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Studying the association of the brain’s structure and function with

neurocognitive outcomes requires a comprehensive analysis that combines

di�erent sources of information from a number of brain-imaging modalities.

Recently developed regularization methods provide a novel approach using

information about brain structure to improve the estimation of coe�cients

in the linear regression models. Our proposed method, which is a special

case of the Tikhonov regularization, incorporates structural connectivity

derived with Di�usion Weighted Imaging and cortical distance information

in the penalty term. Corresponding to previously developed methods that

inform the estimation of the regression coe�cients, we incorporate additional

information via a Laplacian matrix based on the proximity measure on

the cortical surface. Our contribution consists of constructing a principled

formulation of the penalty term and testing the performance of the proposed

approach via extensive simulation studies and a brain-imaging application.

The penalty term is constructed as a weighted combination of structural

connectivity and proximity between cortical areas. Simulation studies mimic

the real brain-imaging settings. We apply our approach to the study of

data collected in the Human Connectome Project, where the cortical

properties of the left hemisphere are found to be associated with vocabulary

comprehension.

KEYWORDS

linear regression, regularization, brain cortex, geodesic distance, euclidean distance,

structural connectivity, HCP data, vocabulary comprehension
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1. Introduction

Essential effort in neuroimaging studies has been devoted

to examining the associations between the structure and

the function of the brain. From the perspective of both

medical applications and biostatistical analyses, it is still not

a straightforward task to investigate the intricacies of brain

structure’s influence on cognitive functions. Use of different

sources of information from the brain can be divided into parts,

but the mutuality of some functions and structures is then

ignored. In the context of the complex brain structure and its

functionality, incorporating different types of data concurrently

in the statistical method can be a more comprehensive approach

to study cognitive functions. Therefore, in our work, we discuss

the impact of the cortical distance on the regression parameter

estimation.

The regularization method of ridgified Partially Empirical

Eigenvectors for Regression (riPEER), described in Karas et al.

(2019), uses linear regression to examine the relationship

between brain structure and a scalar response. It is based on

obtaining structural connectivity measurements from the cortex

and applying them as information for the estimation of

the regression coefficients. In Karas et al. (2019), as well as in

this work, the structural connectivity measures are derived using

Diffusion Weighted Imaging (DWI) processing pipeline which

was comprehensively described in Ramírez-Toraño et al. (2021).

In our study, we employ a different source of information,

which informs the estimation of the model coefficients. From

the biological point of view, there are substantial reasons to

factor in the cortical regions’ spatial distance.

Our approach is based on the multiple linear regression

model:

y = Xβ + Zb+ ε, (1)

where y is the vector of scalar responses for each of n individuals,

X is the matrix of n observations with m predictors and their

corresponding vector of unpenalized coefficients β ∈ Rm, and

Z is an n × p matrix of variables with associated penalized

coefficients in p-element vector b. Errors are stored in vector

ε, where E(εi) = 0 and Var(εi) = σ 2 for i ∈ {1, . . . , n}.
The optimization problem that we want to focus on takes

the form of Tikhonov regularization

[

b̂

β̂

]

: = argmin
b,β

{||y−Xβ−Zb||22+bT
(

λCQ̃C + λDQ̃D + λRI
)

b},

(2)

with the penalty parameters λC , λD, λR, and the corresponding

penalty matrices Q̃C (connectivity-informed), Q̃D (distance-

informed), I (ridge), respectively.

We consider the spatial proximity of the regions in

the brain cortex. The spatial distance between the nodes can

be defined both as a Euclidean distance and as a geodesic

distance. The latter, when defined on the cortex, refers to

the shortest path along the cortical surface (Oligschläger et al.,

2017). The Euclidean-based distances were retrieved using the

centroids data from the HCP repository. The geodesic distance

measurements for this work were calculated by Dr. Abbas using

Python packages surfdist and nibabel. In our investigation,

the definition and understanding of the spatial proximities in

the human brain cortex is based on the work undertaken by

Yamin et al. (2019), where the nodes’ proximity is defined as

a function of spatial distance between them. The measure of

similarity is then used as a counterpart of proximity. These

measures are incorporated in the normalized Laplacian of

the distance matrix (Reinhart, 2021) to define the penalties.

Incorporating structure via a matrix in the regularization

term is not new and can be found in the literature (see Engl

et al., 1996; Bertero et al., 2001; Benning and Burger, 2018). This

matrix can be used to include elements of structural information

between the predictor variables in the model. Commonly used

matrices are for instance the second-difference matrices that

impose smoothness on the estimates. The literature (Hastie et al.,

1995) shows that imposing spatial smoothness constraints on

the coefficients is efficient and sometimes essential in terms

of both prediction performance and interpretability. In our

prior publication (Karas et al., 2019) utilizing the structural

connectivity measures obtained with DWI processing as prior

information, we summarized an extensive simulation study

where we studied different forms of the matrix Q. The other

example of this is a structural connectivity between the brain

nodes as in Karas et al. (2019) and Brzyski et al. (2021), which

is defined as a strength of the connections between the gray

matter regions via the density of the structural white matter

fibers (Hagmann et al., 2008). In statistics, it is often presented

in the form of the adjacency matrix (or so-called connectivity

matrix), a well-known concept in graph theory (Harary, 1962).

