVID-19.
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Fig. 5. Flowchart of the proposed algorithm.

3. Experimental configuration and databases

We have performed the experiments using an Intel Core i7
computer with 3.3 GHz and 16 GB memory. The suggested algo-
rithm was implemented by Python software v3.6 [32] with Keras
[33] and TensorFlow [34] libraries. Using Keras library allows us to
develop the prototypes quickly and the library supports both the
CNN and the recurrent neural networks.

3.1. Databases

The “Extensive COVID-19 X-ray and CT Chest Images” Database
were used in this work to train and develop our model [15].
The database consists of two folders: (1) 5500 normal and 4044
COVID-19 X-ray chest scans. (2) 2628 normal and 5427 COVID-19
CT scans. Only the X-ray images from the database were used in
our study. Samples of COVID-19 and non-COVID-19 X-rays images
are presented in Figs. 6 and 7. The augmented data have been used
to train the model in this work.

3.2. Evaluation metrics

Evaluation of obtained results is an important step in ma-
chine learning development. Estimation of the effectiveness and
efficiency of the proposed model is done by training and testing
datasets which are divided into 10 folds according to k-fold cross
validation [35]. Cross validation is computationally intensive. It is
used to develop the automated model using the training, testing
and validation data. The dataset D is equally divided into k disjoint
subsets. It uses (k-1) dataset for training purposes and a dataset
for the purpose of testing by repeatedly training the algorithm k
times.

The performances of the new model were evaluated using ac-
curacy, area under curve, mean squared error, mean absolute error
based on the confusion Matrix (Ouchicha et al.; Bradley, 1997).

The confusion matrix includes four parts, true positive (TP),
false positive (FP), false negative (FN), and true negative (TN).

The accuracy (ACC) is defined as correct predictions split by the
total number of input data in testing and training sets.

ACC = (TN + TP)/(TP + FP+ FN + TN) (5)

Fig. 6. Samples of non-COVID-19 X-ray images [15].
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Fig. 7. Samples of COVID-19 X-ray images [15].

Mean absolute error (Ismael & Sengiir) represents the dispar-
ity between original scores and predicted scores. It judges how re-
moved the predictions are from the true output. Mean squared er-
ror (MSE) is the average of the square disparity between the origi-
nal scores and predicted scores.

The area under curve (AUC) refers to the area under the re-
ceiver operating characteristic curve (ROC) of FP rate versus TP rate
at various points from 0 to 1 [36].

4. Results and discussion

The obtained results indicate that our proposed CycleGAN-
Inception can accurately detect positive COVID-19 cases and dif-
ferentiate between COVID-19 andnon-COVID-19 cases using radio-
graphic images. The sample X-ray images generated by CycleGAN:
(a) a sample of real and generated images from class non-covid19
to covid19. (b) a sample of real and generated images from class
covid19 to non-covid19 is shown in Fig. 8.

The ACC, AUC, MSE and MAE obtained by the proposed
CycleGAN-Inception V3 model with k-fold cross-validation (k = 10)

Table 1
Average performance results from
CycleGAN-Inception model.
ACC (%) AUC (%) MSE MAE
94.2 92.2 0.27 0.16

method is displayed in Table 1. The proposed model is trained and
tested with 50 epochs. We have obtained an average accuracy of
94.2% and AUC of 92.2%. In Fig. 9, the TP, TN, FP, and FN of the
test set have been calculated and the average number of TP, FN,
TN, FP images for ten runs are displayed in the figure. From the
total number of 9544 images of the selected original dataset 954
images have been selected as test dataset based on the K-fold cross
(K = 10) validation.

The developed model has compared with other transfer learn-
ing models namely Inception V3, VGG16 and finetuned Inception
V3 using the same database. The results displayed in Table 2
demonstrate that our model outperformed the previous baseline
models. The ROC curves obtained for four models including the

Real

Geqerated

(a)

Real Generated

3

(b)

Fig. 8. Sample chest X-ray images generated by CycleGAN: (a) a sample of real and generated images from class non-covid19 to covid19. (b) a sample of real and generated

images from class covid19 to non-covid19.
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Fig. 9. Confusion matrix of trained and evaluated proposed model for two classes.

