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a b s t r a c t 

Coronavirus (which is also known as COVID-19) is severely impacting the wellness and lives of many 

across the globe. There are several methods currently to detect and monitor the progress of the disease 

such as radiological image from patients’ chests, measuring the symptoms and applying polymerase chain 

reaction (RT-PCR) test. X-ray imaging is one of the popular techniques used to visualise the impact of the 

virus on the lungs. Although manual detection of this disease using radiology images is more popular, 

it can be time-consuming, and is prone to human errors. Hence, automated detection of lung patholo- 

gies due to COVID-19 utilising deep learning (Bowles et al.) techniques can assist with yielding accurate 

results for huge databases. Large volumes of data are needed to achieve generalizable DL models; how- 

ever, there are very few public databases available for detecting COVID-19 disease pathologies automat- 

ically. Standard data augmentation method can be used to enhance the models’ generalizability. In this 

research, the Extensive COVID-19 X-ray and CT Chest Images Dataset has been used and generative adver- 

sarial network (GAN) coupled with trained, semi-supervised CycleGAN (SSA- CycleGAN) has been applied 

to augment the training dataset. Then a newly designed and finetuned Inception V3 transfer learning 

model has been developed to train the algorithm for detecting COVID-19 pandemic. The obtained results 

from the proposed Inception-CycleGAN model indicated Accuracy = 94.2%, Area under Curve = 92.2%, 

Mean Squared Error = 0.27, Mean Absolute Error = 0.16. The developed Inception-CycleGAN framework 

is ready to be tested with further COVID-19 X-Ray images of the chest. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Coronavirus-2 (SARS-CoV-2) causes lung disease and by fast 

preading affects the well-being of the global population. Iden- 

ifying on-time the COVID-19 cases and monitoring the disease 

rogress could prevent spreading it in the society and speed up 

reatment process [1] . Recently, polymerase chain reaction (RT- 

CR) testing method employed to detect COVID-19 and identify 

ARS-CoV-2 ribonucleic acid (RNA) from respiratory specimens. 

he RT-PCR testing currently is the one of the top standards in 

etecting COVID-19, but it is very time-consuming, painful, and 

it complicated manual process. Healthcare staff are required to 

ngage in close contact with individuals to perform RT-PCR tests 
∗ Corresponding author. 
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hich may increase the risk of COVID-19 virus infection [1] . There 

re some other disadvantages in applying RT-PCR as well includ- 

ng, insufficient numbers of available test kits, costs, threats to the 

ealthcare staff safety, and waiting time of test results [2] . 

An alternative method in identifying COVID-19 are chest imag- 

ng investigations, such as X-ray or computed tomography (CT) 

maging which are analyzed by specialist radiologists to identify 

isual indicators associated with COVID-19 biological infection [2] . 

arly studies showed patients showed abnormalities in patients’ 

hest radiology images in COVID-19 infection such as ground-glass 

pacity, bilateral or interstitial abnormalities in chest X-Ray and 

T scans. The radiology scans required to analysis by radiologist 

o identify COVID-19 from the images. Artificial intelligence (AI) 

ased tools could improve the performance of the radiologist anal- 

sis. The AI and machine learning algorithms recently demonstrate 

emarkable progress in image-recognition tasks [2] . 

https://doi.org/10.1016/j.patrec.2021.11.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.11.020&domain=pdf
mailto:Xujuan.zhou@usq.edu.au
https://doi.org/10.1016/j.patrec.2021.11.020
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Fig. 1. Proposed CycleGAN-Inception model. All COVID-19 (stream X) and non- 

COVID-19 (stream Y) X-ray images are from the selected databases. Dx and Dy data 

flow are the translated data by CycleGAN to deal with the data limitation problem. 
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Wang et al. [2] have developed the COVID-Net, which is a deep 

onvolutional neural network (DCNN) method to identify patients 

ith COVID-19 from X-ray imaging. The applied chest radiography 

mages dataset contains COVID-19, viral and bacterial pneumonia, 

nd other infection classes. The overall accuracy obtained by their 

ethod is 83.5% in four classes and 92.4% overall accuracy for bi- 

ary classes (i.e., COVID-19, and non-COVID groups). Hemdan et al. 