The graph Laplacian of the adjacency matrix is often used as a

“smoothing penalty” (Reinhart, 2021). Extension of the penalty

term with the cortical areas’ connectivity information was

proposed by Karas et al. (2019).

The framework for incorporating auxiliary information

to improve the regression coefficient estimation is based on

well-established statistical concepts. First is the Tikhonov

regularization method, which considers the optimization

problem with a symmetric semi-positive definite matrix Q

in the additional term λbTQb added to the residual sum of

squares (Tikhonov, 1963). Example of Tikhonov regularization

is ridge regression, which penalizes squares of the model’s

coefficients (hence, the penalty matrix Q is an identity matrix).

Furthermore, the PEER (Partially Empirical Eigenvectors for

Regression) approach (Randolph et al., 2012), a special case

of the Tikhonov “generalized ridge,” employs a scientific-

information-based matrix Q and a penalty parameter λ as

the regularization term.

A crucial component of any penalized regression problem is

the selection of parameters that ultimately define the regression
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estimate in Equation (2). Cross-validation is one common

procedure used to estimate these parameters (see Brezinski

et al., 2003; Lukas, 2006). An alternative is Restricted Likelihood

Estimation (REML) (Corbeil and Searle, 1976; Maldonado,

2005), whose properties in this context were discussed in detail

by Reiss and Todd Ogden (2009). Although in this work, the

information incorporated into the optimization problem comes

from two different sources, the main emphasis is put on the

proximity derived from the distance. The connectivity-based

information has been comprehensively discussed and developed

in the previous work of the riPEERmethod in Karas et al. (2019).

The remainder of this article is organized as follows. Section

2 introduces the theory behind our proposed disPEER (distance-

based PEER) method. We present the settings and the results of

the simulation study in Section 3, and the discussion is presented

in Section 4.

2. Materials and methods

2.1. Statistical model and optimization

Let us consider the setting where we have n observations of

a random variable in vector y and two design matrices, where

n rows denote the number of observations. The columns of

the first design matrix, X ∈ Rn×m denote the variables that

do not correspond to the cortex itself, and their coefficients

will not be penalized. In the second design matrix Z ∈ Rn×p,

columns represent the variables for which there is information

about the structural connectivity and the spatial proximity.

The p × 1 vector of regression coefficients b, is penalized in

the optimization problem.

The information about structural connectivity and spatial

proximity given for the covariates in matrix Z is contained in so-

called adjacency matricesAC andA
D̃
, respectively. We assume

that Equation (1) represents the model equation.

In this work, analogously to Karas et al. (2019), we use

the equivalence of our regularization setting with the Linear

Mixed Model formulation, where b ∼ N(0, σ 2
b
Q−1) with Q =

λCQ̃C + λDQ̃D + λRI. It can be treated as a link between

the optimization problem in Equation (2) and a Bayesian prior

assumption about the coefficients’ distribution as in Maldonado

(2005). The addition of a small parameter λR with an identity

matrix is a ridge-like parameter that accounts for the possible

non-invertibility of Q and enables the maximum likelihood

estimation of regularization parameters—this approach, called

AIM (Adding Identity Matrix), comes from Karas et al. (2019).

The approach here is that Q is merely “close” to the true

signal matrix Q. As mentioned in Brzyski et al. (2021),

an assumption is that information encoded by the adjacency

matrix is a general approximation of the real brain structure

rather than representing the actual structure of this complex

TABLE 1 Notation used in the manuscript.

Notation Description

cij Euclidean distance between xi and xj

dij Spatial distance between nodes i and j

d̃ij Normalized spatial distance between nodes i and j

aij Spatial proximity between nodes i and j

n Number of observations

p Number of penalized variables

m Number of unpenalized variables

y Vector of the responses

ε Vector of random errors

wi Degree of the i− th row ofAC

si Degree of the i− th row ofAD

X n×m design matrix

Z n× p design matrix

β m-element vector of unpenalized fixed effects

b p-element vector of penalized coefficients

AC Adjacency matrix based on the structural connectivity

AD Adjacency (proximity) matrix based on the distance

Q̃C Normalized Laplacian based on the structural connectivity

Q̃D Normalized Laplacian based on the spatial proximity

human organ. The penalty Laplacian matrix Q̃C that will be

considered in this study is based on the structural connectivity

and it is estimated using DWI sequence.