Table 2

Summary of comparison of proposed model with other

transfer learning models.

No  Model ACC (%)  AUC (%)
1 Inception V3 68 62
2 VGG16 82 75
3 Fine tuned Inception V3 91 88
4 CycleGAN-Inception 94.2 92.2
1.0
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Fig. 10. ROC curves obtained for four models including the proposed CycleGAN-
Inception, Inception V3, Finetuned Inception V3, and VGG16.

proposed CycleGAN-Inception, Inception V3, Finetuned Inception
V3, and VGG16 are shown in Fig. 10.

The comparison of our technique with the gold-standard ap-
proach for automated detection of COVID-19 from chest X-ray ra-
diological scans is shown in Table 3. It illustrates that we have ac-
complished the highest accuracy and AUCs. The advantages of our
method are as follows:

1. Proposed novel augmentation method. Hence, can be employed
for smaller database also.

2. Obtained highest classification performance (Accuracy = 94.2%
and AUC = 92.2%).
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Table 3
Comparing of the proposed model’s results with the state-of-the-art models’ results.
Authors Approaches Results
Wang et al. [2] COVID-Net ACC = 83.5% for
4-classes,
ACC = 92.4% for
3-classes.
Hemdan et al. [3] COVIDX-Net Fi.scores = 0.91 and 0.89
of 2-classed (i.e.,
COVID-19 and normal
cases)
Sethy and Behera [4] ResNet50+SVM ACC = 95.33%
Ozturk et al. [5] DarkNet ACC = 87.02% of
multi-class
ACC = 98.08% of
2-classes.
Khan et al. [6] JoroNet ACC = 89.6% and 95%

for 4 classes.
ACC = 94.2% and
AUC = 92.2%

The proposed model CycleGAN-Inception

3. Developed model is accurate and robust as we have employed
ten-fold cross-validation strategy.

4. Generated system is simple and faster as we have used transfer
learning method.

The limitation of our method is that we have used only one
public database. Our model needs to be tested with more diverse
database.

5. Conclusions

The aim of this paper was to develop a novel robust Al algo-
rithm to detect COVID-19 using x-ray images automatically. Our
proposed approach is simple, robust and more accurate. For do-
ing this matter, we divided the model in two sections. In the first
phase we applied CycleGAN technology for COVID-19 images which
was the first time applied for COVID-19 X-ray image to translate
COVID-19 X-ray image to normal once and vice versa. In the sec-
ond phase we developed new deep learning model to classify the
images in two normal and problematic classes. Therefore, we iden-
tified a new COVID-19 diagnosis system using deep learning tech-
nique and new framework was developed by integrating CycleGAN
and finetuned Inception V3 X-ray transfer learning model. The pro-
posed algorithm has trained, tested, and evaluated using the “Ex-
tensive COVID-19 X-ray Chest Images” Dataset. A CycleGAN is ap-
plied to the proposed model as an unsupervised technique for data
augmentation. The pre-trained Inception V3 deep convolutional
network is modified by removing fully connected layer and adding
two new fully connecting layers. The whole process is trained and
evaluated. The obtained results demonstrate the effectiveness of
the algorithm with MSE = 0.27, MAE = 0.16, AUC = 92.2% and ac-
curacy = 94.2%. Future work could validate the proposed model
with more diverse big datasets and evaluate the performance in
COVID-19 diagnosis. In future we may plan to explore the possibil-
ity of using our developed model to diagnose pulmonary edema,
asthma, pericarditis, heart failure and pneumonia in addition to
COVID-19 using chest x-ray images. Our new model can be used
to diagnose other diseases using other imaging modalities as well.
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