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A data mining paradigm for 
identifying key factors in biological 
processes using gene expression 
data
Jin Li1,2, Le Zheng1, Akihiko Uchiyama3, Lianghua Bin4, Theodora M. Mauro5, Peter M. Elias5, 
Tadeusz Pawelczyk  6, Monika Sakowicz-Burkiewicz6, Magdalena Trzeciak7,  
Donald Y. M. Leung4, Maria I. Morasso3 & Peng Yu1,2

A large volume of biological data is being generated for studying mechanisms of various biological 
processes. These precious data enable large-scale computational analyses to gain biological insights. 
However, it remains a challenge to mine the data efficiently for knowledge discovery. The heterogeneity 
of these data makes it difficult to consistently integrate them, slowing down the process of biological 
discovery. We introduce a data processing paradigm to identify key factors in biological processes via 
systematic collection of gene expression datasets, primary analysis of data, and evaluation of consistent 
signals. To demonstrate its effectiveness, our paradigm was applied to epidermal development 
and identified many genes that play a potential role in this process. Besides the known epidermal 
development genes, a substantial proportion of the identified genes are still not supported by gain- or 
loss-of-function studies, yielding many novel genes for future studies. Among them, we selected a top 
gene for loss-of-function experimental validation and confirmed its function in epidermal differentiation, 
proving the ability of this paradigm to identify new factors in biological processes. In addition, this 
paradigm revealed many key genes in cold-induced thermogenesis using data from cold-challenged 
tissues, demonstrating its generalizability. This paradigm can lead to fruitful results for studying 
molecular mechanisms in an era of explosive accumulation of publicly available biological data.

The huge amount of data generated from previous biological studies provides a precious resource for mining 
new biological knowledge. A significant portion of the data is freely available in public repositories such as 
ArrayExpress1 and Gene Expression Omnibus (GEO)2. For example, around one million series studies are pub-
licly available in GEO. Due to the unstructured nature of the metadata associated with public data, manual cura-
tion is required3–7, a step that is essential for collecting large-scale gene expression data.

Gene expression data facilitate the application of the network reconstruction approach for identifying key 
factors in biological processes. For example, Bhaduri et al.8 applied the gene network reconstruction approach to 
explore epidermal differentiation regulators. Using network analysis, the MPZL3 gene was identified as a highly 
connected hub required for epidermal differentiation. In addition, the MPZL3 gene indirectly regulates epidermis 
genes, including ZNF750, TP63, KLF4, and RCOR1, through the FDXR gene and reactive oxygen species.

Complementing data analyses with more relevant data improves the identification of key factors in biological 
processes. Even though massive expression data can provide essential insights in revealing genetic interactions, 
there are confounding factors or “noise” introduced by technical variations, such as batch effects9. To obviate the 
“noise” and generate a consistent result, one solution is integrative analysis by comparing large-scale datasets10. 
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In this report, we introduce a paradigm to integrate data collection and data analysis for mining key factors in 
specific biological processes (Fig. 1). To demonstrate the power of our data processing paradigm, we evaluate key 
factors of two applications in skin biology and energy homeostasis.

The epidermis of skin mediates various functions that protect against the environment, such as microbial 
pathogen challenges, oxidant stress, ultraviolet light, chemicals, and mechanical insults11. Therefore, it is critical 
to understand mechanisms of epidermal development to develop new treatment for human skin diseases12. Our 
paradigm predicts key factors in epidermal development by collecting related datasets and integrating the infor-
mation. A fraction of genes are annotated in Gene Ontology (GO) or have strong functional validation based on 
gain-/loss-of-function studies13. The remaining genes are novel; their functionality has not been experimentally 
validated. We picked a top hit, suprabasin (SBSN), and performed loss-of-function experiments for the mouse 
homolog of gene Sbsn using RNA-Seq. The analysis validates that Sbsn knockdown in mouse keratinocyte cultures 
down-regulates cornified envelope genes, suggesting an essential role of SBSN in epidermal differentiation. These 
results demonstrate the effectiveness of our paradigm in discovering key factors of epidermal development.

As another application, cold-induced thermogenesis (CIT) can reduce body weight by increasing resting 
energy expenditure in mammals14. Genes involved in CIT can be promising therapeutic targets for treating obe-
sity and diabetes. Thus, it is important to understand the underlying mechanism of CIT. Our paradigm detected 
potential CIT-related genes, including known CIT genes and novel ones, showing that the paradigm can be gen-
eralized easily to other biological processes. It is a promising integrative analysis approach to identify key factors 
in biological processes.