For clarity and convenience, we include all the notation used

in the article in Table 1.

2.2. Distance-based penalties

In the penalization problem in Equation (2), we partition

the overall design matrix into two distinct design matrices X

and Z, where the coefficients of the latter are penalized. As in

Karas et al. (2019) and Brzyski et al. (2021), we add a penalty

term connected only with the variables describing the cortex,

e.g., the variables that contain structural information.

The riPEER (Karas et al., 2019) approach incorporated

brain connectivity-based information in the penalty term. Our

aim is to extend it by additionally incorporating spatial-

distance-based information in the penalty terms. We study

the estimation procedures, wherein the regression coefficients

corresponding to the cortical measurements (in the riPEER

example—average thickness values) contain in some way not

only the information about the structural connectivity but

also information obtained from the distance between brain

regions. We formally introduce this concept, referred to as

disPEER (distance-based Partially Empirical Eigenvectors for
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FIGURE 1

Geodesic distance in contrast to Euclidean distance. Geodesic

distance between two points is the shortest distance along

the cortical surface. The image comes from Oligschläger et al.

(2017).

Regression), in the following sections. In order to do so,

we define and elaborate on the concepts of distance and its

principled incorporation in the penalty terms. In our work, we

use a common cortex parcellation approach called the Desikan-

Killiany parcellation (Desikan et al., 2006), which partitions

the human cortical surface into 68 regions.

Approach to distance term in the cortex. The purpose of

this work is to study regularization methods for regression that

are informed not only by the structural connectivity between

the cortical areas but also by the spatial distance between them.

The structure of the human brain, however, implies that the

Euclidean distance between nodes does not accurately reflect

their proximity within the cortex. A more appropriate measure

of distance should account for the folded structure of the

cortex, with its grooves and peaks (see Figure 1). To account

for this, beyond the Euclidean distance, we adopt also the

geodesic distance (Yamin et al., 2019) along the cortical surface

to measure proximities between two nodes. This is conveniently

provided by the computational tool FreeSurfer1. Parcellation

term here refers to a particular definition of a specific cortical

division.

Denote by dij the geodesic distance between nodes i and j,

and letD = [dij] be the p× pmatrix of all such distances. Then

D is a symmetric matrix with non-negative entries and zeros on

the diagonal. In order to manage discrepancies in human brain

sizes, we normalize distances in D to the interval [0, 1]. Because

we want to avoid the situation where our distance is equal to 0

when in practice it is not, we use the following normalization

d̃ij =
dij

max
0≤i,j≤p

dij
. (3)

1 https://surfer.nmr.mgh.harvard.edu

The resulting matrix D̃ = [d̃ij] has entries expressing

distances transformed into the interval [0, 1] and will be the basis

for defining the proximity matrix used in our penalty function.

Transforming distance into proximity. Let us define

the matrix A
D̃

= A
D̃ij

, 1 ≤ i, j ≤ p, which is an adjacency

matrix. It is a symmetric matrix with non-negative elements and

zeros on the diagonal. The adjacency concept in this matrix is

represented by the physical closeness and the idea behind it is

to determine physical closeness based on the spatial distance

between the brain regions. When we consider the adjacency

matrix defined by the connections between the nodes, a larger

number indicates a stronger connection. In adjacency defined

by physical closeness, a larger number means a smaller distance.

Once we get the normalized distance matrix D̃ we clarify

the definition of the adjacency matrixA.

We employ the measure of similarity, which is

commonly used in techniques for nonlinear dimension

reduction (Trosset, 2021). Then, the adjacency matrix is

defined by:

A
D̃ij

: =
{

exp(−hd̃2ij), for some h > 0, if i 6= j

d̃ij, otherwise.
(4)

Due to the h parameter in Equation (4), we can adjust

the values of proximity and spread them between 0 and 1 in

that manner so the order of magnitude of the maximum and

minimum adjacency ratio is proximate to some target value. This

is useful when we want to put more emphasis on the regions

that are really close by in comparison to the regions that are

far apart.

Laplacian matrix. In defining the optimization problem

for the estimation of parameters, we will use the concept of

adding structural information into the method of regularization.

This structural information will be given by a Laplacian matrix

originating in the proximity (adjacency) matrix. Therefore,

assuming the already defined adjacency matrix AD̃ in Equation

(4), the element aij denotes the spatial proximity between

the nodes i and j. Denote the degree of node i by si : =
∑p

j=1 aij; i.e., the sum of all proximities with node i and let

S : = diag(s1, . . . , sp). The Laplacian of the adjacency matrix AD̃
is QD̃ = S− AD̃.

