
METHODOLOGY ARTICLE Open Access

gCAnno: a graph-based single cell type
annotation method
Xiaofei Yang1,2†, Shenghan Gao2,3†, Tingjie Wang2,3†, Boyu Yang2,3, Ningxin Dang4 and Kai Ye2,3,4,5*

Abstract

Background: Current single cell analysis methods annotate cell types at cluster-level rather than ideally at single
cell level. Multiple exchangeable clustering methods and many tunable parameters have a substantial impact on
the clustering outcome, often leading to incorrect cluster-level annotation or multiple runs of subsequent clustering
steps. To address these limitations, methods based on well-annotated reference atlas has been proposed. However,
these methods are currently not robust enough to handle datasets with different noise levels or from different
platforms.

Results: Here, we present gCAnno, a graph-based Cell type Annotation method. First, gCAnno constructs cell type-
gene bipartite graph and adopts graph embedding to obtain cell type specific genes. Then, naïve Bayes (gCAnno-
Bayes) and SVM (gCAnno-SVM) classifiers are built for annotation. We compared the performance of gCAnno to
other state-of-art methods on multiple single cell datasets, either with various noise levels or from different
platforms. The results showed that gCAnno outperforms other state-of-art methods with higher accuracy and
robustness.

Conclusions: gCAnno is a robust and accurate cell type annotation tool for single cell RNA analysis. The source
code of gCAnno is publicly available at https://github.com/xjtu-omics/gCAnno.
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Background
Bulk RNA sequencing measures average gene expression
level in a large population of cells, hindering dissection
of heterogeneous cell types [1]. In 2009, single cell RNA
sequencing (scRNA-seq) technology was developed to
provide valuable insights into cell heterogeneity [2].
In general, accurate cell type annotation for single cell

data is a prerequisite for any further investigation of cell
heterogeneous [3–6]. The commonly used cell type

annotation methods, including Seurat [7], SCANPY [8]
and SINCERA [9], adopts a similar procedure of data
quality control, reads mapping, UMI quantification,
expression normalization, clustering, differentially
expressed genes (DEGs) of each cluster identification
and cell type assignment based on biomarker genes [10].
However, those methods report cluster-level rather than
truly single cell-level annotation results, masking subtle
differences within each cluster. In addition, different
clustering methods and many tunable parameters led to
uncertain clustering outcome. These above two factors
cause incorrect cluster-level annotations or multiple
runs of subsequent clustering steps [10].
To overcome the above issues, two distinct strategies,

namely biomarker-based and reference-based ap-
proaches, have been proposed. The biomarker-based
methods, such as Garnett [11] and CellAssign [12], aim
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to establish mappings between the query dataset and the
well-studied biomarkers. In particular, Garnett trains a
classifier based on the user defined markup language.
CellAssign builds a probabilistic model that leverages
prior knowledge of cell-type marker genes for annota-
tion. However, collecting a comprehensive biomarker set
of different cell types is cumbersome, time-consuming
and subjective. Thus recently reference-based ap-
proaches, such as Scmap [13], Chetah [14] and scPred
[15] have been developed and are gaining popularity
after a number of well-annotated single cell data were
published, especially the datasets released by human cell
atlas (HCA) [16]. The reference-based methods follow
data-driven strategy and construct mappings between
query dataset and the well-annotated reference datasets.
For example, Scmap uses drop-based method to select
feature genes as variables and constructs mapping by
distance and correlation coefficient. Another method,
scPred selects differential principle components (PCs)
calculated by gene expression value between cell types
and trains an SVM model with these PCs. Recently, a
comprehensive benchmark study [17] of 22 cell type
classification methods indicated that SVM classifier has
overall the best performance. However, these methods
are sensitive to experiment batches, sequencing

platforms and noises, all of which are intrinsic properties
of the single cell datasets.
Here, we propose a reference-based method, gCAnno,

using graph representation feature selection strategy to
comprehensively represent the global view of associa-
tions between cell types and genes for robust and high
accuracy single cell-level annotation. Our gCAnno
method starts with construction of a weighted cell type-
gene bipartite graph. Then, graph embedding is applied
to capture the cell type specific genes and naïve Bayes
(gCAnno-Bayes) and SVM (gCAnno-SVM) classifiers are
built for further annotation (Fig. 1). We compared
gCAnno with the state-of-the-art methods on four pub-
lished datasets as the basic test [3–6]. We also reported
the performance comparison on large dataset with deep
annotation level [18], different single cell platforms, sim-
ulated datasets with either various cell type imbalance
situations and different dropout noise levels as the ad-
vanced test. Finally, runtime is summarized to demon-
strate the efficiency of gCAnno.