Results
Identification of candidate epidermal development genes. To identify key gene expression datasets 
that are likely to be related to epidermal development, data curation was performed. A total of 295 epidermis 
development genes (according to GO) were searched on ArrayExpress to query microarray datasets, and over 300 
datasets were retrieved. Due to the limitation of the search function in ArrayExpress, many retrieved datasets did 
not have any perturbation of these epidermis development genes, even though the gene symbols were mentioned 
in the datasets. To overcome this problem, manual curation was performed on each retrieved dataset to retain 
relevant ones, and the manual curation resulted in 24 experimental comparisons from 17 datasets with gain or 
loss function of 14 epidermis development genes (Table S1 and Methods).

Data curation in ArrayExpress/GEO for experimental 
comparisons (CMPs) in datasets with the biological 

process perturbed, i.e., increased (+1) or decreased (-1).

CMP 1:
increased: +1

CMP 2:
decreased: -1

CMP m:
decreased: -1

symbol CMP 1 CMP 2 … CMP m
Consensus 

Score

Gene 1 +1=+1*+1 +1=-1*-1 … 0=-1*0 2=+1+1+0

Gene 2 +1=+1*+1 +1=-1*-1 … -1=-1*+1 1=+1+1-1

Gene 3 NA=+1*NA 0=-1*0 … 0=-1*0 0=0+0

… … … … … …

Gene n -1=+1*-1 -1=-1*+1 … -1=-1*+1 -3=-1-1-1

…

DEG analysis

Biological process related genes with high consensus scores

Figure 1. Data processing paradigm flowchart. Data curation was performed to identify the gene expression 
datasets with the given biological process perturbed (e.g., the process is increased in CMP 1 with +1 and is 
decreased in CMP 2 or CMP m with direction −1). DEG analysis was performed on the curated datasets, and 
+ −1/ 1/0 represents the up-regulated, down-regulated, or unchanged genes, respectively. To prioritize 
important genes in the biological process for each gene in a curation dataset, an affinity score of + −1/ 1/0 was 
calculated first by comparing the gene expression change and the regulation of the biological process, where +1 
indicates that the gene (e.g., Gene 1 in CMP 1 and CMP 2) is positively related to the biological process, −1 
indicates that the gene (e.g., Gene 2 in CMP m and Gene n in CMP 1) is negatively related to the biological 
process, and 0 indicates no relation of the gene to the biological process. No measurement (notated as NA, e.g., 
Gene 3 in CMP 1) indicates an unknown affinity of the gene in the dataset. By summing the affinity scores, a 
consensus score was calculated for genes in the perturbed datasets. Genes with higher consensus scores were 
identified as more related to the biological process.
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To determine the candidate genes potentially involved in epidermal development, differential gene expression 
(DEG) analysis was performed on the 24 experimental comparisons of the curated microarray datasets. 
Differentially expressed genes were identified under ≤ .q 0 05. The large-scale gene expression changes derived 
from our curated datasets provided a list of candidate genes that may be potentially involved in epidermal devel-
opment (Fig. 2).

