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Abstract: Global food systems are under significant pressure to provide enough food, particularly
protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing
due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming
food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich
alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue
engineering for food applications. Stem and progenitor cells are the building blocks and starting
point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures
needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary
target tissues for CM/CS production. The review also describes existing challenges, such as a need
for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat
culture efficiency and ways to address them.

Keywords: cellular agriculture; stem cells; progenitor cells; tissue engineering; cultured meat;
cultured seafood

1. Introduction

It is a well-known fact that the constant rise of the human population, which is
estimated to reach over 10 billion by the year 2100 [1] puts enormous pressure on the
global food systems, particularly concerning the protein-rich foods, such as meat and
seafood. In the current state of the world in the year 2022, with the still ongoing COVID-19
pandemic [2,3] and monumental political and economical changes in the global landscape
associated with the conflict in Ukraine [4] that may even trigger serious food insecurity in
Ukraine and whole Europe, according to Food and Agriculture Organization of the United
Nations (FAO) [5], an important aspect to keep in mind is a confirmed observation that in a
crisis, in inflation, there is increased demand of protein-rich foods [6]. In fact, FAO predicts
a global shortage of protein-rich foods in the years to follow [7].

In addition, increased food production needs to be realized sustainably, not affecting
already ongoing climate changes caused by agriculture-related factors such as industrial
farming nor perpetuating the ongoing decline in marine/river wildlife populations due to
overfishing [8].

Alternative proteins (AP) offer good new options for addressing rising global protein-
rich food demand as they have the potential to significantly reduce food system emissions,
free up significant amounts of land for additional climate mitigation strategies, food security,
as well as for the protection of biodiversity while, in the same time securing sufficient
amounts of protein-rich foods [9].

There are various categories of AP, and many are already being commercialized such
as plant-, algae-, fungi-, insect-based AP, etc. [10], while the AP obtained by cellular
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agriculture (CA) still face a number of challenges related to scaling up and widespread
commercialization [11].

In this review, we focus on cultured meat (CM), cultured fat (CF), and cultured
seafood (CS) i.e., protein-rich alternatives for traditional meat and fish that are obtained
via CA i.e., tissue engineering (TE) applied for food production.

More precisely, we emphasize vertebrate cell types and procedures needed for myo-
genic and adipogenic differentiation, since muscle and fat tissue are the primary target
tissues for CM/CF and CS production. This implies that under CS, within the scope of
this review, we will be considering only fish and not crustaceans (shrimp, crab, lobster),
mostly due to the scarcity of publicly-available information concerning crustacean-based
CS, which is a field where Singaporean company Shiok Meats leads the global efforts.

As this review focuses on the cell-related aspects of CA-procedures for obtaining
CM/CF/CS products, we invite the reader to consult other excellent recent reviews and
publications that cover other aspects relevant to CA, such as support structures for cell
immobilization comprising microcarriers (MCs) [12,13] and 3D scaffolds [14–18], types of
bioreactors [19–22], bioprocess monitoring options [19,20,23] and methods of fabrication
that can be utilized in CA [15,24,25], as these will not be covered in the current review in
detail. In addition, we ought to mention two recent reviews that deal with the topics of cell
types of relevance for CM/CS, but with a different focus than the current review. Shaikh
et al. provide a short overview of various cell types for use in CA and provide extensive
discussion on the biological effects of various myokines and cytokines on skeletal muscle
and myogenesis [26], while Reiss et al. provide ample details on the bioprocessing aspects
in relation to different cell types for CM [27].

In the current review, we opted to focus more on the topics that were not covered in
mentioned reviews, hence we provide a detailed overview of the co-culture of myoblasts
and adipocytes as well as different ways to stimulate differentiation towards myogenic and
adipogenic lineages.

For a better understanding of the general concept of CA-based CM/CS bioprocess, we
summarize in Figure 1 the main steps.
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Figure 1. Simplified schematic of the vertebrate cell-based CM/CS bioprocess.

In general, a CM/CF/CS bioprocess can be divided into four phases. Phase I involves
cell isolation/acquirement and initial cell proliferation, in order to increase the cell numbers
prior to initiating differentiation. The procurement of cells can occur from primary sources
such as native animal tissue. In this context, we refer the readers to the excellent recent
review by Guan et al. [28] where the authors discuss several methods of isolation and
purification of muscle stem cells, which are the main cell type of interest for CM. The other
option is to utilize immortal cell lines. Since vertebrate cells are, in major part, anchor-
dependent, in order to enable a suspension culture system in dedicated bioreactors, it is
necessary to seed the cells on MCs—structures with high surface-to-volume ratio, that
provide support for adherent cell growth and expansion [12].

Phase II involves further cell expansion on a large scale, while Phase III comprises
differentiation or muscle/fat tissue formation (maturation) on 3D scaffolds which leads
to the final Phase IV comprising processing into final food products, either unstructured
(such as burgers, sausages, nuggets) or structured such as “whole-cut”-like steaks and CS
fillets [29].

2. Stem Cell and Progenitor Types Relevant in Cultured Meat (Mammalian, Avian)
and Cultured Seafood (Fish) Bioprocesses

The discovery of stem cells and progenitor cells as their descendants, created better
opportunities for in vitro production of CM/CF and CS, i.e., in vitro myogenesis and
adipogenesis. This process involves stem or progenitor cell sampling, which can be done
by performing a biopsy on living donor animals, ex vivo multiplication of the isolated cells,
and TE techniques. It is important to emphasize that industrial-scale CM/CS production
relies heavily on the process of cell proliferation and expansion, which is in line with stem
cell multiplication properties.

For the CM/CF/CS production bioprocess, the following stem and progenitor cell
types are of interest: pluripotent stem cells—embryonic stem cells (ESCs) and induced



Biomolecules 2022, 12, 699 4 of 39

pluripotent stem cells (iPSCs); adult stem cells (ASCs)—mesenchymal stem cells (MSCs),
adipose tissue-derived stem cells (ADSCs) and fibro-adipogenic progenitors (FAP), as well
as resident muscle stem cells/muscle satellite cells (SCs), a.k.a. myosatellites and myoblasts
as progenitors or more precisely, proliferating activated SCs.

Depending on the isolated stem or progenitor cell type, these cells can differentiate
into myocytes (muscle cells), adipocytes (fat cells), chondrocytes, or fibroblasts.

2.1. Myogenic Differentiation–Satellite Cells (SCs) and Myoblasts

Muscle satellite cells (SCs) were first described in 1961 by Alexander Mauro [30].
These multipotent, adult, muscle-derived stem cells located on the periphery of myofibrils—
between the basal lamina and sarcolemma, play a crucial role in the development and
regeneration of skeletal muscle tissue [31]. They are mostly dormant cells, however, in
order to regenerate muscle tissue after injury, they transform into actively-proliferative
myoblasts—SC-amplifying progeny. Mononucleated myoblasts further differentiate and
form myotubes, which will be packed into muscle fibers—myofibers [27,31]. At the same
time, SCs are multiplying, which increases their number for future needs. When it comes to
the genetic level, during the onset of their differentiation into skeletal myoblasts, SCs begin
to express the transcription factor myoblast determination protein 1 (MyoD). The MyoD
gene belongs to the early myogenic regulatory factor (MRF) genes, along with Myf5. These
genes initiate cell expansion and are crucial for skeletal muscle to be properly formed [32].
The other group of MRF genes, MRF4 and Myogenin, initiate cell differentiation and fusion.
These genes are significant markers for cell monitoring and optimizing the composition of
the culture medium for CM/CS production.

In this regard, due to their easy and efficient differentiation, SCs have been selected as
the most promising cell type for initiating CM/CS production.

2.1.1. Mammalian Myogenic Cells

Satellite cells (SCs) have been initially successfully isolated from bovine carcasses
and fetuses [33] and later standardized protocols for muscle biopsy from live animals
were developed. As one of the cell types relevant for CM production, bovine SCs ob-
tained by muscle biopsy were used to produce the world’s first CM prototype (lab-grown
burger), and more recently to form contractile 3D bovine muscle tissue for the construc-
tion of millimeter-thick cultivated steak [34]. Also, the growth rate of bovine myoblasts
in bioreactors for the CM production bioprocess was investigated [35]. For sustainable
CM production, Okamoto et al. in their study showed the beneficial effects of nutrients
extracted from the photosynthetic autotrophic microalgae Chlorella vulgaris on the prolifera-
tion and differentiation of primary bovine myoblasts [36]. Also, Haraguchi and Shimizu
recently published a paper on the fabrication technique of 3D tissue using co-cultivation of
C. vulgaris and animal cells for the production of healthy and thicker cultured food [37]. In
addition to skeletal muscle cells, bovine aortic smooth muscle cells in edible gelatin fiber
scaffolds were also cultivated in order to produce CM [38].

Muscle SCs have also been successfully isolated and differentiated from other agricul-
turally important species such as pigs [33,39,40], horses [40,41], and rabbits [38]. Besides cat-
tle, there are also published studies on other ruminants such as sheep [42] and goats [43,44].
In this regard, Yamanouchi et al. conducted the first study on SC differentiation in goat
skeletal muscle single fiber culture as an in vitro model [44]. Also, it has been shown that
goat SCs are multipotent and can differentiate into myoblasts and adipocytes [45].