Results
To evaluate the performance of gCAnno, we first evalu-
ated the cell type-gene specific relation, and then com-
pared gCAnno with five state-of-art methods, including

Fig. 1 Overview of gCAnno. a Cell type-gene graph building. The graph contains gene nodes (gray circles) and cell type nodes (other color
circles). b Graph embedding converts graphs into low dimensional vectors. Genes are selected based on the distance between the two types of
vectors. c Training Naïve Bayes and SVM classifiers for annotation. d Cell type annotation for new query dataset
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Scmap-cell, Scmap-cluster, Chetah, scPred and SVM, in
the following four aspects: 1) cell type specificity of
gCAnno detected genes, 2) overall performance on
different scRNA-seq datasets, 3) robustness test on
simulated drop-out and imbalance noise data, 4) cross
platform annotation.

Cell type specificity of gene sets detected by gCAnno
After graph embedding step, gCAnno selects cell type
specific gene sets, which largely determines the perform-
ance of our approach. Thus, we first evaluated the cell
type specificity of gene sets detected in the four datasets.
We noticed that clear cell type specific expression
patterns are observed for these selected genes (Fig. 2;
Additional file 9: Figure S5; Additional file 10: Figure
S6). Among the reported marker genes from the corre-
sponding publications, gCAnno is able to capture an
average of 57% of them, indicating gCAnno’s effective-
ness of cell type specific gene identification (Additional
file 11: Figure S7; Additional file 12: Table S4).

Overall and large dataset performance evaluation
We next evaluated and compared overall performance of
gCAnno, Scmap, scPred, Chetah and SVM with four
published scRNA-seq datasets (Table 1). We found that
the comprehensive kappa coefficient of both gCAnno
was consistently much higher than those of Scmap-
cluster, Scmap-cell and scPred, respectively (p < 0.05,
Wilcoxon rank sum test) (Fig. 3a-d) (Additional file 13:
Table S5), hinting gCAnno’s better performance than
other methods on cell type annotation across different
species (e.g. human or plant), organs (e.g. liver or
pancreases), or disease states (e.g. health or cancer). In
20 mouse organs dataset, the comprehensive kappa
coefficient of both gCAnno were 0.74 (gCAnno-Bayes)
and 0.94 (gCAnno-SVM), and other methods achieve
0.16 (Scmap-cluster), 0.18 (Scmap-cell), 0.80 (Chetah),
0.63 (scPred) and 0.92 (SVM), respectively (Fig. 3e). We
found that gCAnno-SVM achieved highest performance
than other methods in large dataset with deep annota-
tion level (Additional file 6: Table S2; Additional file 14:
Figure S8).

Robustness on dropout and imbalance noisy data
Besides basic accuracy, we examined its robustness in
the presence of different types of noises. Dropout and
cell count imbalance noises are two major types and the
most challenging in scRNA-seq data. Dropout is a
technical noise in the form of missing value in gene ex-
pression [10], while cell number imbalance among cell
types is coming from biology itself. We found gCAnno
achieved the highest and rather stable kappa coefficients
for both reference dropout and query dropout tests in
four datasets (Fig. 4; Additional file 15: Figure S9;

Additional file 16: Table S6; Additional file 17: Figure
S10). Remarkably, gCAnno achieved average kappa
coefficients of 0.88 (gCAnno-SVM) and 0.79 (gCAnno-
Bayes) even when dropout rate was as high as 50%, while
other methods achieve 0 (Scmap-cluster), 0.44 (Scmap-
cell), 0.37 (Chetah), 0.25 (scPred) and 0.79 (SVM),
respectively. Moreover, we found gCAnno, SVM and
Scmap-cell achieved the highest and stable kappa coeffi-
cients (average values are about 0.99) for different cell
count imbalance ratios (Additional file 15: Figure S9;
Additional file 18: Table S7). All of these results show
gCAnno is better than other methods for dropout and
cell count imbalance noises and achieved the best per-
formance on highly noisy data (e.g. 50% dropout rate
and 1:0.1 imbalance rate), suggesting the effectiveness of
the wCGBG in selecting accurate features in the pres-
ence of high noise.