To identify genes that are potentially critical in epidermal development, consensus gene scores were summa-
rized for each gene from affinities on the 24 experimental comparisons. Eighty-one genes were identified as key 
genes related to epidermal development with a consensus score ≥6 (Table S2). The heatmap (Fig. S1) shows a 
majority of these genes with a +1 affinity score in skin-related cell types. This information suggests that these top 
genes may play a role in epidermal development. To infer the biological processes involved, GO analysis was 
performed on these top genes using Fisher’s exact test (the null hypothesis is log-odds-ratio <2) with all the genes 
annotated in GO as the background. Several epidermis-related GO terms were enriched in these genes (Fig. 3). 
For example, the essential GO terms in the epidermis were enriched, such as keratinocyte differentiation, epider-
mal cell differentiation, epidermis development, skin development, cornified envelope, and keratinization. In 
addition, the GO terms involved in skin barrier formation were also enriched, such as fatty acid elongase activity, 
lipoxygenase pathway, and establishment of skin barrier. These enriched GO terms suggest that the top identified 
genes are critical in epidermal development.
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Figure 2. DEG results of the curated microarray datasets. To identify the differentially expressed genes of the 24 
experimental comparisons in curated microarray datasets, DEG analysis was performed as mentioned in 
supplemental materials. DEGs were identified under ≤ .q 0 05. (a) The bar plot depicts the number of DEGs 
identified in each of the 24 experimental comparisons. (b) The figure depicts the number of genes differentially 
expressed in n comparisons out of all the 24 comparisons. A large number of DEGs were identified in the 
curated datasets. A small group of genes was differentially expressed in multiple datasets.
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Figure 3. Biological process and literature study of genes with consensus score ≥6. To identify the biological 
process that the 81 top genes (consensus score ≥6) were involved in, a GO enrichment analysis was performed. 
The enriched GO pathways were plotted with a log10 p-value, along with their log10 odds ratios in the 
enrichment analysis.
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Because GO annotation is not complete for gene functions15, we manually curated functional annotations for 
the top identified genes. Of these genes, besides the 18 genes annotated in the GO term “epidermis development,” 
only three genes have loss-of-function experiments supporting their role in epidermal development. However, 
the majority of these identified genes have no functional experimental validation on epidermal development. Of 
the three genes with literature evidence, EDN1 (consensus score = 7) mediates the homeostasis of melanocyte 
(located at the bottom of epidermis) in vivo upon ultraviolet irradiation16. The loss function of ELOVL4 (con-
sensus score = 6) represses the generation of very-long-chain fatty acids, which is critical for the epidermal bar-
rier function, showing the important role of ELOVL4 in epidermis development17. The in vitro loss-of-function 
experiment of HOPX (consensus score = 6) leads to increased expression of cell differentiation markers in human 
keratinocytes, demonstrating its involvement in epidermal development18.

To evaluate how well the roles of the identified genes are understood in epidermal development, we queried 
the PubMed literature database and examined the results. For each gene, the keyword used in the PubMed search 
was constructed as “<symbol>[tiab] AND (epidermis OR skin)”. The search results showed that a large propor-
tion of identified genes (~42% = 34/81) have no publications related to skin. Therefore, these understudied novel 
genes revealed potential candidate genes for new studies on epidermal development. In addition, the majority 
(>70%) of identified genes were not in the epidermis development GO term (Fig. S2). These novel genes demon-
strate the ability of the paradigm to discover unknown factors in epidermal development.

To demonstrate the effectiveness of the paradigm computationally, top-ranked genes using collective compar-
isons were compared to genes using individual comparisons (Text S1). Fig. S3 shows the significantly (p-value = 
. × −3 6 10 9) increased epidermal development genes identified by the paradigm compared to differentially 

expressed genes derived from individual comparisons.

Validation of Sbsn role in epidermal differentiation by loss-of-function and other experiments.  
Among the identified genes, a top gene (SBSN) (with a high consensus score of 9) was selected to validate its role in 
epidermal development. A phylogenetics-based GO analysis revealed enriched GO terms related to epidermal 
development using co-evolved genes of SBSN (Text S2, Fig. S4). In addition, a time-course microarray dataset 
showed an increased expression of SBSN upon epidermal differentiation (Text S3, Fig. S5). These results suggest a 
potentially critical role of SBSN in epidermal development. To determine the cellular component that Sbsn is 
involved with, we performed a study of the differentially expressed genes in differentiating mouse primary keratino-
cyte cultures from mice with Sbsn knockdown. In Sbsn knockdown mouse cultures, 326 genes were up-regulated, 
and 161 genes were down-regulated (Methods, Table S3, Fig. 4a). To investigate the functional roles of Sbsn, these 
differentially expressed genes were used to search for enriched GO terms19 using Fisher’s exact test (null hypothe-
sized log-odds-ratio <2) with the genes expressed in the Sbsn knockdown mouse culture and the controls as back-
ground. Specifically, the cornified envelope GO term was found enriched in the genes down-regulated upon Sbsn 
knockdown (p-value < 0.05), and eight cornified envelope genes were down-regulated (Table S4). These results sug-
gest the role that Sbsn may play in epidermal differentiation and cornified envelope formation.