The normalized Laplacian Q̃D̃=[Q̃Dij ], 1 ≥ i, j ≥ p for

the proximity matrix based on the distance is defined as:

Q̃
D̃ij

: =
{

−A
D̃ij

/
√
sisj, if i 6= j

1, otherwise,
(5)

where si is the degree of ith row of adjacency-proximity

matrix A
D̃ij

. Observe that a penalty of the form bTQ̃
D̃ij

b =
∑p

i,j=1AD̃ij
(bi − bj)

2 implies that the greater the proximity is

between two nodes, the greater the penalty is on the (squared)

difference between their corresponding coefficients.
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2.3. Estimation

When formulating the optimization problem in Equation

(2), we include two versions of a Laplacian matrix, QC and

Q
D̃
. The first one is based on the structural connectivity, and

the second one has origins in the spatial distance. Knowing

these two definitions, one can observe the specific structure

for the matrices containing structural connectivity and spatial

distance. MatrixAC , which represents the connections between

the nodes, will be naturally sparse (as there are no direct

connections between many cortical regions) and the distance

matrixA
D̃

will be dense (as none of the distance matrix entries

will be equal to zero, as these entries represent distances between

the distinct brain regions).

The maximum likelihood estimates of the penalty

parameters and error variance are







λ̂MLE = argmin
(λC ,λD,λR)

l̃(λC , λD, λR)

σ̂ 2MLE
ε = 1

n y
T
P
(Z̃BλZ̃T + In)

−1yP

, (6)

where l̃ is the linear mixed model log-likelihood function of

λC , λD, and λR, yP = Z̃b + ε̃, Z̃ = PCXZ with PC
X : =

In − X(XTX)−1XT and Bλ : = λCQ̃C + λDQ̃D + λRI.

The detailed derivation of the formulas in Equation (6) is in

the Supplementary material.

Further, we numerically solve the optimization problem

from Equation (2) and find estimates of λC , λD and λR

according to Equation (6). Therefore, we were able to determine

the estimates of the b and β coefficients according to

the equations:

b̂new : = (Z̃T Z̃ + λ̂CQC + λ̂DQD + λ̂RI)
−1Z̃TyP (7)

and

β̂new
: = (XTX)−1XT(y− Zb̂new). (8)

Naturally, when calculating the coefficients’ estimates using

Equation (7), we take into account the observed Laplacian QC

and true Laplacian matrix based on the geodesic distance. We

assume that the latter reflects the real state almost perfectly,

because of the fact that with today’s tools, it is possible to

measure the distance between cortex regions quite precisely.

However, the other aspect is that in practice we do not know

the exact h parameter that proximity is determined by. Hence,

we check the impact of this uncertainty in further numerical

experiments.

We have now defined all the components of the optimization

problem in Equation (2) and are ready to employ the

disPEER approach. The following sections summarize

the simulation study and the HCP data application, where

we compare the performance of disPEER with riPEER, Ridge

regression, and ordinary least squares. In the simulation

part, we investigate the behavior of the considered

methods in the situations where distance has an impact

on the estimation. Further, in Section 3.3, we examine

the estimation performance of the aforementioned methods

on the brain data obtained from the Human Connectome

Project repository. Preparation of the data and implementation

of the statistical methods provided in R scripts can be found

online2.

3. Results

3.1. Simulation study

We conducted numerical experiments to study

the estimation accuracy where the information sources

contain both the connectivity between the cortical regions and

their spatial proximity.

3.1.1. Simulation settings

1. Informativeness of the connectivity-adjacency matrix

Utilizing the setup of Karas et al. (2019), we assume

that the connectivity information used for the estimation

approximates the truth.

In the process of generating data we use ACtrue and

in the estimation, we use ACobs
which partially contains

the information from the true matrix. In order to apply this

setting, let us use the measure of dissimilarity betweenACtrue

andACobs
from the riPEER paper:

diss(ACobs
,ACtrue )

=
∑

1≤i,j≤p 1{|ACobs
[i, j]−ACtrue [i, j]| > 0}

2 ·
∑

1≤i,j≤p 1{ACtrue [i, j] > 0} . (9)

2. Informativeness of the proximity-adjacency matrix

Brain-imaging software currently available (e.g., FreeSurfer)

allows us to measure the distances in the cortex accurately.

Taking into account this fact, we can presume that

the information content of the distance matrix is quite high.

In our numerical experiments, we use a fixed value of the h

parameter, which determines proximity measurements in

the proximity-adjacency matrix (see Equation 4). In practice,

we do not have this parameter at our disposal, as we do

not know it. This is why we want to investigate disPEER

performance, as well as putting approximate information in

the proximity matrix.

2 https://www.github.com/AleksandraSteiner/disPEER_data
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FIGURE 2

Proximity matrix displayed for the left hemisphere, Euclidean distance, and parameter h = 5. See other considered h-based proximity matrices in

the Supplementary material.