Cross platform annotation
Different single cell sequencing platforms have platform
specific features or bias [19], limiting cross platform cell
type annotation. We evaluated the platform compatibil-
ity of gCAnno on two liver datasets [4, 20] and two pan-
creas datasets [3, 21] from four platforms (10x, mCel-
seq2, Drop-seq, and Smart-seq2) (Table 2). We used one
platform dataset as the training data and the other as
the testing data. For the performance comparison,
gCAnno achieved consistently high kappa coefficient
values for liver dataset tests (Fig. 5a and b) and for pan-
creas dataset tests (Fig. 5c and d) (Additional file 19:
Table S8). These results show gCAnno is able to main-
tain high annotation accuracy for real heterogeneous
and cross platform data in the presence of systematic
platform specific bias.

Runtime evaluation
Finally, we evaluated the runtime of gCAnno based
on datasets in above tests (Additional file 20: Table
S9; Additional file 21: Figure S11). We found that the
time takes in model building (including graph con-
struction and embedding) step is positive correlated
with the number of graph nodes (Pearson’s correl-
ation is 0.94). Once the model has been built, the an-
notation step only takes less than 1 min (e.g. for
mCel-seq2 platform liver dataset with 8103 cells only
takes 48 s).

Discussion
In this study, we present gCAnno, a novel graph-based
cell type identification method for scRNA-seq data. The
most significant feature of gCAnno is the construction
of wCGBG, enabling gCAnno to capture the global char-
acteristics of association between cell types and genes.
This feature allows gCAnno to detect accurate feature
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genes for each cell type, leading to accurate annotation
results and robustness for different noise types and rates.
In addition, gCAnno is able to annotate not only human
scRNA-seq, but also plant scRNA-seq (e.g. Arabidopsis
data) and its stable and high performance across two
platforms.

gCAnno contains SVM version (gCAnno-SVM) and
naïve Bayes version (gCAnno-Bayes). The SVM version
takes into account the effect of expression value while
naïve Bayes version only considers the existence of cell
type specific genes. From the evaluation result, the SVM
version seems suitable for the dataset with deep

Fig. 2 Cell type specificity of gene sets detected by gCAnno. a The heatmap of the expression of each cell type specific gene sets in liver,
pancreas, HCC & ICCA and AT root datasets. The expression values are normalized by z-score across different cell types. b t-SNE plots showing the
expression of rank one cell specific gene in four cell types in liver dataset. (i) t-SNE projection showing a reference map of all cell types. The
expression of (ii) SPARCL1 in Periportal_LSECs, (iii) TRCA in AlfaBetaT, (iv) FXYD2 in Cholangiocytes and (v) MZB1 in Plasma_cells (t-SNE plots for all
cell types are in Additional file 10: Figure S6)

Yang et al. BMC Genomics          (2020) 21:823 Page 4 of 10



annotation level and contains largely similar cell types
between training and test sets. However, in cross plat-
form datasets from different studies and different se-
quencing platforms, gene expression value might
fluctuate significantly, rendering better performance of
naïve Bayes version than SVM version.
Since gCAnno is a reference-based cell type annota-

tion method, it lacks the ability to identify novel cell
types. For novel type cells, gCAnno assigns the closest
cell types with the most similar expression profiles to
them, which might be reasonable in most of applications
but probably require further improvement. Integrating
the biomarker-based method for novel cell type annota-
tion and reference-based method for accurate pre-
defined cell type annotation, we think, will be one
direction to explore.

Conclusion
We have implemented a stable and high-performance
automated cell type annotation tool, gCAnno, for
scRNA-seq datasets. With an easy use Python running
script as an example, we hope gCAnno will be useful for
the scRNA-seq data analysis.

Methods
Here we summarized the framework of gCAnno.
gCAnno adopts graph structure for cell type specific
gene set detection and accurate cell type annotation.
Firstly, gCAnno builds cell type-gene bipartite graph
based on gene expression abundances and intensities, in
which gene expression abundance is the proportion of
cells expressing the gene in a given cell type while inten-
sity is the average expression in cells expressing the
gene. Then, graph embedding is adopted to obtain the
embedding vectors of gene nodes and cell type nodes.
Next, gCAnno selects a set of genes for each cell type
with similar profiles in the embedding space. Finally,
based on the detected cell type specific genes, gCAnno
trains naïve Bayes and SVM classifiers. The workflow of
gCAnno is depicted in Fig. 1.