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease20. IL-4, a type 2 cytokine, 
contributes to the development of AD. Because broad defects of cornified envelope have been identified in AD21, 
SBSN may play a critical role in AD via defective cornification. To investigate the putative role of SBSN in AD, 
differentiated primary normal human epidermal keratinocytes (NHEKs) were cultured to examine the expression 
levels of SBSN upon IL-4 treatments via RT-PCR. In the presence of IL-4 (at doses of 5 ng/ml and 50 ng/ml), SBSN 
mRNA levels in the differentiated cells were significantly decreased as compared to differentiated cells without 
cytokine treatment (Fig. 4b). These decreased expression levels of SBSN upon IL-4 treatment suggest a critical 
precursor role of SBSN in the development of AD via disruption of cornification—and further indicate an impor-
tant role of SBSN in epidermal differentiation.

To investigate the role of SBSN in AD, expression levels of three SBSN transcripts were measured in AD 
lesional/nonlesional and control skins via RT-PCR (Methods). A total of 49 skin biopsies were measured, con-
sisting of 16 AD lesional skin biopsies, 16 AD nonlesional skin biopsies, and 17 healthy controls. The expression 
levels of SBSN transcripts were normalized to G6PD. SBSN transcript v1 (NM_001166034.1) showed a signifi-
cantly decreased level in AD lesional skin compared to AD nonlesional skin and controls (Fig. 4c). The decreased 
expression levels of the full-length transcript of SBSN suggests an important role of this SBSN isoform in AD.

Generalization of the paradigm as demonstrated by its application on CIT. To investigate the 
generalizability of our integrative analysis approach, we applied the paradigm to reveal thermogenesis genes in 
tissues upon cold exposure. We collected ten gene expression datasets from GEO (Table S5). These gene expres-
sion data were collected from tissues of mice treated with cold temperature to induce thermogenesis. Both 
microarray and RNA-Seq data were collected. Because thermogenesis is always activated upon cold exposure, the 
direction of thermogenesis is thus increased in all the 24 comparisons within the ten collected datasets. Using 
DEG analysis, the paradigm calculated the consensus scores for measured genes from 24 comparisons and iden-
tified 153 genes with a consensus score ≥6 (Table S6). These 153 identified genes were then used to perform GO 
analysis. Enriched GO terms are related to energy homeostasis (Fig. S6). Literature curation confirmed the func-
tional evidence in CIT of some identified genes. For example, elongation of very-long-chain fatty acids (Elovl3, 
consensus score = 13) in ablated mice showed a proliferated metabolic rate in a cold environment, indicating a 
higher capacity for brown fat-mediated nonshivering thermogenesis. Thus, Elovl3 is a key regulator for CIT in 
adipose tissue upon cold exposure22. As another example, carnitine palmitoyltransferase 2 (Cpt2, consensus 
score = 11) depletion mediates the fatty acid oxidation in adipose tissue, which is required for CITs, suggesting 
the critical role of Cpt2 in CIT15,23. This second application of our paradigm in CIT suggests that the paradigm can 
be generalized to other biological processes. Our paradigm is a simple but important integrative data processing 
approach for gene expression data.
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Discussion
We propose a gene expression data processing paradigm to identify key factors in biological processes. The col-
lection of gene expression data enhances the identification of key factors in biological processes. The applica-
tion of the paradigm for epidermal development revealed known and novel epidermal development genes. To 
validate the novel predictions, an understudied gene, SBSN, was specifically investigated for its potential role 
in epidermal differentiation. SBSN has been identified in the suprabasal layers of the epithelia in the epider-
mis24. Although SBSN was previously shown to be induced upon differentiation of epidermal keratinocytes, no 
loss-of-function study has been performed to demonstrate the functional role of SBSN in epidermis or skin. 
Our phylogenetics-based GO analysis suggests relevant biological processes in epidermal development for 
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Figure 4. Validations of SBSN in epidermal differentiation. (a) Heatmap of the expression levels between Sbsn 
knockdown mice and controls. Expression levels are shown for genes differentially expressed (under |log2-fold-
change| >0.5 and q-value < 0.05) upon Sbsn knockdown. Red and white colors indicate high and low expression 
levels (arc-sine hyperbolic transformed normalized counts by DESeq and scaled by standard deviations) for 326 
up-regulated genes, respectively. Blue and white colors indicate high and low expression levels for 161 down-
regulated genes, respectively. (b) Expression values of SBSN normalized by 18 S rRNA in differentiated 
keratinocytes upon IL-4 treatment. To evaluate the gene expression changes of SBSN during keratinocyte 
differentiation upon IL-4 treatment, an RT-PCR experiment was performed with nine differentiated cells with 
and without IL-4 treatments (three replicates per condition). The expression values of SBSN were normalized by 
the expression levels of 18 S rRNA. The boxplot shows a significant decrease of SBSN expression at two IL doses 
(5 ng/ml and 50 ng/ml) (*p-value < .0 05). (c) Expression values of full-length SBSN transcript (v1) in AD skins. 
To evaluate the expression changes of SBSN in AD skins, expression values were measured in AD skins for the 
SBSN transcripts via RT-PCR. The expression levels were normalized by the expression levels of G6PD. The full-
length SBSN transcript showed significantly decreased expression levels in AD lesional skins compared to AD 
nonlesional and control skins (***p-value < .0 001, **p-value < .0 01, *p-value < .0 05).
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SBSN co-evolved genes (Fig. S4). RNA-Seq analysis in Sbsn knockdown mouse keratinocyte cultures revealed 
down-regulated cornified envelope genes, suggesting a role for Sbsn in epidermal differentiation. SBSN may also 
be critical in AD, an inflammatory skin disease, because AD has a broadly defective cornified envelope21,25. Due 
to the full-length isoform of SBSN potentially playing a more critical role in the development of AD (Text S4, 
Fig. 4c and S7) and IL-4 being involved in AD20, we examined the effects of IL-4 on human differentiating kerat-
inocyte cultures and found decreased expression levels of SBSN in IL-4 treated compared to non-treated cultures 
(Fig. 4b). These results indicate that SBSN may be a target for aberrant cytokine production in AD.