3] have developed the COVIDX-Net AI algorithm to assist radiol- 

gists in identifying COVID-19 through chest X-rays. They intro- 

uced seven deep learning models involving VGG19, MobileNetV2, 

enseNet201, ResNetV2, InceptionResNetV2, Xception and Incep- 

ionV3 applied these models in the COVIDX-Net algorithm. The re- 

ults indicated that the effectiveness of the VGG19 and DenseNet 

as similar in terms of measuring F 1 -scores (0.91 and 0.89 respec- 

ively). On the other hand, Sethy and Behera [4] proposed a deep 

earning technique in X-ray scans database for the same issue by 

chieving an accuracy of 95.38%. Ozturk et al. [5] presented Dark- 

et or DarkCOVIDNet model and the proposed model has provided 

iagnoses for 3 classes, including positive COVID-19 cases, all types 

f pneumonia, and healthy classes. The model has been trained for 

inary classification, including COVID-19 and normal cases as well. 

he accuracy of 3-class classification is 87.02% and 98.08% for two 

lasses. 

CoroNet consists of a convolution neural network (CNN) has 

een introduced by Khan, Shah, et al. [6] for detecting COVID-19. 

he experimental results have an overall accuracy of 89.6% from 

-ray and 95% from CT radiology images for four classes including 

acterial pneumonia, COVID-19, other pneumonias, and normal. It 

lso trained and evaluated three classes including COVID-19, pneu- 

onia, and normal (or benign) cases. There is some other research 

n the same area that based on CT scans image analysis. For ex- 

mple, COVNet introduced by Li et al. [7] uses ResNet50 to clas- 

ify COVID-19 from 4356 chest CT images and DeepPneumonia in- 

roduced by Song et al. [8] classifies patients into three groups: 

OVID-19, bacterial pneumonia, and healthy. 

Although many deep learning techniques have been proposed 

o detect COVID-19 accurately [ 9 , 10 , 11 , 12 , 13 , 14 ], it is still chal-

enging to detect it accurately using x-ray images alone. The cur- 

ent main issue in applying deep learning methods is that there 

re limited number of publicly available COVID-19 chest image 

atabases available. The big data is needed to train the deep 

onvolutional networks and generalize the developed models. To 

olve the limited availability of COVID-19 chest X-ray databases 

nd for considering use of deep learning models to detect COVID- 

9, a new CycleGAN-Inception approach is proposed in this paper. 

ig. 1 shows the proposed model’s framework in COVID-19 auto- 

ated detection. The Extensive COVID-19 X-ray and CT Chest Im- 

ges Dataset [15] has been used for validation of the proposed 

odel however for the training set we used the dataset in addi- 

ion augmented data by CycleGAN has added to training dataset to 

rain the proposed model. The database has collected from several 

OVID-19 radiological databases including the “Extensive-COVID- 

9-X-ray-and-CT-Chest-Images Dataset” [16] and the “Chest-Xray- 

ataset” [17] . 

For better performance of the proposed model, CycleGAN 

18] has been used to generate and augment data by translating 

OVID-19 images to normal images and normal to COVID-19 im- 

ges. The GAN methods have been previously used to produce new 

raining images [19] , refine synthetic image [20] and improve brain 

egmentation [21] . 

As shown in Fig. 1 , data flow has four steps. Stream (x) presents

ll COVID-19 original X-ray image data from collected databases 

nd stream (y) provides all non-COVID-19 original X-ray image 

ata from the selected databases. The Dx and Dy are the gener- 

ted translated data by CycleGAN. All original and generated X-ray 

mage data are fed to the pre-processing section of the proposed 
68 
odel to undergo normalization, resizing, and centralization. The 

re-processing section processes data to make it more suitable to 

eed the data to the proposed pre-trained Inception V3. The pro- 

osed Inception V3 pre-trained model is modified and fine-tuned 

y freezing fully connected layers and adding two fine-tuned fully 

ontacted layers. The primary utility and significance of this work 

re listed as follows: 

• A novel data augmentation approach is developed to generate 

images with COVID-19 and normal characteristic using Cycle- 

GAN. 
• The developed novel model is trained and evaluated using orig- 

inal and translated image data using CycleGAN. 
• The newly designed model can identify positive COVID-19 cases 

from chest X-ray radiological images effectively and with high 

accuracy. 