2.1.2. Avian Myogenic Cells

Successful isolation of SCs also applies to avian species such as chicken [40,46],
duck [40], and turkey [47]. In this regard, Nihashi et al. in their study presented effective
isolation, proliferation, and differentiation of myoblasts from layer and broiler chicken [48].
In terms of dietary use, Eat Just, Inc. company from the US, produces in vitro cultivated
“chicken nuggets” that are made by growing chicken cells in bioreactors and combining
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them with plant-based ingredients. This product is served in restaurants in Singapore,
given that in December 2020, the Singapore Food Agency (SFA) approved the consumption
of CM products [49]. Another US company, UPSIDE Foods (formerly Memphis Meats) also
produces chicken and duck meat.

2.1.3. Fish Myogenic Cells

When it comes to fish, Powell et al. proved already in the 90-ties of the XX century
that SCs and myoblasts can be efficiently isolated from the rainbow trout (Salmo gairdneri)
muscle and differentiated in vitro into myotubes [50]. Koumans et al. developed a method
for isolating and purifying SCs from the white epaxial muscle of Cyprinus carpio and
concluded that the in vitro behavior of SCs isolated from carp differs from that described for
mammalian and avian SCs [51]. in vitro cultures of Atlantic salmon (Salmo salar L.), channel
catfish (Ictalurus punctatus) and gilthead sea bream (Sparus aurata) SCs have also been
successfully established. Also, an efficient protocol for isolation and in vitro maintenance of
SCs and myoblasts has been optimized by Froehlich et al. and can be applied to Danioninae,
as well as to rainbow trout, salmon, sea bream, etc. [52].

In addition, when it comes to dietary use, the National Aeronautics and Space Admin-
istration (NASA) has supported the first research aimed at in vitro production of edible
muscle protein from Carassius auratus (goldfish) for astronauts [53]. Today, there are many
companies engaged in CS production, such as California-based BlueNalu, which produces
cell-cultured tuna, mahi-mahi, and red snapper as well as the first CS company in Europe—
Berlin-based Bluu Seafood, which engages in the production of cultivated salmon, trout
and carp.

However, having published studies on efficient isolation and in vitro maintenance of a
certain cell type does not automatically imply the authors continued with the efforts toward
CM/CS production. In the majority of cases, the main result of the study was the isolation
protocol itself, and the characterization of obtained cells. What is largely missing from the
majority of referenced studies is the next step—utilizing isolated cells in 3D culture, with
support structures, aiming to engineer a tissue construct.

2.1.4. Maintaining SCs Stemness through p38 Pathway

Improving the proliferative capacity of ASCs is an effective approach for scaling-up
up specific cell sources, such as SCs, which is very important for developing the CM
production bioprocess. Thus, scaling-up of SCs can be realized by keeping these cells
in a proliferative, non-differentiated state, where this effect can be extended by in vitro
inhibition of the p38 mitogen-activated protein kinase (MAPK) cell signaling pathway [54].
In this regard, Ding et al. demonstrated that the p38α/β inhibitor SB203580 inhibited the
bovine SCs differentiation in short-term experiments, while long-term in vitro cultivation
with p38i helped maintain the stemness and differentiation capacities [33]. Additionally,
long-term cultivation with a p38 inhibitor also contributed to the maintenance of pig muscle
stem cells [55].

When it comes to the avian species, there are indications that gga-miR-3525 regulates
the proliferation and differentiation of SCs by targeting PDLIM3 via the p38/MAPK
signaling pathway in chickens [56]. Also, PDLIM5 has a positive effect on chicken SC
proliferation and differentiation via this pathway [57].

2.2. Embryonic Stem Cells (ESCs)

ESCs are suitable for cultivation because they multiply easily and are pluripotent i.e.,
can differentiate into any type of cell. They originate from the inner cell mass of embryos
at the blastocyst phase. ESCs have been successfully isolated from a variety of organisms
including humans, mice, chickens [58], fish [59], and cows [60]. ESCs can also be obtained
from embryos formed by in vitro fertilization which is one of the options for acquiring pig
ESCs [61] which are otherwise difficult to isolate, as discussed below.
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Although ESCs can multiply indefinitely and differentiate into any type of cell, this
process is quite expensive because it requires specialized media and controlled conditions
for maturation into the desired tissue types [62,63]. Furthermore, the isolation of these
cells implies the destruction of the embryo, which is an ethical problem. In addition, for
some species, like pigs, the well-characterized ESCs lines have not been established. For
both challenges, iPSCs are viable alternatives, as described in Section 2.3. Nevertheless, in
the past decade, there has been significant progress in the establishment of livestock ESCs
lines [64].

2.2.1. Mammalian ESCs

Most research up to date has been performed on human/primate and murine ESCs,
however, since neither are relevant for CA, we will focus on other mammalian ESCs that
may be of relevance for CM production, such as cattle and sheep.

Attempts to derive stable bovine ESCs line have been ongoing for years, and have
only recently been successful [60]. However, the bovine ESCs still require a custom-made
medium as well as a mouse embryonic fibroblast (MEF) feeder layer. Recently, Soto et al.
reported a simplified feeder-free culture protocol where they use commercially available
medium and vitronectin substrate with Activin A supplementation which eliminates the
need for the feeder layer. This protocol yields bovine ESCs that are stable in long-term
culture i.e., express pluripotency markers and actively proliferate for more than 35 passages
while keeping normal karyotype [65].

Similar to other livestock ESCs, until recently there was no established stable sheep
ESC line. In 2020, Vilarino et al. reported the derivation of sheep ESCs under a chemically
defined culture system containing fibroblast growth factor-2 (FGF-2) and a tankyrase/Wnt
inhibitor (IWR1), yielding cells that maintain an euploid karyotype and stable expression
of pluripotency markers after more than 40 passages [66].

2.2.2. Avian ESCs

Embryonic cells for the production of poultry meat can be obtained from eggs. In
chickens, the egg is laid 20 to 23 h after fertilization. Early embryonic development is
divided into 14 phases (I-XIV) [67]. The fertilized cell goes through a fast phase of division
and is laid in the embryonic stage X consisting of 20,000 to 50,000 blastodermal cells.

Even though chicken ESC isolated from eggs in the X phase have great potential for
biotechnological applications, their long-term maintenance has not yet been fully achieved.
In their recent review, Xiong et al. provide a good summary of conditions and parameters
that need to be considered and optimized in order to maintain chicken ESCs pluripotency
in the long-term culture [68]. The authors conclude that serum-free/feeder-free chicken
ESCs culture conditions are more desirable in order to realize a stable, long-term chicken
ESC line [68].

2.2.3. Fish ESCs

Concerning fish ESCs, there is a number of research studies devoted to the generation
of haploid ESCs as they are a useful model for analyzing mutations in recessive gene
alleles which would not be apparent in the heterozygous animals. Fish models (mainly
zebrafish—Danio rerio and medaka fish—Oryzias latipes) are good for generating haploid
ESCs since a fertile adult can be produced after the nuclear transfer of a haploid ESC into a
normal egg [69]. However, for CS purposes, diploid fish ESCs lines are of more relevance,
as the ESCs need to be differentiated into muscle and fat tissues. Hong et al. established
feeder-free conditions for ESCs derived from mid-blastula embryos of the medaka fish
and further obtained several stable cell lines that show all features of in vitro mouse ESC
line [70]. One of these lines, MES1, has been demonstrated to maintain a diploid karyotype
in long-term culture (over 1 year of culture with more than 100 passages) and can be
induced in vitro to differentiate into various cell types, including muscle cells [71].
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2.3. Induced Pluripotent Stem Cells (iPSCs)

In addition to SCs, which are the most commonly used cell type for CM production,
pluripotent stem cells also have great potential for utilization. Pluripotent stem cells, such as
iPSCs, have a high proliferation capacity in vitro and, unlike SCs, iPSCs have an unlimited
renewal capacity and the ability to differentiate into any cell type present in meat. iPSCs
are produced by reprogramming somatic cells into an embryonic-like pluripotent state by
inducing the expression of pluripotency-associated genes that encode transcription factors
such as KLF4, SOX2, and MYC, NANOG, and POU5F1 (OCT4) [27,72,73]. However, these
transcription factors may be species-dependent, e.g., in addition to POU5F1 and NANOG,
bovine iPSCs also express stage-specific embryonic antigens (SSEAs)—SSEA1, SSEA3, and
SSEA4, which are not expressed in human pluripotent stem cells [74]. This factor-based
species difference can be extremely important for pluripotent cell line development from
livestock species relevant for CM production.

2.3.1. Mammalian iPSCs

Although the process of establishing pluripotent stem cell lines from relevant species
such as cow [75], pig [55,76], goat [77], horse [78], and sheep [66,79] has progressed, it is still
not at the large-scale level that is needed for the CM production bioprocess. However, there
are promising studies such as those by Amilon et al. in which they generated functional
skeletal myotubes from equine iPSCs [80,81]. Also, Genovese et al. have presented in their
study a method for efficient in vitro creation of skeletal muscle from porcine iPSCs, with
potential application in CM production [82].

2.3.2. Avian iPSCs

When it comes to other agriculturally important species such as avian species, it
appears to be far more complicated to achieve somatic cell reprogramming with them.
Attempts to generate quail, chicken, or zebra finch iPSCs using mammalian reprogramming
factors have resulted in the creation of partially reprogrammed cells [83,84]. However, for
the first time, Yu et al. generated chicken iPSCs from fibroblasts using a nonviral minicircle
reprogramming technique [85]. Also, Kim et al. generated iPS-like cells from avian feather
follicular cells (FFCs) using retroviral vectors and suggested that FFCs are an alternative
cell source for chicken cell reprogramming into iPSCs [86].