The paradigm identified key genes by collecting multiple datasets and integrating information from the collected 
datasets, especially from datasets of the cell or tissue types most relevant to the target biological process. However, due 
to the limited availability of such datasets in certain areas, relevant datasets from other cell or tissue types may also be 
used, for they generally will not worsen the results. This is consistent with the idea of ensemble learning, in which 
merging many weak and independent classifiers will result in a strong classifier26. The heatmap of identified genes 
(consensus score ≥6) showed seven experimental comparisons from epidermal cells clustered together (Fig. S1). To 
systematically cluster the 24 experimental comparisons, a hierarchical clustering analysis using an affinity distance 
metric (Text S5) grouped the comparisons into eleven distinct clusters (at a cutoff distance ≤ .0 05) (Fig. S8). As a 
result, the seven experimental comparisons from epidermal cells were also consistently clustered together in the hier-
archical clustering analysis. These results indicate that the experimental comparisons from epidermal cells contributed 
the most. In the future, with more datasets from epidermal tissues/cells generated, it may not be necessary to include 
datasets from nonepidermal tissues/cells, as the marginal contribution from them is likely to be negligible.

The paradigm starts from gene expression datasets with the perturbation of a biological process. This data 
collection process is critical. As for the application in epidermal development, we searched ArrayExpress using 
the text of epidermal development for candidate gene expression datasets. However, none of the five retrieved 
datasets showed changes in epidermal development, leaving us with no data from reliance on the bare keyword 
search functionality offered by ArrayExpress (Fig. S9). Because known genes annotated in the epidermis develop-
ment GO term provide candidate factors responsible for the regulation of epidermal development, datasets with 
these perturbed known genes can be a starting point for our paradigm. However, it should be understood that 
the paradigm is not limited to a single GO term. Due to incomplete annotation in GO5, genes in other GO terms, 
such as keratinocyte differentiation (GO:0030216) and epidermal cell differentiation (GO:0009913), can also play 
roles in epidermis development. Thus, starting from these additional genes along with the genes in the epidermis 
development GO term, the performance of the paradigm is expected to improve because more information may 
be borrowed from other relevant datasets. To apply our paradigm, it is critical to examine the collection of gene 
expression datasets. In addition, our paradigm can include both microarray and RNA-Seq data, as shown in the 
CIT application, enabling the inclusion of more data—leading to better results than with only one data type.