3. Information sources

We experimented with a number of assumptions on where

the information for the regularization method is coming

from. We want to study how both connectivity and spatial

proximity have an impact on the estimation of the b

coefficients. We studied these approaches by considering

a few settings of the parameters rC and rD in the covariance

matrix of b: Btrue = rCQCtrue + rDQDtrue + rRIp, where

QCtrue and QDtrue are the Laplacians of corresponding true

adjacency matrices. In our setting, the relationship between

rC and rD is that these parameters sum up to 1: rC = 1− rD.

4. Selection of the hemisphere

The two hemispheres of the human brain are connected via

the corpus callosum which is not a part of the cortex. This

is the reason why it is not possible to calculate the geodesic

distance between the regions that are not in the same

hemisphere. Of course, technically, we can determine

the Euclidean distance through the two hemispheres.

Nevertheless, a very natural way to determine distance

via the brain cortex is geodesic distance. As the distances

estimated using both Euclidean and geodesic definitions

are highly correlated, we chose to present the majority of

the results using the Euclidean distance. The corresponding

results for the geodesic distance are qualitatively similar.

Analyzing the associations in the two hemispheres separately

could be a natural solution in this situation:

[

b̂

β̂

]

: = argmin
b,β

{||yP−Z̃b||22+bT(λHC Q̃
H
C +λHDQ̃

H
D+λHR I)b

(10)

where H marks one of the hemispheres: left or right.

When analyzing the data, we consider 27 and 29 regions

in the left and the right hemisphere, respectively. To

properly account for both sources of information, structural
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FIGURE 3

Proximity matrix displayed for the left hemisphere, geodesic distance, and parameter h = 5. See other considered h-based proximity matrices in

the Supplementary material.

connectivity and cortical distances, and to illustrate our

approach, we concentrated on the blocks with at least

four brain regions. That is, we excluded from the analysis

connected blocks of size three or less. The final regions’

affiliation to the blocks was determined by the algorithm

developed by Dr. Goñi in Ramírez-Toraño et al. (2021).

5. Determining the proximity

As can be seen in Equation (4), proximity is determined

by the parameter h. Depending on its value, the influence

on the nearby regions in comparison to the regions that

are far apart can be either emphasized or de-emphasized.

With the increase of h, while the Euclidean-based proximity

measure is shrunk in a semi-continuous way, geodesic-based

proximity resembles a more binarized form (see Figures 2–5).

In the simulation studies, our estimation procedure employs

different values of the parameter h to study its influence on

the regression coefficients’ estimation error.

3.1.2. Synthetic data generation

To set up the variables for further generating the response,

we take the real adjacency matrix ACtrue and create ACobserved

fixing the established value of dissimilarity parameter

diss(ACobs
,ACtrue ). From both of these matrices, we determine

Laplacian matrices QCtrue and QCobserved
. Also, for the distance

matrix, we use the matrix of distances obtained in the Euclidean

space. Next, we calculate the adjacency (proximity) matrix

using parameter h, and based on that, we get the Laplacian QD.

With true matrices QCtrue and QD, we are able to determine

the distribution of b coefficients in the data generation.

Initially, we specify several settings of the parameters:

• Number of observations n = 400

• Number of predictors p ∈ {29, 27} (depending on

the hemisphere) andm = 2

• Signal strength σ 2
b
∈ {0.01, 0.1}
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FIGURE 4

Proximity matrix displayed for the left hemisphere, Euclidean distance, and parameter h = 100. See other considered h-based proximity matrices

in the Supplementary material.

• Variance of error σ 2
ε ∈ {1, 5} (having a situation with

stronger and weaker signals from the data)

• Parameter of dissimilarity diss(ACobs
,ACtrue ) = 0.25

• Fraction of the information coming from the connectivity

rC ∈ {0.1, 0.5, 0.9}, where part of the information coming

from the spatial proximity is rD = 1− rC

We generate synthetic data according the specification below:

1. Matrix Z ∈ Rn×p with iid rows fromN(0, Ip)

2. Matrix X ∈ Rn×m with iid rows fromN(0, Im)

3. Coefficients vector b ∼ N(0, σ 2
b
B−1
true)

4. Coefficients vector β = (0, 0)T

5. Response vector y = Xβ + Zb+ ε with ε ∼ N(0, σ 2
ε In)

The settings above are considered separately for each

of the two hemispheres. For a particular hemisphere, we

find corresponding Laplacians based either on the structural

connectivity or the distance. As in Karas et al. (2019), to evaluate

the estimation accuracy, we study the relative mean squared

error, which is expressed as

rMSE(b̂) =
||b̂− b||22
||b||22

. (11)

3.2. Study of the estimation error and its
components: Bias and variance

Mean Squared Error is the sum of the variance and squared

bias. In addition to studying classical MSE measure of all

the methods’ estimates, we also examined its components to

have a more comprehensive picture of the disPEER estimation
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FIGURE 5

Proximity matrix displayed for the left hemisphere, geodesic distance, and parameter h = 100. See other considered h-based proximity matrices

in the Supplementary material.

quality, e.g., to see the relationship between the variance and

squared bias.