2.3.3. Fish iPSCs

As for the fish iPSCs, Peng et al. published the technology for generating stable iPS-like
cell lines from adult zebrafish (Danio rerio) fibroblasts, which, due to easy maintenance, can
be applied to research other fish genera [87]. Also, Xu et al. recently published a study in
which iPS-like cells were for the first time generated from koi fish (C. carpio haematopterus)
caudal fin fibroblasts with a pure chemical reprogramming technique. This method is a
promising strategy that can be applied to more fish species [88].

It is important to emphasize that several approaches have recently been proposed to
create iPSCs without any genetic modifications such as transfection, which is a promising
strategy for CM production using iPSCs because it may increase customer acceptance,
due to the general aversion to “GMO/bio-engineered products” present in the general
public [89,90].

From the industry-relevant side, an interesting example is a technology used by Dutch
CM company Meatable. The company licensed a proprietary technology called OPTi-
OX (optimized inducible overexpression, a form of genetic intervention developed by
Dr. Mark Kotter of Cambridge University for programming of iPSCs into any cell type,
including muscle [91] and fat cells. Meatable’s starting cell type are bovine or porcine
umbilical-cord derived stem cells that are then reprogrammed into iPSCs which are further
directly converted by forced expression of transcription factors i.e., OPTi-OX technology
into desired cell types.
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2.4. Mesenchymal Stem Cells (MSCs) for Myogenic and Adipogenic Differentiation

Another promising candidate for use in CM production is MSCs which, in addition to
their roles in muscle formation [92], also have the ability to differentiate into adipocytes [93],
myocytes [94,95], endothelial cells (ECs), and fibroblasts [96]. During muscle formation,
most MSCs are involved in myogenic differentiation, producing myofibers and increasing
the pool of SCs.

One of the limitations of using MSCs is that MSCs undergo aging in vitro, which
can be overcome under suitable culture conditions [97]. On the other hand, MSCs are
relatively easy to isolate, and there are various published protocols for MSCs isolation,
characterization, and proliferation. In order for these cells to be successfully isolated
from different species and tissues, it is necessary to use cell markers that are species- and
tissue-specifically expressed by MSCs [98].

2.4.1. Mammalian MSCs for Myogenic Differentiation

MSCs derived from various bovine tissues (umbilical cord, adipose tissue, amniotic
fluid, endometrium, bone marrow, etc.) have been shown to express mesenchymal markers
such as CD105, CD166, CD29, CD73, CD44, and CD90 [99,100], as well as pluripotency
markers such as SOX2, NANOG and OCT4 [100], which supports the idea that MSCs
may have the ability to even be pluripotent and to differentiate into three germ layers [98].
However, most applications still regard MSCs as multipotent i.e., possessing the abil-
ity to undergo main types of mesenchymal differentiation: adipogenesis, myogenesis,
chondrogenesis, and osteogenesis [101].

Regarding equine species, MSCs derived from three different tissues (bone marrow,
adipose tissue, umbilical cord) have been shown to express the same cell markers—CD44,
CD90, and CD105 [98]. Isolated MSCs can be induced and differentiated into myofibers,
implying their use as a starting cell type for initiation of CM production. In this regard,
a study conducted by Okamura et al. presents three protocols for in vitro myogenic
differentiation of MSCs derived from fetal bovine bone marrow based on the use of DNA
methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza) and myoblast-secreted factor
Galectin-1 (Gal-1), as well as SkGM-2 BulletKit myoblast culture medium [95]. Also,
Ramírez-Espinosa et al. first successfully induced differentiation of bovine (Bos taurus)
bone marrow-derived MSCs (BM-MSCs) into myogenic or adipogenic lineages, and then
evaluated the effect of peroxisome proliferator-activated receptor-gamma (PPARγ) agonists
on the differentiation and metabolic characteristics of these cells [94].

2.4.2. Avian MSCs for Myogenic Differentiation

Chicken MSCs can be used as an avian culture model to learn more about myogenic,
adipogenic, and osteogenic pathways. The availability of poultry MSCs-specific markers
is limited, so scientists use reports of mammalian cell markers such as CD105, CD90, and
CD73, as well as transcription factors that include OCT4, NANOG, and SOX2, where PouV
represents a chicken homolog of mammalian OCT4 [102]. Still, chicken MSCs have been
successfully derived from a variety of sources such as bone marrow (BM) and compact
bones [103], lung, and Wharton’s jelly [104]. Chicken BM-MSCs have properties similar to
mammalian MSCs. On the other hand, although the myogenic differentiation of chicken
MSCs is still poorly understood, recently Zhou et al. showed that chicken MSCs have the
potential for myogenic differentiation by the treatment of dexamethasone (DEX), HC and
horse serum, or 5-Aza and horse serum [105].

2.4.3. Mammalian MSCs for Adipogenic Differentiation

In addition to the ability of MSCs to differentiate into the myogenic lineage, these cells
can also commit to the adipogenic lineage. Differentiation of MSCs into adipocytes is mainly
achieved using a mixture of insulin, isobutylmethylxanthine (IBMX), and DEX, with the
PPARγ agonist (e.g., rosiglitazone) frequently included as an additional component [106].
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The toxicity of IBMX and DEX’s steroid nature makes this approach problematic for the
production of adipose tissue that would be used in CM bioprocess.

When it comes to mammalian adipogenic MSCs, it has been proven that three sources
of fetal sheep MSCs (bone marrow, adipose tissue, and liver) have the adipogenic differen-
tiation potential [107].

2.4.4. Fish MSCs for Adipogenic Differentiation

In 2019, a study done by Riera-Heredia et al. demonstrated that fatty acids from
fish oil (eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) and vegetable oils
(linoleic (LA) and alpha-linolenic (ALA) acids) have adipogenic potential i.e., promote
differentiation of gilthead seabream (S. aurata) bone-derived MSCs toward the adipogenic
lineage [108].

2.4.5. Fibro-Adipogenic Progenitor Cells (FAPs)

It is important to note that both the traditional livestock industry and CA-based
industry, consider only intramuscular fat (IMF) that provides “marbling” as industrially
valuable fat since it plays an important role in improving the palatability and flavor of
meat [109]. The other types of fat tissue such as subcutaneous and visceral are considered
waste by the traditional meat industry and are not relevant for CA-based ones as well.
Hence, it is of high importance to consider the cell type from which IMF is predominantly
derived, namely mesenchymal fibro-adipogenic progenitors (FAPs), that reside in muscle
tissue and have been isolated from various species, including bovine [110].

Interestingly, FAPs have been implicated in post-muscle injury myogenesis [111],
particularly the FAP subset expressing glioma-associated oncogene homolog—Gli1. Such
Gli1+ FAPs are less likely to differentiate into muscle adipocytes but instead participate in
enhancing myogenesis and reducing adipogenesis after injury [112].

However, for CA purposes, the pro-adipogenic FAP subsets are of the highest rele-
vance, as well as the procedures for their isolation, proliferation, and adipogenic differenti-
ation.

FAPs can be sorted by fluorescence-activated cell sorting (FACS) based on the platelet-
derived growth factor receptor A (PDGFRA or CD140a) [113]. As shown by Dohmen
et al. isolated FAPs are able to undergo many population doublings and can differentiate
into CF that has a high resemblance to traditional fat, concerning the appearance, lipid
profile, and taste, as shown in Figure 2 [113]. It is worth mentioning that in CA R&D efforts,
subcutaneous fat is still of interest for proof-of-concept studies aiming to recapitulate
adipogenesis in vitro.
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Figure 2. FAP-derived cultured fat in comparison to native bovine subcutaneous fat. (a) Macroscopic
photographs of empty alginate hydrogel, cultured fat (after 28 days of differentiation), and bovine
subcutaneous fat. Scale bar = 5 mm. (b) SEM images of cultured fat after 0 and 28 days of differentia-
tion, and bovine subcutaneous fat. Scale bar = 10µm. Reproduced and modified with permission
from [113].

Interestingly, Contreras et al. report a pre-plating strategy for the isolation and cul-
ture of an enriched population of FAPs-like adherent cells i.e., muscle connective tissue
fibroblasts that respond to TGF-β signaling (that induces FAP proliferation) and the tyro-
sine kinase inhibitor Nilotinib (inducer of FAP apoptosis) in the same way as FAPs [114].
However, they did not attempt adipogenic differentiation of such pre-plated fibroblasts.

2.4.6. Dedifferentiated Fat (DFAT) Cells

DFAT cells are fibroblast-like multipotent, proliferative cells derived by ceiling culture
method from mature lipid-containing adipocytes (MAs). These cells have recently become
of interest for cultivated fat (CF) production.

A study done by Peng et al. provided significant insight and evidence into the
biological properties of porcine DFAT cells during long-term culture in vitro, such as high
cell viability, efficient proliferative capability, normal chromosomal karyotypes, and the
capacity to differentiate into adipocytes, myocytes, and osteoblasts [115].

Due to their high proliferative capacity during long-term culture and great adipogenic
potential, porcine DFAT cells are promising candidates for CF production on a large scale.

In addition to porcine, bovine DFAT cells have also been investigated for potential use
in CF production. Although these cells possess promising proliferative capacity [116], they
do not show the same adipogenic potential as porcine DFAT cells. In this regard, extensive
work is being done to overcome the given limitation. For instance, treatment with optimal
acetate concentrations has been shown to promote bovine DFAT cells’ adipogenesis, i.e.,
lipid accumulation [117]. Mechanical stimuli have also been implicated in the process of
DFAT generation i.e., dedifferentiation of MAs, which is discussed in more detail in the
Section 3.2.1 Physical cues.

A summary of the discussed cell types relevant for CM/CF/CS and the animal species
the cells are isolated from is presented in Table 1.
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Table 1. List of cell types relevant for CM/CF/CS and animal species the cells are isolated from.