To obtain a manageable number of identified genes, our computation analysis focused on genes with a consen-
sus score ≥6. A simulation was performed to evaluate the empirical distribution of consensus scores in epidermal 
development and CIT, and a cutoff of ≥6 corresponds to an empirical p-value = 3 72 10 8. × −  and 1 09 10 8. × −  for 
epidermal development and CIT, respectively (Text S6 and Fig. S10). But other thresholds may also be used. 
Higher thresholds lead to fewer but more robust identified genes, while lower thresholds lead to more but less 
robust identified genes. An investigator should pick a cutoff appropriate for the intent of the investigation. For 
example, if the purpose is to identify more novel epidermis development genes for further experimental valida-
tion, genes with consensus scores lower than 6 can also be considered. In addition, the cutoff should be also 
related to the total number of comparisons used in the analysis. In general, with more comparisons, the cutoff for 
the consensus score should be greater.

It is worth mentioning that genes with negative consensus scores, in general, do not contribute to regulation 
in biological processes. For the application of epidermal development and CIT, a consensus score cutoff ≤−5 is 
used to extract negative genes, and no enriched GO terms are related to epidermal development (44 negative 
genes) and CIT (95 negative genes) (data not shown). These results are consistent with the intent of the scoring 
scheme defined in Fig. 1. The number of genes with positive and negative consensus scores would be expected to 
be roughly the same due to normalization, but the positive genes, in fact, have longer tails than the negative genes 
(Fig. S11). Quantile testing shows significantly larger positive scores compared to the absolute negative score at 
0.95-quantile for both applications (p-value < . × −2 2 10 16)27. This suggests that genes positively correlated with 
epidermal development and CIT are more likely to be consistent across different experiments, indicating that 
these positive genes are more likely to be relevant to the respective processes. In summary, the paradigm is valu-
able in identifying key factors for biological processes using gene expression data.

Methods
Ethics statement. All skin samples were collected according to procedures (NKEBN/486/2011) previously 
approved by the local ethics committee (Independent Bioethics Commission for Research at Medical University 
of Gdansk). Written consent was obtained from all patients prior to enrollment in the study.

Curating gene expression data related to epidermal development. We collected gene expression 
datasets related to epidermal development by manual curation according to the following procedure. First, we 
searched ArrayExpress using the keyword (“epidermis + development” OR “epidermal + development”) AND 
organism: “homo sapiens”, retrieving only five studies, none of which could be reused to study the epidermal 
development process because of no change in epidermal development in the datasets (Fig. S9). Therefore, we 
started from known epidermal development genes to curate datasets with the process perturbed. Specifically, 
genes from the GO19 epidermis development (accession GO:0008544) term were extracted first for humans. Then, 
the official symbol of each gene was queried on ArrayExpress for human microarray datasets. Each retrieved 
dataset was manually examined to retain only the datasets with at least one epidermis development gene being 
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perturbed (i.e., knocked out, knocked down, or overexpressed). To ensure proper downstream statistical analysis, 
any dataset with no replicates was discarded.

Data processing paradigm of the perturbed expression data. To identify the genes related to a bio-
logical process, our data processing paradigm was performed on the gene expression data to capture the affinities 
between specific genes and the biological process. An affinity score of +1 or −1 means that the gene is positively 
or negatively related to the biological process. Specifically, if the expression of a gene is increased or decreased in 
a biological process that is increased, the gene has an affinity score of +1 or −1 for the biological process. 
Alternatively, if the biological process is decreased, these genes have an affinity score of −1 or +1. The affinity 
score was 0 or NA for the genes not differentially expressed or unmeasured. The detailed workflow of the para-
digm is shown in Fig. 1. For a biological process, systematic data curation is performed to collect gene expression 
datasets with the process perturbed (increased or decreased). Using DEG analysis (Text S7 and S8)28–30, affinity 
scores are calculated for each gene in each comparison in each dataset. Finally, a consensus score is calculated by 
summing these affinity scores among the comparisons for each gene. High consensus scores suggest that the 
corresponding genes are potentially critical to the biological process. Thus, our paradigm is a general framework 
that can be used to identify the key factors in a biological process.