As Figure 6 shows, median rMSE of the b coefficient values

estimates is lower for disPEER than either for riPEER or for

ridge regression. It can also be seen from the results presented

in Table 2 that for the majority of the settings disPEER shows

the best performance. All these results are obtained under

the assumption that we know the true value of the parameter

h with which the proximity is determined. However, using

different values of h in the estimation, we can still show better

performance of our method (see Supplementary material).

The results in Table 2 also show that the disPEER method

works very well, especially for rC = 0.1, independently of

the distance approach used. It is an expected behavior, as it is

the setting where our method is supposed to work the best,

because the relationship among the coefficients b is mainly

driven by the information coming from the distance matrix.

We notice that the rMSE percentage decrease reaches up to

20% compared with the riPEER approach. Even if we equally

distribute origination of information for the generation of

the b coefficients between both connectivity- and distance-

based information, disPEER still prevails over its sister method

riPEER. We also conducted experiments to study the behavior

of rMSE when n ∈ {100, 200} (Supplementary Tables 1,

2). In these settings, the information content is smaller

relative to the sample size and there are cases when ridge

regression provides smaller rMSE than brain-information-based

methods. This behavior is especially visible in the situations

when the ratio of σ 2
b
/σ 2

ε is the lowest, hence, the signal

to noise ratio is small: σ 2
b
/σ 2

ε = 0.002. Moreover, the
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FIGURE 6

Plots of rMSE (medians) of b estimates for di�erent connectivity information configurations rC ∈ {0.1, 0.5, 0.9} with σb ∈ {0.01, 0.1}, σε = 1, and

h = 5 for ridge, riPEER, and disPEER (left hemisphere and Euclidean distance).

number of cases when rMSE for riPEER and disPEER that

are close to each other increased in comparison to n =
400.

Figure 7 shows that our approach helps in keeping

the balance between the variance and squared bias trade-off

in contrast to ridge regression, which despite showing very

low variance cannot cope with prominently higher bias

(hence, worse MSE). Also, the distance-based approach

has slightly lower variance than riPEER. We do not

claim any theory-based properties here. However, our

extensive simulation studies show that our new method,

disPEER, shows improved performance when compared with

other regularization methods. We cannot claim uniform

improvement in every single case, but it is undoubtedly a

prevalent phenomenon.

Proximity parametrization—sensitivity analysis. In

Table 2, we present the results for the true values of the proximity

parameters h equal to 5 and 100 for Euclidean and geodesic

distances, respectively. We chose these values, because we

want to keep the distance information we give for coefficient

estimation as useful as possible. In Figures 2, 4, one can observe

that h should not be too large in the Euclidean approach,

because more and more regions become close to each other

and we lose the differentiation in the proximity matrix. In

contrast, what happens with geodesic distance (Figures 3, 5)

is that with the increase of h, we observe that proximities get

decidedly more binarized. Our Supplementary Figure 2 shows

that our estimation procedure is robust to the mis-specification

of the parameter h.

3.3. Human Connectome Project data
application

We want to compare the estimation methods presented in

Section 2, especially the new method disPEER in the context of

real data. Our aim here is to consider the numerical response,

which is a particular measure of cognition. All analyses are

adjusted for the demographic data (gender and age) with their

coefficients unpenalized (fixed effects). Regression coefficients

associated with the cortical volume are penalized (random

effects). To perform this analysis, we will use the data from

the Human Connectome Project repository (HCP). Also, we will

use the data on the brain anatomic measurements: structural

connectivity and brain cortical regions’ spatial proximities.

These data are not available in the HCP repository. To obtain

these measurements, we used the pipeline developed and

implemented by Dr. Goñi (Ramírez-Toraño et al., 2021).

3.3.1. Data description and preparation

As a part of the application of the studied methods on

the imaging data, we used the publicly available data from

the Human Connectome Project. This is a project funded by

the National Institutes of Health HCP with the original goal of

building amap of the neural connections and producing the data

in order to study brain disorders. The HCP repository contains

data on 1,200 young adults in the age range of 22–35. The data

we use do not contain all the 1,200 subjects from the HCP study.