Cell Type CM/CF/CS
Relevant Cells Isolated from

Pluripotent stem
cells

Embryonic stem cells
(ESCs)

Mammalian ESCs Cow [60,65]; Sheep [66]

Avian ESCs Chicken eggs [68]

Fish ESCs Medaka fish [70]

Induced pluripotent
stem cells (iPSCs)

Mammalian iPSCs

Horse [80,81];
Pig [82,118];

Cow [60,75,119,120];
Sheep [79]; Goat [77]

Avian iPSCs Chicken [85,86]

Fish iPSCs Koi fish [88]

Adult stem cells
(ASCs)

Mesenchymal stem
cells (MSCs)

Mammalian MSCs for
myogenic

differentiation

Cow [100,121]
Horse [98]

Avian MSCs for
myogenic

differentiation
Chicken [103,104,122,123]

Mammalian MSCs for
adipogenic

differentiation
Sheep [107]; Cow [124]

Fish MSCs for
adipogenic

differentiation
Gilt-head sea bream [108]

Adipose
tissue-derived stem

cells (ADSCs)
Avian ADSCs Chicken [125]

Fibro-adipogenic
progenitors (FAP) Mammalian FAP Cow [93]

Resident muscle stem
cells/muscle satellite

cells (SCs)

Mammalian
myogenic cells

Cow [34–38]
Pig [40,126–128]

Horse [40,41]
Rabbit [129]

Avian myogenic cells
Chicken [40,46,130];
Duck [40]; Turkey

[131,132]

Fish myogenic cells

Rainbow trout [50]
Common carp [51]

Atlantic salmon [133]
Channel catfish [134]
Gilthead sea bream

[52,135]
Danioninae [52]

Goldfish [53]

Dedifferentiated fat
(DFAT) cells Mammalian DFAT Cow [117,136]; Pig [115]

2.5. Myoblasts and Adipocytes Co-Cultivation

In order to improve the quality of CM/CS in terms of texture, juiciness, tenderness,
flavor, and nutritional value by increasing IMF, it is necessary to co-culture adipocytes
and myocytes as essential components of meat. in vitro co-culture methods mimic in vivo
environments and are used to observe interactions among cells and between different cell
lines, such as myogenic and adipogenic. Co-cultivation methods can be divided into two
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major categories—indirect and direct methods. In the indirect methods, cells are physically
separated and communicate only via secretory molecules, while direct methods allow
cell-cell interactions between different cell types.

Co-culturing techniques are especially challenging because cells in co-culture systems
secrete various metabolites that affect the signaling cascades involved in cell proliferation
and differentiation. Choi et al. showed that co-culture of bovine muscle SCs with pre-
adipocytes increases C/EBPβ and PPARγ gene expression in differentiated myoblasts and
increases GPR43 gene expression in adipocytes, demonstrating that myoblasts/adipocytes
co-culture increases adipogenic gene expression in the myogenic cells [137]. Moreover,
Seo et al. suggest that 3T3-L1 adipocyte-induced IL-6 expression in C2C12 myoblasts
suppresses their differentiation in a co-culture system [138].

On the other hand, the results of a study done by Chu et al. have shown that during co-
cultivation C2C12 cells inhibit the proliferation and differentiation of 3T3-L1 pre-adipocytes
by suppressing glucocorticoid receptor (GR) gene expression [139]. A recently published study
with Tan sheep cells showed a decrease in the number of lipid droplets in the intramuscular
preadipocytes (IMPs) that were in a co-culture system with skeletal muscle SCs [140].

When it comes to proliferation, Yan et al. successfully established a co-culture of
porcine preadipocytes and muscle SCs and showed that a co-culture system may facilitate
the growth and proliferation of cells, while, on the other hand, the same system inhibited
cell differentiation [141].

Using ectopic expression, knockdown, and overexpression of the actin alpha cardiac
muscle 1 (ACTC1) gene, Li et al. have proven that it promotes the differentiation of bovine
preadipocytes and myoblasts in the co-culture system, while also affecting myoblast prolif-
eration [142].

Another evidence of how changes in the cell microenvironment (i.e., the co-cultivation
system) affect cellular molecular mechanisms is presented as a result of two studies. In
the first study performed by Su et al. neudesin neurotrophic factor (NENF) recombinant
protein promotes differentiation of bovine preadipocytes while inhibiting bovine myoblast
differentiation when the given cell lines are cultured separately [143]. On the other hand,
in the second study done by Li et al., it has been shown that exogenously added NENF
recombinant protein had a different effect on both bovine preadipocyte and myoblast
differentiation in the co-culture system. Namely, the addition of NENF inhibited the
accumulation of lipid droplets in bovine preadipocytes, while the differentiation of bovine
myoblasts was not significantly affected [144].

Cui et al. have successfully established a co-culture system of dedifferentiated IMPs
and SCs from chicken pectoralis major muscle using a transwell chamber. Subsequently,
the results of the co-cultivation process showed that actively proliferative SCs affect IMPs
by accelerating their differentiation [145].

Generally speaking, as shown above, great achievements have been made concerning
the co-cultivation of myoblasts and adipocytes. However, it needs to be emphasized
that co-cultivation of myoblasts and adipocytes needs to be performed under strictly
defined conditions, optimizing the proliferation or differentiation in both cell types. It is a
challenging task, since, as discussed, the expression of adipogenic genes in myogenic cells
may occur in a co-culture environment.

It would be worth investigating if there is a time dependence of the adipogenic/myogenic
gene expression which might be then manipulated by changing cultivation duration, or if
there is a dose dependence of the signaling molecules’ effects.

Concerning 3D co-culture systems, a recent study on 3D co-cultivation of mouse
C2C12 myoblasts with 3T3 preadipocytes encapsulated in cell fibers (cell-laden hydrogel
microfibers) by alginate shell showed a proportional increase in the number of C2C12 cells
with 3T3 fibers [146]. This suggests that the secretome of 3T3 fibers promoted the survival
and proliferation of C2C12 cells.
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Another interesting 3D co-culture system has been designed by Jo et al. in the
form of microtissue made of C2C12 myoblasts and microfiber-based adipose tissue (3T3
preadipocytes) on a polydimethylsiloxane (PDMS) substrate [147].

It would be very useful in terms of CM production, to attempt the same 3D co-
cultivation systems using CM-relevant cells, such as bovine, porcine, or chicken. However,
the lack of CM-relevant cell lines is hampering such attempts, as discussed in detail in
Section 3.1.

Need for Performing in Parallel Myogenesis, Adipogenesis, and Vasculogenesis

Muscle and adipose tissue, which are essential parts of skeletal muscle, have well-
developed microvascular networks which provide efficient nutrient exchange and gas
diffusion required by cells within a tissue. Also, they are associated with the SC niche, reg-
ulate muscle tissue maturation by angiocrine signaling and play a major role in generating
adipogenesis-required conditions [148].

One of the important tasks in the TE field is the need for in vitro vasculogenesis to be
performed in parallel with myogenesis and adipogenesis, in order to generate functional
3D muscle with IMF. It is known that ECs could form microvascular networks through
co-culturing with fibroblasts or MSCs [149]. The study conducted by Ma et al. revealed
that bovine stromal vascular cells (SVCs) could be used for promoting adipogenesis and
angiogenesis in vitro [150]. In 2017, Kayabolen et al. made progress and successfully
incorporated vascular structure into developed adipose tissue through co-culturing with
ECs [151].

However, the formation of vascular structures is a time-consuming and complex
process which makes it unsuitable for application in CM/CF/CS production. Also, since
blood vessels are not a crucial component of meat texture and taste, CM/CF/CS production
may be simpler without involving the vascularization process. However, when engineering
a sizeable 3D tissue construct, it is necessary to achieve proper transport of oxygen and
nutrients as well as the elimination of carbon dioxide and other waste products, in order to
enable cellular survival. Instead of engineering challenging vascular structures, a promising
alternative is the use of perfusion systems, which mimic the vascularization process [19].

An interesting study by Kang et al. provides an example of a potential manufactur-
ing protocol for the whole CM product that possesses muscle, fat and vascular compo-
nents [152]. The authors manually assembled 3D-printed muscle and adipose tissues as
well as engineered blood capillaries. The final product resembles a steak as shown in
Figure 3.
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Figure 3. Assembly of fibrous muscle, fat, and vascular tissues to cultured steak. (a) Assembly
schematic—(right) based sarcomeric α-actinin (blue) and laminin—(brown) stained image (left) of
the commercial meat. It is assumed that the diameters of the fibrous muscle, fat, and vascular tissues
are about 500, 760, and 600 µm, respectively. Scale bar, 1 mm. (b,c) Optical images of the cultured
steak by assembling muscle, fat and vascular tissues at (b) the top and (c) cross-section view of the
dotted-line area. Muscle and vascular tissue were stained with carmine (red color), but fat tissue was
not. Scale bars, 2 mm.—Reproduced with permission from [152].

Dimensions of the product fabricated by Kang et al. (5 mm × 10 mm) are relevant,
since the only other reported “whole-cut-like” protocol from the Levenberg group [153],
used by Aleph farms company, achieves similar sizes, at least when bioprinting is not used.
In the context of co-cultivation effects, it is worth mentioning that the Levenberg group
uses multicellular seeding with bovine SCs/bovine smooth muscle cells and/or bovine
endothelial cells to achieve higher protein deposition vs. bovine SC monoculture [153].

However, the Kang et al. protocol does not appear very useful for generating larger
constructs. It may benefit from switching to the mentioned alternative—placing a 3D
printed assembly of muscle and adipose tissues into a perfusion bioreactor.