Cell type-gene bipartite graph construction
Starting from the well-annotated reference scRNA-seq
data, we constructed a weighted cell type-gene bipartite

graph (wCGBG) containing both cell type nodes (CTN)
and gene nodes (GN). Edges between CTN and GN indi-
cate the correlation of a gene and a cell type while
weight W measures significance of correlation. The
weight is calculated by:

wk; j ¼
mk; j

nk
�meanðgk; j�!Þ; i f nk≠0

0 ; others

8

<

:

ð1Þ

where nk is the cell count of cell type k, mj, k is the
number of cells expressed gene j in cell type k. g j;k

�! is
the expression vector of gene j in cell type k. W is
the product of the gene expression abundance and in-
tensity. We use gene expression abundance and inten-
sity to establish a relationship between cell types and
genes in the form of proportion to reduce the impact
of individual gene loss (dropout) or cell number
imbalance.

Graph embedding and cell type-gene specific relation
detection
After wCGBG construction, we used node2vec to obtain
the low dimensional vectors (the embedding vectors) of
gene nodes and cell type nodes. The first step is
construction of a neighborhood set N(u) of each node u
(either gene or cell type node) by a probability walk [22].
Then, we optimized the following objective function f(u)
by maximizing the log-probability of observing a neigh-
borhood set.

max f

X

u∈V

logP N uð Þj f uð Þð Þ ð2Þ

This optimization step enables the embedding vectors
to capture the specificity and strength of interactions be-
tween cell node and gene node, e.g. if one gene is spe-
cific and highly expressed in one cell type, the
corresponding two embedding vectors are similar. Then,
we calculated Euclidean distance between the vector of
genes and cell types. We selected top n (a user defined
parameter, default n = 65, Additional file 1: Figure S1)
closest genes for each cell type as the cell type specific
gene set based on the overall performance on the five
datasets we used [3–6, 18].

Classifier construction
After obtaining the cell type specific gene set, we build
naïve Bayes (gCAnno-Bayes) and SVM (gCAnno-SVM)
classifiers for annotation. For gCAnno-SVM, we directly
use the expression of cell type specific genes as features to
train an SVM classifier. For gCAnno-Bayes, we build a
binary matrix to presents cell type and its corresponding
specific genes, e.g. the element bij = 1 indicates gene j is
one of the specific genes in cell type i. We train a

Table 1 The list of scRNA-seq datasets in overall performance
test

Dataset #Cells #Genes # Cell types

Liver [4] 8444 20,007 14

Pancreas [3] 8562 20,126 13

AT root [6] 7053 32,833 19

HCC, ICCA [5] 4729 19,379 8

# means the number of
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Bernoulli Naïve Bayes to get genes’ conditional probability
in each cell type and the prior probability of cell types.
The query dataset is binarized and the annotation is based
on maximum posterior probability of single cell’s cell type
specific genes expression.

Performance measurement and dataset
Performance assessment and comparison
Cell type annotation is a typical multi-classification
problem. We applied kappa coefficient as the perform-
ance measurement of classification, defined as Eq. (3).

Fig. 3 Overall performance evaluation. Comparisons of gCAnno with Scmap-Cluster, Scmap-Cell, scPred, Chetah and SVM based on kappa
coefficient on a liver dataset, b pancreas dataset, c HCC & ICCA dataset, and d AT root dataset. *: p-values < 0.1; **: p-values < 0.05; ***: p-values
< 0.01, Wilcoxon rank sum test. The number is the mean of five cross validation. The error bar is the standard deviation. The y-axis is the
kappa coefficient
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κ ¼ po − pe
1 − pe

; po ¼
Ncorr

Nt
; pe ¼

X

K

i¼1

ai � bi

Nt � Nt
ð3Þ

where Ncorr is the ratio of total number of cells with cor-
rected cell type annotation, Nt is the total number of
cells in the dataset, K is the number of truly cell types, ai
is the number of corrected annotated cells in the i-th
cell type, and bi is the number of cells in the i-th cell

Fig. 4 Robustness performance evaluation. Robustness of dropout noise comparisons of gCAnno with Scmap-Cluster, Scmap-Cell, scPred, Chetah
and SVM on a liver reference dropout dataset, b liver query dropout dataset, c pancreas reference dropout dataset, d pancreas query dropout
dataset. The middle point is the mean kappa coefficients of five-fold cross validation. The error bar is the standard deviation. The y-axis is the
kappa coefficient and the x-axis is the dropout rate