The rest of the paper is organized as the following: In 

ection 2 the structure and concepts of the proposed CycleGAN- 

nception model is presented. Section 3 provides the experimental 

onfiguration, evaluation metrics, and collected data. Section 4 de- 

cribes discussion and results of the trained and evaluated the 

GAN-Inception proposed model and demonstrates its effective- 

ess. Finally, Section 5 presents the summary of the paper. 

. The proposed CycleGAN-Inception model 

The CycleGAN-Inception model is developed to categorize chest 

-ray images with or without COVID-19 characteristics ( Fig. 1 ). The 

roposed approach has two steps: (i) data augmentation technique, 

he model generates extra X-ray images by applying CycleGAN in- 

roduced by Zhu et al. [18] . Then all data transfer to image pre-

rocessing section for normalization and resizing input data. In the 

ext step, all data transfer to the proposed and modified Inception 

3 pre-trained model. More details of the components of the pro- 

osed model were described in the following subsections. 
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.1. Data augmentation non COVID-19 to COVID-19 CycleGAN 

A CycleGAN was introduced by Zhu et al. [18] as a model of 

raining the deep CNNs in an image-to-image translation format. 

t also identifies dissimilar other generative adversarial networks 

eveloped by Goodfellow et al. [22] for image translation, allow- 

ng the CycleGAN to learn mapping between one image domain 

nd another through an unsupervised approach [18] . The Cycle- 

ANs facilitates learning mapping from one area (X) to another 

rea (Y), without identifying the matched training pairs. It is also 

ften used in data augmentation. Sandfort et al. [23] evaluated the 

ycleGAN for data augmentation purpose by training CycleGAN in 

onverting contrast CT scan images into non-contrast scans. GANs 

ave been used in the past for data extension to produce unique 

raining images set for classification purpose [19] , refine synthetic 

mages [20] and improve brain segmentation [21] . 

Since labelled medical imaging data can be both difficult and 

xpensive to obtain, access to big medical data is essential in 

chieving an accurate and robust deep learning algorithm. Stan- 

ard data augmentation is a routinely performed process which is 

sed to increase generalizability. However, the GANs could offer a 

ovel approach of data extension. Therefore, the newly trained Cy- 

leGAN with COVID-19 X-ray radiological images is applied in this 

ork to augment existing models using non-contrast images. 

Zhu et al. [18] and Godard et al. [24] used cycle consistency 

oss to supervise CNN training. Zhu et al. [18] have introduced a 

arallel loss to drive G and F with same coherence. Their model 

onsists of mapping G: X → Y and F: Y → X by introducing adversar- 

al discriminators of D x and D y . To distinguish between images {x} 

nd translated images {F(y)}, D x and to discriminate between {y} 

nd {G(x)} D y are applied. For more information about the prin- 

iples and concepts of it the reader could refer to the Zhu et al. 

18] . As a summary the definitions of components are describing 

athematically as follows. 

The adversarial losses are definition in Eq. (1) : 

 GAN ( G , D Y , X , Y ) = E y ∼p data ( y ) [ log D Y ( y ) ] + E x ∼p data ( x ) [ log (1 −D Y ( G ( x ) ) ) ] 

(1) 
Fig. 2. Architecture of I

69 
In This formula, G generates images G(x) that appears like im- 

ges from field Y and D y observes between translated samples G(x) 

nd original samples y. 

The cycle consistency loss is defined as following in Eq. (2) as 

er an image y from domain Y, G and F are satisfying backward 

ycle consistency : 

 → F ( y ) → G ( f ( y ) ) ≈ y (2) 

The cycle consistency loss is formulated (see Eq. (3) ) as follow: 

 cyc ( G, F ) = E x ∼p data ( x ) [ ‖ F ( G ( x ) ) −x ‖ 1 ] + E y ∼p data ( y ) [ ‖ G ( F ( y ) ) −y ‖ 1 ] (3) 

Therefore, 

 ( G, F , D X , D Y ) = L GAN ( G, D Y , X, Y ) + L GAN ( F , D X , Y, X ) 