Initially, we chose adults in such a way that we do not have
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TABLE 2 rMSE (median) results for ridge, riPEER, and disPEERmethods with h = 5 and h = 100 for Euclidean and geodesic distances, respectively,

for σ 2
b ∈ {0.1, 0.01} and σ 2

ε ∈ {1, 5}.

rMSE results (100 loops)

rC σ 2
b /σ 2

ε Distance Ridge riPEER disPEER rMSEDecrease [%]

0.1 0.100 Euc. 0.0652 0.0334 0.0326 2.5

0.1 0.010 Euc. 0.5918 0.4341 0.3936 10.3

0.1 0.020 Euc. 0.3087 0.1483 0.1425 4.1

0.1 0.002 Euc. 0.9909 0.8179 0.7283 12.3

0.5 0.100 Euc. 0.0580 0.0379 0.0372 1.9

0.5 0.010 Euc. 0.4212 0.2512 0.2343 7.2

0.5 0.020 Euc. 0.2287 0.1539 0.1449 6.2

0.5 0.002 Euc. 0.9821 0.6612 0.5844 13.1

0.9 0.100 Euc. 0.0519 0.0349 0.0357 −2.2

0.9 0.010 Euc. 0.4485 0.2951 0.2854 3.4

0.9 0.020 Euc. 0.2403 0.1533 0.1518 1.0

0.9 0.002 Euc. 0.9831 0.8714 0.8902 −2.1

0.1 0.100 geod. 0.0729 0.0503 0.0487 3.3

0.1 0.010 geod. 0.4923 0.4236 0.3737 13.4

0.1 0.020 geod. 0.3143 0.2367 0.2175 8.8

0.1 0.002 geod. 0.9907 1.1820 0.9439 19.3

0.5 0.100 geod. 0.0723 0.0403 0.0398 1.3

0.5 0.010 geod. 0.5110 0.3323 0.3117 6.6

0.5 0.020 geod. 0.2765 0.2363 0.2226 6.2

0.5 0.002 geod. 0.9948 0.6137 0.6186 −0.8

0.9 0.100 geod. 0.0556 0.0561 0.0561 0.0

0.9 0.010 geod. 0.3588 0.1623 0.1634 −0.7

0.9 0.020 geod. 0.2148 0.2634 0.2618 1.0

0.9 0.002 geod. 0.9559 0.5286 0.5439 −2.8

Last column denotes percentage of rMSE decrease for disPEER in respect of riPEER (“–” indicates increase).

related persons among them, so we analyzed only independent

observations. It led to data from 428 unrelated individuals.

Cortical properties and the cortical regions’ coordinates in

the HCP study were obtained using the FreeSurfer software.

We focus on both the cortical thickness and cortical area

data as in further work we consider the volume which is the

product of the thickness and the area. We found a few outliers in

both hemispheres and we decided to replace their data with their

family members’ data or, in cases where this was not possible,

we deleted such data from our analysis. As a result, we used 424

and 426 subjects in the analysis of the left and right hemispheres,

respectively.

3.3.2. HCP data analysis

To achieve a meaningful interpretation of the disPEER’s

performance in the case of real data, we wanted to compare

it with other statistical methods. We studied the estimation

using Ridge Regression,Ordinary Least Squares assuming a linear

regression model with coefficients [β , b], the riPEER method

with fixed and random effects and a penalty term containing

the Laplacian originating from the structural connectivity,

and our proposed disPEER approach, also with a linear

mixedmodel formulation and penalty component incorporating

the structural connectivity and spatial proximity information.

In the HCP data setting, the coefficients of Gender (categorical

0/1 variable) and Age (numerical variable), corresponding to

X matrix, are not penalized. We penalize the coefficients

of individual-brain-normalized cortical volume measurements

(Z matrix), which are obtained by multiplying the average

cortical thickness and cortical areas. We normalize regions’

volumes by dividing every measurement by the subject’s cortical

volume in the particular hemisphere. This is because brain

volumes especially differ between men and women; on average,

men’s brain have higher volumes than women’s. As a response

y, we chose the measurements of Language/Vocabulary

Comprehension, which measures a participant’s receptive

vocabulary. The respondent is presented with an audio

recording of a word and four images on the computer

screen and is asked to select the picture that most closely
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FIGURE 7

Empirical variance, squared bias, and MSE of b estimates for σb = 0.01, σε = 1, rC = 0.5, and h = 5 (left hemisphere and Euclidean distance).

matches the meaning of the word. In the estimation process,

we used standardized variables (mean 0 and variance 1) in

the X and Z matrices and outcome vector y. For riPEER we

applied R package mdpeer with connectivity-based penalty-

Laplacian Q̃C . With the usage of this matrix and additionally

a proximity Laplacian Q̃D, we estimated model coefficients

with disPEER.