NHEK cell culture and treatment. Primary NHEKs of neonatal foreskin were purchased from Thermo 
Fisher Scientific and were maintained in EpiLife Medium containing 0.06 mM CaCl2 and S7 supplemental reagent 
under standard tissue culture conditions. The cells were seeded in 24 well dishes at 2 × 105/well to form a confluent 
monolayer. In the following day, the cells were subjected to differentiation by increasing CaCl2 to 1.3 mM in the 
culture media with or without the human recombinant IL-4 at designated concentrations. The cells were harvested 
for total RNA extraction before differentiation and were differentiated for 5 days. Total RNA was extracted using 
RNeasy mini kit according to manufacturer guidelines (QIAGEN, MD). RNA was then reverse transcribed into 
cDNA using superScript® III reverse transcriptase from Invitrogen (Portland, OR) and was analyzed by real-time 
RT-PCR using an ABI Prism 7000 sequence detector (Applied Biosystems, Foster City, CA). Primers and probes for 
human SBSN (Hs01078781_m1) and 18 s (Hs99999901_S1) were purchased from Applied Biosystems (Foster City, 
CA). Quantities of all target genes in test samples were normalized to the corresponding 18 S levels.

Sbsn siRNA in mouse keratinocyte culture and RNA sequencing. Primary murine keratinocytes 
were isolated from BALB/c neonatal mice as previously described31. Primary murine keratinocytes were cultured 
in a supplemented minimal essential medium (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) with 
8% fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA, USA) and 1% antibiotic (Penicillin 
Streptomycin Amphotericin B, Sigma), with 0.05 mM Ca2+ concentration. A total of ×1 106 cells were seeded in 
each well of six well plates. Twenty-four hours after seeding, the siRNA mix (Opti-Mem serum free media 
(GIBCO), 75 pmol of siRNA (Dharmacon), and HiPerfect transfection reagent (Qiagen)) was added to cells. For 
SBSN, the siRNA used were Dharmacon, SMARTpool; siGENOME Sbsn siRNA M-054578-01-0005 and Control 
(mouse) SMARTpool; and siGENOME Non-Targeting siRNA Pool #1. Each condition was done in triplicates. To 
induce keratinocyte differentiation, a final concentration of 0.12 mM Ca2+ was used. RNA was harvested 48 hours 
after siRNA transfection. Total RNA from cells was extracted using RNeasy kit (Qiagen) according to manufac-
turer instructions. A total of 100 ng was used to prepare the libraries utilizing a Neoprep Library kit (Illumina). 
RNA sequencing was performed in the NIAMS Genome Core Facility at the National Institutes of Health.

DEG analysis using Sbsn knockdown RNA-Seq data in mouse differentiating primary keratino-
cyte cultures. To identify the differentially expressed genes in mouse differentiating primary keratinocyte 
cultures in which Sbsn had been knocked down with siRNA, the following analysis was performed. The raw 
RNA-Seq reads were aligned to the mouse (mm10) genome using STAR (version 2.5.1b)32 with default settings. 
The uniquely aligned reads were retained to calculate the read counts for each gene against the UCSC KnownGene 
annotation (mm10), and a count table was constructed by counting the number of reads aligned uniquely to each 
of the genes for each sample. DEG analysis was performed by DESeq233. To adjust the batch effect, a generalized 
linear model with a batch factor was used to model the read counts for all samples, and the Wald test was used to 
test the significance of differences in gene expression between Sbsn knockdown samples and controls. FDR 
adjusted q-values were then calculated from the p-values in the Wald test using the Benjamini-Hochberg proce-
dure34. The log2-fold changes between Sbsn knockdown samples and controls were also calculated for each gene. 
The differentially expressed genes were identified under |log2-fold-change| > .0 5 and < .q 0 05.

RT-PCR analysis of AD skin. For the current study, arm skin samples (2 mm punch biopsies of 3 mm depth) 
were taken from AD patients (from lesional and nonlesional AD skin), and skin samples (controls) were obtained 
from healthy subjects. The nonlesional skin biopsy was performed at a 10 cm distance (at least) from AD skin 
lesions. Immediately after biopsy, the skin samples were placed in RNA-later solution (Qiagen) and were stored 
at –20 0C. Total RNA was isolated using standard methods. The mRNA levels were analyzed by real-time RT-PCR 
with TaqMan primer-probe sets using the Path-ID Multiplex One-Step RT-PCR kit (Path-ID™ Multiplex 
One-Step RT-PCR Kit (Applied Biosystems). The reference transcript G6PD was used as an internal standard 
and was amplified together with each target gene transcript in the same well using primers and probes, as shown 
in Table S7. The level of each analyzed transcript was normalized to that of the appropriate reference transcript.

Data availability. The datasets used in this study are available in the National Center for Biotechnology 
Information’s (NCBI’s) GEO2 with accession GSE100100.
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