 L cyc ( G, F ) (4) ג +

ere ג conducts the relation of the two objectives. CycleGAN has 

een applied in the proposed model to translation of non-COVID- 

9 to COVID-19 images and vice versa as following: 

The discriminators D x and D y are CNNs that read an image and 

lassify it as true or false (real or fake). “True” is indicated by an 

utput close to 1 and “false” as close to 0. The proposed architec- 

ure consists of five convolutional layers, which generate a single 

ogit to detect whether the image is real or not. The architecture 

oes not include a fully connected layer. The convolutional layers 

re then supported by batch normalization, and the rectified linear 

ctivation function (ReLU) for hidden units. 

.2. Proposed finetuned pretrained Inception V3 

In reality, the datasets are often insufficient to train the deep 

earning algorithms and obtaining the labelled data can be costly. 

ransfer learning techniques are used to achieve higher perfor- 

ance of the machine learning algorithms by using labelled data 

r getting knowledge from similar domains [25] . It can implement 

he knowledge that has been realized in earlier settings. There are 

lso two popular transfer learning strategies: deep feature extrac- 

ion and fine-tuning [ 26 , 27 ]. 
nception V3 [31] . 
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Fig. 3. Core unit of the Inception module [30] . 

w

fi

m

T

t

F

i

t

n

D

m

a

m

I  

w

I

t

C

i

t  

3

m

V

s

m

2

a

A

P

Transfer learning trains a task similar to the deep neural net- 

ork. The initial layers of the pre-training network are modi- 

ed if needed. The fine-tuning parameters can be applied to the 

odel’s final layers for learning the features of the new dataset. 

he pre-trained model retrains with a new, smaller, dataset, and 

he weights of the model are refined according to the new tasks. 

ine-tuning takes place by backpropagation with labels. The learn- 

ng to transmit approach is more efficient than the effort required 

o train an original, new neural network. The parameters in the 

ewly developed neural network are not established from scratch. 

L algorithms can achieve a higher function or performance for 

any issues -however, they rely upon large amounts of data and 

 longer training timeframe [ 28 , 29 ]. Therefore, reusing pre-trained 

odels for similar tasks can be very beneficial. Accordingly, the 

nception V3 [ 30 , 31 ] has been used as a pre-trained model and

as finetuned with the proposed dataset in this work. A finetuned 

nception V3 is modified and applied as a pre-trained Inception 

o classify COVID-19 images from collected and generated data by 

ycleGAN. Inception V3 assembles the sparse convolution kernels 

nto fewer dense sub-convolution kernel groups. The structure of 
Fig. 4. The proposed CycleGAN-Inception m

70 
he Inception V3 and core unit of Inception is shown in Figs. 2 and

 . 

The proposed model architecture is shown in Fig. 4 . We re- 

oved the Softmax layers and fully connected layers in Inception 

3 and froze trainable layers. Then two fully connected layers of 

ize 92 and 1028, and activation ReLU are included to train the 

odel. 

.3. The proposed algorithm 

The algorithm used in our proposed model is displayed in Fig. 5 

nd described below: 

lgorithm 1 

roposed CycleGAN-Inception algorithm. 

1: x ← input COVID-19 images 

2: y ← input non COVID-19 images 

3: procedure pre-processing (x,y) 

4: x,y ← resize (x,y) 

5: x,y ← normalize (x,y) 

6: end procedure pre-processing 

7: procedure CycleGAN (x,y) 

8: x,y ← G, F 

9: L(G,F,D X ,D Y ) = L GAN (G,D Y ,X,Y) + L GAN (F,D X Y,X) + λL cyc (G,F) 

10: end procedure CycleGAN 

11: procedure Finetune_Inception (n = 10, j = 50, FC1 = 92, FC2 = 1028, 

activation = ReLU) 

12: remove FC layers Inception V3 

13: add_layer (FC1, activation) 

14: add_layer (FC2, activation) 

15: build model CycleGAN_Inception 

16: for k ← 0, n do 

17: for epoch ← 0, j do 

18: train CycleGAN_Inception (x, y, D x , D y ) 

19: evaluate CycleGAN_Inception (x, y, D x , D y ) 

20: end for 

21: end for 

22: end procedure Finetune_Inception 
odel architecture to detect COVID-19. 
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Fig. 5. Flowchart of the proposed algorithm. 
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. Experimental configuration and databases 

We have performed the experiments using an Intel Core i7 

omputer with 3.3 GHz and 16 GB memory. The suggested algo- 

ithm was implemented by Python software v3.6 [32] with Keras 

33] and TensorFlow [34] libraries. Using Keras library allows us to 

evelop the prototypes quickly and the library supports both the 

NN and the recurrent neural networks. 