3.3.3. Estimation of the coe�cients for
language/vocabulary comprehension

Coefficient estimates obtained using disPEER for

the left hemisphere turned out to be primarily driven

by the proximity as was seen in the penalty parameter

estimates. Coefficients indicated as significant in the

right hemisphere are the same for both disPEER and

riPEER Figure 8 which can be easily explained by the fact

that, in this setting, our method is mainly driven by

the connectivity information. Therefore, it is highly akin

to the connectivity-based approach.

We indicated in the manuscript that the confidence

intervals for each predictor are based on the univariable

approximation using the bootstrap-based confidence intervals.

disPEER estimates, when the geodesic distance is employed,

imply the highest number of significant regions in relation to

the other methods. Moreover, it turns out that the significantly

associated areas are located close to each other on the cortical

surface. Based on the disPEER estimates, we conclude that

they may be involved in language comprehension. We marked

these regions using white rectangles in Figure 9. Also, we

summarized the significant regions in Table 3, where we

included corresponding p-values computed for bootstrap
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FIGURE 8

Estimates of b for Language/Vocabulary Comprehension cognitive function with non-adjusted 95% bootstrap-based confidence intervals

denoted for left and right hemisphere (top and bottom, respectively). Results are presented as estimates (solid black lines), coe�cient

confidence intervals (shaded areas), zero line (horizontal red line), and significant coe�cient at 95% level (vertical red lines).
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FIGURE 9

Desikan-Killiany parcellation (original image from Klein and Tourville, 2012) of the left hemisphere with significant regions indicated by white

loops. Regions are visible from lateral and medial perspectives (left and right, respectively).

TABLE 3 Cortical regions in the left hemisphere with corresponding

bootstrap-obtained p-values and non-adjusted 95% confidence

intervals (for geodesic distance).

Cortical region Associated

p-value

Associated confidence interval

Inferior temporal 0.002 [0.01394, 0.05408]

Middle temporal 0.002 [0.01053, 0.05270]

Entorhinal 0.008 [0.00824, 0.04749]

Fusiform 0.029 [0.00183, 0.04251]

Lateral occipital 0.033 [0.00186, 0.04876]

Temporal pole 0.047 [0.00002, 0.04142]

results. Indeed, the literature (Blank et al., 2002; Fridriksson

et al., 2015; Mesulam et al., 2015) states that some areas of

the left hemisphere are associated with language comprehension.

The so-called Wernicke’s and Broca’s areas are the two main

zones commonly known for being associated with speech

production. However, the location and functionality of these

regions are still not fully established. In the literature, we

also find many different studies that demonstrate that normal

communicative speech is reliant on the left hemisphere regions

that are distant from the classically defined language areas of

Wernicke’s and Broca’s areas (Blank et al., 2002; Mesulam et al.,

2015).

4. Discussion

The complexity of the human brain was a primary

factor driving the search for another source of information

that could improve the study of the associations between

the structural properties of the cortex and neurocognitive

outcomes as manifested by improvement in the regression

coefficient estimation. In our work, we provided an extension

of the method developed in Karas et al. (2019) by

incorporating a distance measure among cortical regions

to provide additional information in the penalization

specified in Equation (2).

We studied the performance of the coefficient estimation

with the incorporation of the structural connectivity and

spatial proximity, and as an evaluation measure, we examined

the relative MSE of coefficients defined in Equation (11).

In our simulation study, we used two types of the distance

term—Euclidean and geodesic distance. Also, we assumed

different impacts on model coefficients from both sources of

information. We observed that independently of the parameter

specification and assumptions we make for the distance

or b distribution, in most cases, estimation benefits from

the incorporation of the between-region distance information.

There is a significant improvement in disPEER estimation

in terms of not only rMSE but also bias. Regarding

the bias-variance trade-off, it is clearly visible that while

ridge regression has the smallest variance with the highest

bias, at the same time, disPEER and riPEER keep balance

between these measures, with a visible advantage of our

distance-based method.

disPEER was applied to the real data collected by

the Human Connectome Project. We studied a cognitive

function of vocabulary comprehension and noticed that in

the left hemisphere, disPEER estimation was driven mainly

by the proximity and cortical regions chosen by this method

were located adjacently. Moreover, these neighboring regions

indicated as significant by disPEER were situated within

the so-called Wernicke’s and Broca’s areas, which according
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to the literature are involved in language ability (see Blank

et al., 2002; Fridriksson et al., 2015; Mesulam et al.,

2015).

In our future work, we will explore utilizing sparsity-

inducing penalties, e.g., LASSO (Tibshirani, 1996). We

will also expand our predictor space to include the

activation maps from the task-based fMRI studies with

the penalties imposed by both spatial distance and

structural connectivity matrices and we will incorporate

the simulation-based approach of Ruppert et al. (2003)

to establish simultaneous confidence intervals for

all predictors.
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