2.6. Stem Cell Normoxia

Another approach that may provide a true insight into cell physiology is to use lower
oxygen (O2) concentrations (e.g., 1–5%) instead of atmospheric O2 concentration (20–21%)
in cell and tissue culture experiments. Lower O2 concentrations are frequently labeled as
“hypoxia”. However, 1–5% O2 environment represents “in situ normoxia” for most cell
types, while atmospheric O2 concentration constitutes the hyperoxic state [154].

Several studies show that “in situ normoxia” affects muscle SC stemness, i.e., muscle
SC proliferation and differentiation. In 2012, Urbani et al. published a study whose
results show an increase in the proliferation of mouse SCs under lower O2 conditions
(2% O2) [155]. Recently, Elashry et al. examined the effect of lower O2 concentration (3%
O2) on the regenerative capacity of skeletal muscle-derived SCs in mice, which involved
the induction of these cells for myogenic, adipogenic and osteogenic commitments. The
results showed that the given O2 concentration promotes the SCs multipotency—their
myogenesis, adipogenesis, and osteogenesis [156]. The myogenic capacity of porcine SCs is
also significantly increased at low O2 levels [157].
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When it comes to fish cells, a low oxygen environment is a physiological one for these
cells, since fish, as aquatic animals, are adapted to tolerate low O2 concentrations. For
example, there is data on tolerance of low O2 for coral reef fish such as goby (Gobiodon
histrio) and blenny (Atrosalarias fuscus) [158].

3. Existing Challenges concerning Stem and Progenitor Cells for CA
3.1. Need for Immortalized Cell Lines

As CA aims to establish procedures for producing CM/CF/CS and other animal
products using TE and synthetic biology, it is crucial to have food-relevant, immortalized
cell lines as a starting point of the whole bioprocess. This poses specific challenges to the
researchers since the “CA-ready” cells need to be approved as safe for consumption as food
and need to have palatable taste, texture, and nutrition characteristics since they will be
eventually eaten by the consumers. From the industry point of view, such cells need to be
able to undergo efficient proliferation and differentiation at industrial scales. The cell lines
should preferentially be stable, homogenous, resistant to environmental fluctuations and
ideally, should possess low media requirements [159].

An excellent recent review by Soice and Johnston provides detailed insights into which
types of cell lines are most needed for CM and CS research, and eventually production, as
well as existing methods of immortalization and their limitations [160].

In this review we provide a summary of the main aspects, as well as the list of
valuable CM/CS cell line repositories, most established and maintained by the US non-
profit organization The Good Food Institute (GFI) [161,162].

Immortal cells can divide indefinitely. Immortalized cell lines are standard lines that
are well characterized, which makes them suitable for further use or manipulation. They are
suitable because they allow repeatability of results during cultivation since they represent
a genetically identical population. However, the disadvantage is the number of passages
that are limited to prevent the accumulation of mutations. Mutations can direct the further
course of cell development and function [160].

The use of primary cells is not advantageous in the industry, since even as the living an-
imal tissue biopsy for the cells’ retrieval is a non-invasive process, it is still time-consuming
and cost inefficient. In addition, muscle stem cells possess intrinsic limited proliferative
capacities which imply the tissue biopsy would need to be repetitive, constantly adding
newly sourced cells [163]. Also, animal biopsy cells must be approved for use in food
production. On the other hand, immortal cells would not require permanent biopsies
precisely because of their ability to divide indefinitely.

When it comes to animal meat and its use in the human diet, skeletal muscle and
adipose tissues are the primary targets [164]. Cell lines that would be suitable for the culti-
vation of these tissues would be SCs, MSCs, fibro/adipogenic stem cells, DFAT cells, and
pluripotent stem cells (ESCs and iPSCs) of cows, pigs, chickens, turkeys, and seafood [97].
However, not all the mentioned cell types are equally suitable, due to the difficulties e.g.,
ease of their isolation (very difficult for e.g., ESCs), sensitivity to culturing conditions, and
ease of myo/adipogenic differentiation.

For the muscle tissue, the best choice would be the SCs and myoblasts [165], while for
the fat tissue, the MSCs and DFAT cells are the simplest to isolate and culture, and both
types can be relatively easily induced to adipogenesis [159]

Currently, for mammalian muscle precursors, there are no commercially available
cell lines, and the closest match for R&D-use only are the myoblasts from model species
commonly used in other types of research e.g., cancer-related or neuroscience such as
mice [166] and rats [167]. Rodent cell lines are not CA-relevant although it needs to be said
that particularly mouse C2C12 and 3T3 cells are important “workhorses” in CM/CF R&D
studies, as model cell lines.

In the proliferation and expansion phases, most often mediated via MCs for anchor-
dependent cells, the cells divide several times to create as many cells as possible. The cells
are then transferred to a new environment inducive to differentiation into mature cell types.
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An obstacle to obtaining a large number of cells in the biological limitation is the number
of cell divisions. Cell lines become immortal when they lose the pathways of the cell cycle
checkpoints and bypass the aging process. Currently, the following three methods are the
most used for establishing immortal cell lines: (1) detection of spontaneously immortal cell
lines, (2) expression of the catalytic telomerase subunit (TERT), and (3) induction of viral
genes that inactivate p53/p14/Rb. These changes can either occur naturally or be induced
by genetic manipulation. The efficient differentiation of iPSC into different cell types is
influenced by epigenetic memory, which needs to be taken into account when selecting
donor cells from which iPSC lines will be derived. An approach to differentiate human
ESCs from skeletal muscle that exploits epigenetic influence [168] suggests the potential
application of a similar method for deriving animal skeletal muscle for meat [169].

The patent by Genovese et al. from UPSIDE foods, one of the major CM industry
players, on the methods for extending the replicative capacity of somatic cells during
an ex vivo cultivation process describes a way to immortalize a cell line using genetic
engineering [170]. It builds on the existing method of immortalization of myogenic cell
lines by overexpression of reverse transcriptase telomerase (TERT) and cyclin-dependent
kinase 4 (CDK4) [171]. In the next patent, on the method for scalable skeletal muscle lineage
specification and cultivation, they provide additional innovation by using CRISPR instead
of overexpressing CDK4, in order to release a protein that naturally inhibits it [172]. This
allows immortalization without the need to ectopically express CDK4.

Spontaneous immortality has certain limitations. On one hand, spontaneously immor-
talized cells would probably not be considered genetically modified (GM), which could give
them access to European markets that currently have strict regulations on GM food. On
the other hand, however, spontaneously immortalized cells can be considered equivalent
to cancer cells. The process of spontaneous immortalization often leads to a number of
additional mutations that are not required for immortalization, and which can change other
aspects of cells in unpredictable ways.

In addition, different cell types have different predispositions to spontaneous immor-
talization. Fish, for example, have a high propensity for spontaneous immortalization due
to the naturally high regenerative capacity of their adult stem cell populations [173], while
mammals have more regulatory checks to limit spontaneous immortalization.

Consumer studies have shown that taste, diet and safety are important factors for
consumers’ readiness for CM and CS [174]. Immortal cell lines used in CM/CS should
therefore be developed from cell types and species that are previously known to consumers
i.e., that the consumers are accustomed to positively and perceive them as possessing
desirable taste and nutritious properties.

One example of the efforts to develop cell lines particularly suitable for CM/CS
is the partnership between the GFI and Kerafast which aims to provide a repository of
CM/CS-suitable standardized terrestrial and aquatic cell lines [175]. So far, only one cell
line deposited in the Kerafast repository has been identified as a candidate for CS—namely
the DLEC cell line i.e., continuous adherent cell line derived from early embryos of the
European sea bass Dicentrarchus labrax [176].

3.2. Need for Efficient Stimulation of Differentiation
3.2.1. Physical Cues

In order to complete the process of in vitro myogenesis, it is necessary to induce
hypertrophy of the cultured muscle cells since this phenomenon provides maximum
protein production, needed in CM/CS products. The hypertrophy stage is achieved in vivo
via skeletal muscle contractions that promote protein synthesis and myokine secretion [177].
Hence, the in vitro recapitulation needs to enable muscle cell contractions as well.

Such a biomimetic approach stems from the in vivo process where activated SCs
become proliferative myoblasts through a gene regulation shift involving up-regulation of
transcription factors MYF5 and MYOD [178], and down-regulation of PAX7 [179]. These
and other regulatory factors with specific spatial and functional restrictions induce the
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transformation of a myoblast into a myocyte which will then align and fuse with other
neighboring myocytes to form multinucleate syncytia i.e., myotubes. This stage is usually
recapitulated in vitro by lowering the serum concentration in the medium i.e., by serum
starvation. A similar effect can be achieved also by supplementation of ligands for the key
surface receptors upregulated during the early phase of myogenesis, such as Insulin-Like
Growth Factor 1 Receptor—IGF1R, Transferrin Receptor—TFRC and Lysophosphatidic
Acid Receptor 1—LPAR1, as shown by Messmer et al. [180].

In parallel with these genetic changes, the cells in vivo undergo structural transfor-
mations in order to achieve sarcomeric organization providing contractile functionality
realized through the coordinated use of actin, myosin, tropomyosin, calcium, ATP hydroly-
sis, and other factors.

Although there are plenty of examples of in vitro spontaneous contractions in various
cell lines (such as murine C2C12 myoblasts), and iPSC-derived skeletal myocytes, in
the majority of primary muscle cell cultures that are still being used by a number of
CM/CS companies, spontaneous contractions are not frequently occurring and hence, cells
need to be stimulated exogenously by additional mechanical, electrical, or synchronized
electromechanical stimuli.