.1. Databases 

The “Extensive COVID-19 X-ray and CT Chest Images” Database 

ere used in this work to train and develop our model [15] . 

he database consists of two folders: (1) 5500 normal and 4044 

OVID-19 X-ray chest scans. (2) 2628 normal and 5427 COVID-19 

T scans. Only the X-ray images from the database were used in 

ur study. Samples of COVID-19 and non-COVID-19 X-rays images 

re presented in Figs. 6 and 7 . The augmented data have been used

o train the model in this work. 
Fig. 6. Samples of non-COVID

71 
.2. Evaluation metrics 

Evaluation of obtained results is an important step in ma- 

hine learning development. Estimation of the effectiveness and 

fficiency of the proposed model is done by training and testing 

atasets which are divided into 10 folds according to k-fold cross 

alidation [35] . Cross validation is computationally intensive. It is 

sed to develop the automated model using the training, testing 

nd validation data. The dataset D is equally divided into k disjoint 

ubsets. It uses (k-1) dataset for training purposes and a dataset 

or the purpose of testing by repeatedly training the algorithm k 

imes. 

The performances of the new model were evaluated using ac- 

uracy, area under curve, mean squared error, mean absolute error 

ased on the confusion Matrix (Ouchicha et al.; Bradley, 1997). 

The confusion matrix includes four parts, true positive (TP), 

alse positive (FP), false negative (FN), and true negative (TN). 

The accuracy (ACC) is defined as correct predictions split by the 

otal number of input data in testing and training sets. 

CC = ( T N + T P ) / ( T P + F P + F N + T N ) (5) 
-19 X-ray images [15] . 
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Fig. 7. Samples of COVID-19 X-ray images [15] . 

i

m

r

n

c

a

4

I

f

g

(

t

c

C

Table 1 

Average performance results from 

CycleGAN-Inception model. 

ACC (%) AUC (%) MSE MAE 

94.2 92.2 0.27 0.16 

m

t

9  

t

T

t

i

(

i

V

d

m

F

i

Mean absolute error (Ismael & Ş engür) represents the dispar- 

ty between original scores and predicted scores. It judges how re- 

oved the predictions are from the true output. Mean squared er- 

or (MSE) is the average of the square disparity between the origi- 

al scores and predicted scores. 

The area under curve (AUC) refers to the area under the re- 

eiver operating characteristic curve (ROC) of FP rate versus TP rate 

t various points from 0 to 1 [36] . 

. Results and discussion 

The obtained results indicate that our proposed CycleGAN- 

nception can accurately detect positive COVID-19 cases and dif- 

erentiate between COVID-19 andnon-COVID-19 cases using radio- 

raphic images. The sample X-ray images generated by CycleGAN: 

a) a sample of real and generated images from class non-covid19 

o covid19. (b) a sample of real and generated images from class 

ovid19 to non-covid19 is shown in Fig. 8 . 

The ACC, AUC, MSE and MAE obtained by the proposed 

ycleGAN-Inception V3 model with k-fold cross-validation ( k = 10) 
ig. 8. Sample chest X-ray images generated by CycleGAN: (a) a sample of real and gener

mages from class covid19 to non-covid19. 

72 
ethod is displayed in Table 1 . The proposed model is trained and 

ested with 50 epochs. We have obtained an average accuracy of 

4.2% and AUC of 92.2%. In Fig. 9 , the TP, TN, FP, and FN of the

est set have been calculated and the average number of TP, FN, 

N, FP images for ten runs are displayed in the figure. From the 

otal number of 9544 images of the selected original dataset 954 

mages have been selected as test dataset based on the K-fold cross 

 K = 10) validation. 