Table 2 The list of scRNA-seq datasets in cross platform test

Dataset #Cells #Genes # Cell types Platform

Liver [4] 8103 20,007 7 10x

Pancreas [3] 8037 20,126 9 Drop-seq

Liver [20] 7130 33,941 7 mCel-seq2

Pancreas [21] 2068 25,526 9 Smart-seq2

# means the number of
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type, po is the accuracy, ai × bi is the product of the ac-
tual and predicted quantity, pe punishes bias for unbal-
ance evaluation.
To evaluate the performance of gCAnno, we per-

formed both cross-validation test and independent het-
erogeneous test (cross-platform test). First, we adopted
the five-fold cross-validation strategy following recent
single cell analysis comparison published earlier [15, 17]
on four published datasets and simulated noise datasets
to evaluate the overall and robustness performance
(Additional file 2: File S1). Then, we performed inde-
pendent test on datasets from different sequencing plat-
forms (the cross-platform testing) to evaluate the
generalization capability of gCAnno.

Tools in comparison
The calculation results of Scmap, Chetah and scPred were
obtained from the corresponding publications [13–15].

For SVM, we followed the previous report [17] which is
using drop-based method [23] for feature selection.

Datasets used in basic overall performance test
To illustrate the stable performance of gCAnno across
various species and tissue types, we compared gCAnno
with other methods using four published datasets,
including liver, pancreas, Arabidopsis thaliana root (AT
root), hepatocellular carcinoma and intrahepatic
cholangiocarcinoma (HCC and ICCA) datasets (Table 1;
Additional file 2: File S1; Additional file 3: Figure S2;
Additional file 4: Table S1). The true labels of the cells
in each dataset are obtained from the corresponding
publications.

Large dataset with deep annotation level
To demonstrate the performance of gCAnno in large
dataset (cell number more than 50,000) with deep

Fig. 5 Platform compatibility evaluation. Performance comparisons of gCAnno with Scmap-Cluster, Scmap-Cell, scPred, Chetah and SVM on cross
platform datasets. a liver datasets, where reference is mCel-seq2 and query is 10x; b liver datasets, where reference is 10x and query is mCel-seq2;
c pancreas dataset, where reference is drop-seq and query is smart-seq2 d pancreas datasets, where reference is smart-seq2 and query is drop-
seq. The reference is the training data and the query is the testing data
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annotation level (more than 20 cell types). We com-
pared gCAnno with other methods in 20 mouse or-
gans dataset with 54,246 cells, 29 cell types and 23,
433 genes. The true labels of the cells in each dataset
are also obtained from the original publications [18]
(Additional file 2: File S1; Additional file 5: Figure S3;
Additional file 6: Table S2).

Simulated dropout and imbalance datasets
To evaluate the robustness of gCAnno in the presence
of dropout noise, we simulated different dropout rates in
four above datasets (Table 1), by modifying the expres-
sion level of a random gene subset (10, 20, 30, 40 and
50% of all genes) to zero (Additional file 2: File S1).
Similarly, we used five-fold cross validation to evaluate
its performance. In each validation, we simulated the
dropout noise in either training group (reference drop-
out) or test group (query dropout), and calculated the
kappa coefficient for each method.
To simulate the cell number imbalance noise, we ran-

domly sampled different proportions (0.1:1, 0.3:1, 0.5:1,
0.7:1, 0.9:1, 1:0.9, 1:0.7, 1:0.5, 1:0.3 and 1:0.1) of cell
count in two cell types (Hepatocyte and GamaDetaT) in
liver dataset as the reference data for classifier construct-
ing. To get more accuracy testing, this simulation was
repeated five times (Additional file 2: File S1).

Cross platform datasets
To compare cross platform performance (various studies
using different sequencing platforms), we searched and
identified four datasets suitable for this purpose, includ-
ing two liver datasets from 10x and mCel-seq2 platforms
and two pancreas datasets from drop-seq and smart-
seq2 platforms (Table 2). We noticed that the cell type
annotation labels of the same tissue from different plat-
forms are not identical. Thus, we unified the labels by
removing cell types absent in either of the datasets
(Additional file 7: Figure S4; Additional file 8: Table S3;
Additional file 2: File S1).
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ence dropout dataset, (b) HCC and ICCA query dropout dataset, (c) AT
root reference dropout dataset, (d) AT root query dropout dataset and (e)
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dropout test.
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selected cell type specific genes in liver ref. dropout test dataset. The red
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the increasing of dropout rate, the degree of shared specific genes
increased a little, but the specific pattern is still strong even in dropout
rate 50%.
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