For example, Messmer et al. applied electrical pulse stimulation of serum-free my-
otubes using a C-PACE EP stimulator at 12 V, 1.0 ms pulse width, and frequencies in the
range 0.5–5.0 Hz [181], while Langelaan et al. compared effects of electrical stimulation in
2D monolayers vs. 3D model system, using a 48 h pulsed electrical stimulation protocol,
consisting of 4 V/cm, 6 ms pulses at a frequency of 2 Hz [181]. They further compared
results obtained for two types of myogenic cells—C2C12 myoblasts as an example of a cell
line vs. a primary cell source—muscle progenitor cells (MPCs). They conclude that electri-
cal stimulation, when optimally timed (not sooner than Day 3 of myogenic differentiation),
accelerated sarcomere assembly in both 2D and 3D, while there were notable differences in
maturation level achieved between different cell sources—with MPC constructs being much
more mature than C2C12 constructs, based on developed cross-striations and expression
levels of mature myosin heavy chain isoforms [181].

Since skeletal myocytes are excitable cells and their electrophysiological properties are
determined by the expression and function of membrane ion channels (sodium, calcium,
chloride channels), there are studies investigating transcript levels and expression of these
voltage-gated ion channels in physiological and pathological conditions. Currently, this is
mostly done within TE research for potential regenerative medicine applications, but it is
worth considering if the modulation of ion channel expression and the subsequent impact
on skeletal myoblast and skeletal myocyte plasticity may be of use in CM/CS research as
well.

As for the physical stimuli that are not directly related to muscle contractions, it is
necessary to consider mechanical cues provided by the support structures i.e., scaffolds.
Native muscle tissue is an elastic tissue with Young’s modulus of ~10–12 kPa [182,183],
hence the scaffolds need to exhibit similar values for mechanical stiffness and elasticity.

One of the most detailed reports up to date on the fabrication of 3D CM constructs by
Ben-Arye et al. from the Levenberg group, investigated textured soy protein (TSP) scaffolds
seeded with bovine SCs (BSCs) and with co-cultured BSC/bovine smooth muscle cells
(BSMC). The mechanical property measurements indicated that both types of constructs
(BSC-TSP & BSC/BSMC-TSP) displayed Young’s modulus in the range of the native bovine
muscle, but the BSC/BSMC co-culture exhibited higher ultimate tensile strength values
and overall similar mechanical properties to native bovine muscle [153].

Kang et al. in their study demonstrating the fabrication of whole-cut cultured meat-like
tissue composed of three types of primary bovine cells, report lower values of compressive
modulus for the printed constructs vs. native meat, concluding that further optimization
of the method is needed [152]. However, the main contribution of this study is still
relevant for the challenge to achieve adequate mechanical properties of the CM tissue,
since it introduces a modified supporting bath-assisted cell printing method i.e., tendon-
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gel-integrated printing in which the collagen gel-based tendon tissues can withstand the
cell traction force during the bovine SCs differentiation, providing good fibrous structure
important for the cell alignment [152].

Concerning adipocytes as the other cell type of major importance for CM bioprocess,
the physical stimulation (or purposeful omission of such stimulation) is very relevant
in terms of favoring adipogenic differentiation, particularly in connection to the master
adipogenic regulator—PPARγ, whose levels of expression are influenced by mechanical
loading [184]. We emphasize that only white adipose tissue is of relevance for CM/CF/CS
and as such will be discussed here.

In general, it can be said that dynamic or cyclic mechanical strains (stretch or vibra-
tional) suppress adipogenesis, hence the omission of such ways of mechanical loading is
inductive to adipogenesis [185].

Li et al. used a dynamic stress cell culture device (Flexcell-5000) to perform mechanical
daily stretching for 3 or 5 days on rat bone-marrow isolated MSC culture and detected
substantially decreased expression of adipogenic markers: PPARγ-2, adiponectin, and
C/EBPα in comparison to the static control group, both in general medium and adipogenic
medium [186]. They further show that dynamic stretching upregulated phosphorylation
of Smad2 which could be suppressed by pretreatment with the TGFβ1/Smad2 pathway
antagonist SB-431542. Such pretreatment was able to reverse the stretch-induced down-
expression of adipogenic markers, suggesting that the anti-adipogenic effects of mechanical
stretch are, at least to a degree, mediated via the TGFβ1/Smad2 signaling pathway [186].

Other studies further confirm that cyclic loading, in general, inhibits adipogenesis,
involving more signaling pathways such as MAPK/ERK that gets activated by uniaxial
cyclic stretching as shown by Tanabe et al. using the culture of 3T3-L1 preadipocytes [187].
Stretch-induced activation of the b-catenin signaling pathway is also implicated in the inhi-
bition of adipogenesis of MSCs, as showcased by Sen et al. who used a mouse C3H10T1/2
cell line that displays fibroblastic morphology in cell culture and is considered functionally
similar to MSCs [188].

On the other hand, Shoham et al. showed that static mechanical loading stimulates
lipid production in 3T3-L1 mouse adipocytes by activating the mitogen-activated protein
kinase kinase (MEK) signaling pathway [189]. In this study, they used a custom-build
apparatus to apply homogeneous tensile strains to cell culture substrates. The same group
of authors further examines these in vitro findings using multiscale modeling, stating a
hypothesis that the loading state of the adipocyte plasma membrane (PM) is influenced
by neighboring cells, which could imply that adipose cells differentiate as a group, using
intercellular positive feedback loops. The authors demonstrate that when the cell density
was sufficient (above 19 cells/100 mm3), progressive differentiation in some of the adipose
cells caused higher magnitudes of tensile strains in the PMs of other nearby cells. This
is an interesting hypothesis that needs to be further investigated and confirmed in vitro,
particularly in 3D culture systems [185].

A study by O’Donnell et al. compared the expression of adipogenic markers (PPARγ-2,
adiponectin, leptin, lipoprotein lipase, and perilipin) in monolayer cultures versus both the
static and dynamic 3D cultures of human ADSCs made by encapsulating cells into gelatin-
based (GelMA) scaffolds. They established, somewhat surprisingly, a decrease in markers’
expression in both types of 3D cultures [190]. The authors hypothesized that the decrease is
most likely due to the challenges in the diffusion of pro-adipogenesis factors delivered into
the 3D hydrogels and/or potentially related to still unstudied protein–scaffold interactions
that may contribute to the sequestration of such factors. The decrease of adipogenic markers
in both the static and dynamic 3D cultures is an important preliminary finding that needs
to be further investigated, particularly since the fat TE for CM/CF uses is most likely going
to be focused around 3D cultures.

When considering DFAT generation through dedifferentiation i.e., reprogramming
of MAs, a study by Liu et al. showed that mechanical signals such as substrate stiffness,
mechanical stretch, and fluid shear stress can induce such reprogramming through the



Biomolecules 2022, 12, 699 19 of 39

YAP/TAZ-binding motif [191], which is not surprising since YAP (Yes-associated protein)
and transcriptional co-activator with PDZ-binding motif (TAZ) are the main sensors of
physical and mechanical forces in the cellular microenvironment [192].

Liu et al. examined the changes in stiffness of the extracellular matrix (ECM) in the
human MA culture implementing a so-called Improved Ceiling culture Method that uses
significantly reduced volumes of culture media and allows the MAs to gradually adhere
to the dish wall and form spindle-like protrusions. When a permeable membrane was
introduced on the surface of the culture dish, the dedifferentiation of MAs to DFATs was
inhibited, suggesting that a membrane i.e., rigid material as an analog of the rigid ECM
plays a role in triggering and initiating reprogramming of MAs. In the group with the
membrane, the YAP/TAZ expression levels were significantly reduced in comparison to the
normal culture group i.e., without the membrane. Importantly, expression of reprogram-
ming genes such as Nanog, SOX2, Oct4, and c-Myc was also significantly reduced in the
“membrane group” indicating that ECM stiffness has a major effect on the dedifferentiation
process [191].

An interesting observation is that the majority of available research articles dealing
with the potential stimulation of adipogenesis and/or dedifferentiation of MAs by manipu-
lating mechanical loading-sensitive signaling pathways are from the research on obesity
and related diseases. At the time of writing this review, in April 2022, it was not possible to
find an original research article that deals with fat TE for specific use in the CM/CF field,
which is why we chose to present available data on the matter, despite the used cell types
such as human/rat/mouse adipocytes/MSCs that are not relevant for practical application
in CM/CF field but do refer important clues to the loading-dependent signaling pathways
of adipogenesis and MAs reprogramming.

It is important to emphasize that there are more parameters to take into account con-
cerning the physicomechanical characterization of the CM/CS engineered tissue constructs—
such as total porosity and pore size distribution, liquid uptake, and degradation rate of
scaffolds. In the latest publication from the Levenberg group, Ianovici et al. evaluated
scaffolds produced by 3D printing with non-animal proteins, namely pea protein isolate
(PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate (RGD)) and
seeded with bovine SCs, for CM fabrication purposes. It is worth mentioning that RGD
(Arginine-Glycine-Aspartate) motif is the essential domain for cell adhesion [12]. Ianovici
et al. conclude that all formulations are suitable for flexible 3D printing and cell cultiva-
tion configuration, and exhibit similar physicomechanical properties except that the pure
RGD-alginate underwent the most swelling, had the lowest Young’s modulus, and higher
degradation rate, hence one can deduce that incorporation of either SPI or PPI enhances
construct stiffness [15].

In the context of mechanical properties and mechanical characterization of engineered
CM/CS products, it is worth mentioning a very recent publication by Paredes et al. who
presented two methods that can help study CM mechanical characteristics: texture profile
analysis (double compression test) and rheology, which can provide data about the elastic
and viscous behavior of the samples but also values about other texture characteristics such
as springiness, cohesiveness, chewiness, and resilience [193]. All of these parameters are
important when evaluating the degree to which CM/CS engineered construct mimics the
sensorial properties of already existing commercial products based on traditional meat/fish.