The developed model has compared with other transfer learn- 

ng models namely Inception V3, VGG16 and finetuned Inception 

3 using the same database. The results displayed in Table 2 

emonstrate that our model outperformed the previous baseline 

odels. The ROC curves obtained for four models including the 
ated images from class non-covid19 to covid19. (b) a sample of real and generated 
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Fig. 9. Confusion matrix of trained and evaluated proposed model for two classes. 

Table 2 

Summary of comparison of proposed model with other 

transfer learning models. 

No Model ACC (%) AUC (%) 

1 Inception V3 68 62 

2 VGG16 82 75 

3 Fine tuned Inception V3 91 88 

4 CycleGAN-Inception 94.2 92.2 

Fig. 10. ROC curves obtained for four models including the proposed CycleGAN- 

Inception, Inception V3, Finetuned Inception V3, and VGG16. 
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Table 3 

Comparing of the proposed model’s results with the state-of-the-art models’ results. 

Authors Approaches Results 

Wang et al. [2] COVID-Net ACC = 83.5% for 

4-classes, 

ACC = 92.4% for 

3-classes. 

Hemdan et al. [3] COVIDX-Net F 1-scores = 0.91 and 0.89 

of 2-classed (i.e., 

COVID-19 and normal 

cases) 

Sethy and Behera [4] ResNet50 + SVM ACC = 95.33% 

Ozturk et al. [5] DarkNet ACC = 87.02% of 

multi-class 

ACC = 98.08% of 

2-classes. 

Khan et al. [6] ] oroNet ACC = 89.6% and 95% 

for 4 classes. 

The proposed model CycleGAN-Inception ACC = 94.2% and 

AUC = 92.2% 
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roposed CycleGAN-Inception, Inception V3, Finetuned Inception 

3, and VGG16 are shown in Fig. 10 . 

The comparison of our technique with the gold-standard ap- 

roach for automated detection of COVID-19 from chest X-ray ra- 

iological scans is shown in Table 3 . It illustrates that we have ac-

omplished the highest accuracy and AUCs. The advantages of our 

ethod are as follows: 

1. Proposed novel augmentation method. Hence, can be employed 

for smaller database also. 

2. Obtained highest classification performance (Accuracy = 94.2% 

and AUC = 92.2%). 
73 
3. Developed model is accurate and robust as we have employed 

ten-fold cross-validation strategy. 

4. Generated system is simple and faster as we have used transfer 

learning method. 

The limitation of our method is that we have used only one 

ublic database. Our model needs to be tested with more diverse 

atabase. 

. Conclusions 

The aim of this paper was to develop a novel robust AI algo- 

ithm to detect COVID-19 using x-ray images automatically. Our 

roposed approach is simple, robust and more accurate. For do- 

ng this matter, we divided the model in two sections. In the first 

hase we applied CycleGAN technology for COVID-19 images which 

as the first time applied for COVID-19 X-ray image to translate 

OVID-19 X-ray image to normal once and vice versa. In the sec- 

nd phase we developed new deep learning model to classify the 

mages in two normal and problematic classes. Therefore, we iden- 

ified a new COVID-19 diagnosis system using deep learning tech- 

ique and new framework was developed by integrating CycleGAN 

nd finetuned Inception V3 X-ray transfer learning model. The pro- 

osed algorithm has trained, tested, and evaluated using the “Ex- 

ensive COVID-19 X-ray Chest Images” Dataset. A CycleGAN is ap- 

lied to the proposed model as an unsupervised technique for data 

ugmentation. The pre-trained Inception V3 deep convolutional 

etwork is modified by removing fully connected layer and adding 

wo new fully connecting layers. The whole process is trained and 

valuated. The obtained results demonstrate the effectiveness of 

he algorithm with MSE = 0.27, MAE = 0.16, AUC = 92.2% and ac- 

uracy = 94.2%. Future work could validate the proposed model 

ith more diverse big datasets and evaluate the performance in 

OVID-19 diagnosis. In future we may plan to explore the possibil- 

ty of using our developed model to diagnose pulmonary edema, 

sthma, pericarditis, heart failure and pneumonia in addition to 

OVID-19 using chest x-ray images. Our new model can be used 

o diagnose other diseases using other imaging modalities as well. 
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