3.2.2. Biochemical Cues

The proliferation and activation of SCs differentiation can be regulated by extracellular
signaling molecules (e.g., growth factors—GFs, cytokines, and myokines), which have
different biological effects on skeletal muscle function and myogenesis via various signaling
pathways, such as Ras/MAPK, JAK/STAT and PI3K/Akt [194]. In this regard, these
molecules may have potential roles in CM production.

Interleukin-6 (IL-6) is an important regulator of myogenesis that promotes prolifera-
tion, as well as myogenic differentiation of SCs [195]. In 1997, Quinn and Damon found
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that interleukin-15 (IL-15) stimulates skeletal myoblast differentiation [196]. In addition
to the proven role of leukemia inhibitory factor (LIF) in the proliferation of SCs, the re-
sults of a study conducted by Yang et al. demonstrate that LIF induces C2C12 myoblast
differentiation through the JAK2/STAT3 signaling pathway—LIF activates STAT3 by in-
ducing its rapid phosphorylation [197]. Also, they confirmed the role of STAT3 in myoblast
differentiation by STAT3 knockdown, which significantly blocked myogenesis.

Interleukin-4 (IL-4) has been identified as a signaling molecule with a significant role
in myogenesis. Myotubes recruit myoblast fusion by IL-4 secretion, leading to mammalian
muscle growth and development [198]. In addition to promoting myogenesis, Chang et al.
showed that IL-4 also improves glucose transporter type 4 (GLUT4) translocation and
increases glucose uptake by boosting insulin signaling [199].

In 2014, Otis et al. demonstrated for the first time that interleukin-1β (IL-1β) alone
can increase the proliferative activity of primary skeletal muscle SCs [200]. Finally, a
combination of four pro-inflammatory cytokines secreted by T-cells—interleukin-13 (IL-13),
interleukin-1α (IL-1α), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), has been
shown to be able to promote serial SCs proliferation in vitro [201].

Treatment with transforming growth factor-β1 (TGF-β1) has also been shown to
improve myogenesis [202].

Lei et al. recently presented an effective four-cytokine combination containing long-
chain human IGF-1, PDGF-BB, FGF-2, and epidermal growth factor (EGF) for the expansion
of porcine muscle stem cells. They report a 6.31 × 107-fold expansion increase, which
renders these results quite industry-relevant. In addition, the same cytokine combination
reduced the need for fetal bovine serum (FBS) by at least 5% [194].

When referring to the reduction of FBS used in expansion studies, it is important
to explain that one of the main requirements for successful CM/CS commercialization
is to reduce and preferably completely omit the use of FBS and other animal-derived
components, due to its costs as well as to the inhumane way of its retrieval from unborn
bovine fetuses.

FBS, rich in GFs, nutrients, and proteins has been one of the main cell culture media
supplements. However, due to its mentioned downsides as well as the insufficient knowl-
edge of the actual components of FBS and batch-to-batch variability in FBS production as
well as the potential risk of using serum contaminated by viruses or prions, many CM/CS
companies pledged to fully eliminate FBS in their bioprocessing procedures [11].

Hence, when considering an “ideal” culture medium for CM/CS, the main general
requirements would be that it is fully chemically defined, free of any animal-derived
components, and is affordable to produce. Fulfilling these requirements is not an easy task.

Extensive research has been ongoing in order to define and produce robust xeno-free
medium formulations which lead to commercially available media such as Essential 8™,
TeSR™, and FBM™ that have enabled the removal of FBS from cell culture. Stout et al.
report in a preprint article the application of a modified B8 serum-free media, termed
“Beefy-9”, for culturing primary bovine SCs, with short-term growth rates comparable to
those obtained in media containing 20% FBS and with the passaged cells maintaining their
myogenicity in serum-free conditions [203]. However, the problem is that even though
serum-free media stimulate exponential cell expansion, such expansion is lesser than
expansion achieved with the growth medium with up to 30% serum [204]. Furthermore,
the majority of available serum-free media formulations still contain at least 1 animal-
derived component or synthetic mimetics of GFs that would be difficult to get approved
for use in food products [205].

Therefore, further advancements are still needed to create chemically defined media
formulations that are consistently as effective as serum-based media in promoting cell
growth while maintaining targeted differentiation potential e.g., myogenicity.

In addition to serum alternatives, using GFs expressed as recombinant proteins is
preferable to animal-derived GFs for similar reasons. Venkatesan et al. in their very
recent pre-print article report a set of expression constructs and a simplified protocol for
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recombinant production of functionally active GFs, including FGF-2, IGF-1, PDGF-BB, and
TGF-β1 in Escherichia coli. They further use this expression system to produce soluble GFs
from different species including bovine, chicken, and fish [206].

On the other hand, besides signaling molecules, a significant increase in myoblast
proliferation was observed after co-culture with fibroblasts or macrophages. In triple co-
culture, macrophages also continued to promote myoblast proliferation, via biochemical
stimulation [207]. However, the authors did not attempt to identify the signaling factors
underlying the detected biochemical effect.

When it comes to strictly chemical cues, the study conducted by Fei et al. initially
indicated that hydrogen can promote myogenic differentiation of adipose MSCs via the
p38 MAPK pathway [208].

When discussing biochemical cues of importance for CM bioprocess, one needs to
consider different molecules that regulate fat cell proliferation and differentiation as well.

In their work, Khan et al. confirmed the role of the Transducer of regulated cAMP response
element-binding protein (CREB) 2 (TORC2) gene in bovine preadipocyte proliferation [209].
In addition, the paper states that four transcription factors (CCAAT/enhancer-binding
protein C/BEP, X-box binding protein 1 XBP1, Insulinoma-associated 1 INSM1, and Zinc
finger protein 263 ZNF263) have been identified as transcriptional regulators of the TORC2
gene, which has been confirmed in nuclear extracts of bovine adipocytes via Electrophoretic
Mobility Shift Assay [210].

In the study by Yue et al., exosomes derived from bovine adipocytes were isolated and
characterized for the first time. mRNA, long non-coding RNA (lncRNA), and microRNA
(miRNA) with the potential to regulate the recipient cell phenotype and modulate multiple
cell pathways have been identified [211]. The results of this work provide a basis for further
studies on the effect of exosomal RNA on adipogenesis.

Long-chain acyl-CoA synthetase 1 (ACSL1) regulates polyunsaturated fatty acids
synthesis in bovine adipocytes. In order to improve the nutritional value of beef, it was
necessary to investigate the molecular mechanism that uses circular RNAs (circRNA)
to regulate ACSL1 and other genes associated with the synthesis of unsaturated fatty
acids (UFA). To this aim, Zhao et al. described the RNA-Sec circRNA technique to screen
for circRNAs that regulate the ACSL1 gene expression [212] The same group previously
showed that the ACSL1 gene regulates the UFAs composition in bovine skeletal muscle as
well [213].

Overexpression of CREB-regulated transcription coactivator 3 (CRTC3) gene has been
shown to promote adipogenic differentiation of porcine intramuscular adipocytes by acti-
vating the Ca2+-cAMP signaling pathway [214]. On the other hand, Tian et al. suggest that
acetyl-CoA acetyltransferase 2 (ACAT2) negatively affects the differentiation of porcine
IMPs through the regulation of srebp2/ldlr, cebpα, and PPARγ signaling involved in
cholesterol metabolism [215]

A recent study showed that knockdown of Krüppel-like factor 7 (KLF7) inhibits differ-
entiation of goat IMPs, i.e., there is a reduction in the accumulation of lipid droplets, as well
as expression of adipogenic markers. On the other hand, Huang et al. showed that fibrob-
last growth factor 9 (FGF9) inhibits the differentiation of goat intramuscular adipocytes by
interacting with the fibroblast growth factor receptor 2 (FGFR2), thus regulating PPARγ
and preadipocyte factor 1 (Pref1) [216].

A comparison of goat intramuscular adipocyte and preadipocyte proteomes has
revealed many proteins that can potentially play a major role in IMF determination—serine
and arginine-rich splicing factor 10 (SRSF10), cysteine and glycine-rich protein 3 (CSRP3),
apolipoprotein H (APOH), protein phosphatase 3 regulatory subunit B, alpha (PPP3R1),
CREB-regulated transcription coactivator 2 isoform X1 (CRTC2), fructo-oligosaccharides
(FOS), plasminogen activator inhibitor 1 (PAI-1/SERPINE1) and allograft inflammatory
factor 1 like (AIF1L) [209].

The focal signaling pathways are summarized in Figure 4.
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Figure 4. Signaling pathways involved in proliferation and differentiation of myogenic and adi-
pogenic cells.

3.2.3. Using miRNAs as Stimulators of Myoblast Differentiation

Understanding the key actions involved in the process of myogenesis is still one of
the main challenges associated with its regulation [217]. The discovery of microRNAs
(miRNAs) and their role in the critical regulation of numerous biological processes has
provided answers to many questions concerning the modulation of gene expression at
the post-transcriptional level. miRNAs represent short and non-coding RNAs that have
the ability to regulate genes of interest, usually by specific degradation of mRNA or by
translational inhibition [218]. Nowadays it is apparent that miRNA plays a crucial role in
almost all aspects of skeletal muscle development.

Like all other complex biological processes, myogenesis is highly regulated by MRFs,
whose expression is restricted to the muscle lineage. MRFs participate in the activation of
downstream signaling pathways that lead to the formation of muscle fibers.

Well-known MRFs are myogenin, MyoD, Myf5, MRF4 (transcription factors from the
MyoD family), and transcription factors from the MEF2 family, as well as serum response
factor (SRF) [219]. Considering the significant role of miRNA in muscle gene expression
regulation, it was expected that MRFs are directly affected by muscle-specific miRNA
targeting influencing the proliferation and differentiation processes. In this review, we
emphasize the role of miRNAs in the regulation of myoblast differentiation as summarized
in Table 2.
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Table 2. miRNA involved in the regulation of myoblast differentiation.

microRNA Target Gene(s) Function

miR-1a HDAC4, Cx43, Pax7, c-Met,
G6PD

Increased expression upon myoblast
differentiation

miR-16-5p SESN1 Represses myoblast differentiation
miR-22 TGF-bR1 Promotes myocyte differentiation

miR-23a Myh 1, 2 and 4 Inhibits myoblast differentiation
miR-24 SMAD2 Regulates myogenic differentiation
miR-26 SMAD1, SMAD4, and Ezh2 Promotes differentiation of myoblasts

miR-26a Ezh2 Increased expression upon myoblast
differentiation

miR-27b Pax3 Increased expression upon myoblast
differentiation

miR-29 YY1, Rybp Promotes myoblast differentiation

miR-29b/c YY1, COL1A1, ELN, Increased expression upon myoblast
differentiation

miR-98 E2F5 Represses myoblast differentiation

miR-125b IGF-II Decreased expression upon myoblast
differentiation

miR-133 SRF, nPTB, UCP2 Increased expression upon myoblast
differentiation

miR-139 Wnt1 Represses differentiation
miR-148a ROCK1 Promotes myoblast differentiation
miR-155 Mef2a Inhibits myoblast differentiation
miR-181 Hox-A11 Enhances muscle differentiation
miR-186 Myog 4 Inhibits myoblast differentiation

miR-199-3p IGF-1, mTOR, RPS6KA6 Represses myoblast differentiation

miR-206a DNApola, Fstl1, Utrn, Cx43,
TIMP3, Pax7, c-Met, HDAC4

Increased expression upon myoblast
differentiation

miR-208b/499 Sox6, Purβ, Sp3, HP-1β
Increased expression upon myoblast

differentiation

miR-214 Ezh2, N-Ras Increased expression upon myoblast
differentiation

miR-221/222 p27 Modulate differentiation and
maturation of MSC

miR-322/424 Cdc25A Promotes cell cycle quiescence and
differentiation

miR-374 Myf6 Represses myoblast differentiation
miR-378a-3p HDAC4 Promotes myoblasts differentiation

miR-431 SMAD4 Promotes myoblasts differentiation

miR-486 FoxO1, PTEN, Pax7 Increased expression upon myoblast
differentiation

miR-503 Cdc25A Increased expression upon myoblast
differentiation

miR-1, miR-206, and miR-133 are some of the best-characterized microRNAs consid-
ered to be involved in the regulation of myoblast differentiation. miR-1 affects differen-
tiation by being expressed in skeletal and cardiac muscle cells and can promote muscle
cell differentiation by regulation of expression of histone deacetylase 4 (HDAC4) miR-133
which is clustered on the same chromosomal locus as miR-1 has a different molecular
mechanism of action comprising repression of serum response factor (SRF). While it is
determined that miR-206 has an important role in myogenic differentiation, its underlying
mechanism of action is not yet fully identified [220]. However, Jiang et al. showed that
glucose-6-phosphate dehydrogenase (G6PD) is a novel target gene of miR-206, and further
confirmed that miR-206 suppresses muscle cell proliferation by inhibition of G6PD ex-
pression [221]. An earlier study by Chen et al. indicated that Pax7 was one of the direct
regulatory targets of both miR-1 and miR-206. The authors showed that inhibition of both
miR-1 and miR-206 enhances SC proliferation and increases Pax7 protein level in vivo [222].
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miR-378 is known to be involved in the promotion of skeletal muscle cell differentia-
tion, inducing a reduction of the expression of negative regulators. Namely, its expression
is induced at the time of C2C12 differentiation [223].

Another miRNA that promotes skeletal muscle cell differentiation is miR-181. Its
targeting gene is gene for homeobox protein Hox-A11, known to be a muscle cell differen-
tiation repressor. The role of Hox-A11 is suppression of expression of MyoD, crucial for
promoting terminal differentiation. miR-181 targets Hox-A11, suppressing its expression,
which leads to the increase of the expression of MyoD, promoting muscle cell terminal dif-
ferentiation [224]. On another hand, miR-374 regulates myoblast differentiation by affecting
Myf6. Its inhibition by 2′-O-methyl antisense oligonucleotides is proven to increase C2C12
myoblast differentiation, while its overexpression has a negative influence on myogenic
differentiation [225].

Besides targeting MRFs, some specific miRNAs are crucial in the manipulation of
skeletal muscle cell differentiation. These miRNAs are targeting genes encoding key
components of various signaling pathways [217].

For example, in 2020 Huo Lee et al. showed that miR-146b can decrease cell differenti-
ation and promote cell proliferation by regulating the expression of Platelet-Derived Growth
Factor Receptor Beta (PDGFRB). This research showed higher expression of Inhibitor Of
DNA Binding 1 (ID1) in pCM cells overexpressing miRNA-146b-5p, which designates that
miR-146b-5p can regulate myogenic differentiation indirectly, by regulation of ID1 [218].
This can be related to the study from 2021 performed by Contreras et al. which shows
that changes in PDGF family members’ gene expression in murine and human myogenic
cells are associated with myogenesis. Specifically, they showed that forced expression of
PDGFRA can inhibit the myogenesis of skeletal muscle cells while myogenic differentiation
reduces the expression of PDGFRA [226].

4. Achieving Industry Scale CM/CS Production

Ultimately, CM/CF/CS industry aims to reach the large scales of production required
for the commercialization of CM/CF and CS products, which implies fulfilling a number of
criteria where one of the essential ones is achieving large numbers of cells used as building
blocks of CA-based products. When referring to “large-scale” for CM/CS, the volumes of
individual bioreactor vessels to consider are comparable to the current industrial microbial
fermenters i.e., the volumes should be in the range of 100–1000 m3 [227]. The other option
is to perform scaling-out or parallelization comprising parallel use of many small-scale
vessels. The scaling-out option is more relevant for the differentiation/maturation phase of
the CM/CS bioprocess, while scale-up remains the most likely option for the first phase of
the CM/CS bioprocess which is proliferation/expansion.

The other key parameters and considerations on scale-up fall outside of the scope of
this review and are covered in detail in excellent publications by Chen et al. [228], Bellani
et al. [229], Li et al. [227], and Humbird [29].

Concerning the scale-up challenge related to efficient large-scale proliferation i.e.,
achieving a high number of cells of different types (muscle, fat), there are several aspects
to consider. Firstly, one needs to consider that majority of vertebrate cells used in CM/CS
are anchorage-dependent (adherent) cells, which implies that for establishing a successful
in vitro larger-volume expansion system there are two approaches: (1) to use suspension
culture mediated via microcarriers (MCs) that provide the surface for the cells to adhere to
or (2) to modify/adapt adherent cells towards anchorage-independent cells [229]

Adaptation of adherent cells towards cells able to proliferate in suspension culture
without carriers is difficult and cannot be achieved for all the cell types. Even when such
adaptation is successful, additional regular monitoring and dissociation of the cell aggre-
gates is required, as it may otherwise lead to spontaneous differentiation and formation of
necrotic cores within aggregates [229]. There are MC-free methods available for muscle cell
suspension culture, such as free-floating aggregates of rounded cells—myospheres.
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Wei et al. have shown that mammalian SCs have the ability to form free-floating
myospheres in suspension after 7–10 days of cultivation. However, prolonged cell cultiva-
tion caused loss of the spheroidal shape due to cell damage caused by reduced diffusion of
nutrients and oxygen to the center of the myosphere [230].

Therefore, it is recommended to use MCs in the cultivation of muscle cells in suspen-
sion, to allow cells to have access to all the components necessary for their undisturbed
growth and development.

As for the adipocytes, MCs are not always necessary, since MAs float easily due to
high lipid content. However, differentiating adipogenic cells that have not yet accumulated
lipid droplets may require MCs to sustain suspension culture—as showcased in the study
by Dohmen et al. where bovine FAPs were grown on Cytodex MCs [113].

We refer the readers to the excellent recent review on CF prospects and challenges by
Fish et al. [159] for more specifics on the single-cell suspension culture, MC-based culture,
or aggregate/spheroid culture types (such as hanging drop technique [150] and method of
using adipose spheroids with ECs which can form intraspheroidal vascular-like structures
preventing necrotic core formation [231]).

There are different strategies when using MCs, such as using temporary MCs only
for the proliferation stage or using non-edible permanent MCs that need to be separated
from the cells before going to the next bioprocessing stage. For CM purposes, the ideal
scenario would be to use edible MCs that “stay” in the final CM product. Such MCs could
also serve as nutrient carriers, providing additional benefits besides anchorage surface.
For more details on the MCs for CM bioprocessing, we strongly recommend a review by
Bodiou et al. [12].

One of the challenges includes intensification of the cell expansion in MC-mediated
suspension culture that can be achieved by taking advantage of the bead-to-bead transfer
phenomenon i.e., the ability of already attached cells to transfer and attach to the freshly
added MCs.

Hanga et al. discovered that the timing of adding fresh MCs is important (e.g., on Day
5 of culture), as the cells lose the ability for bead-to-bead transfer later in culture (Day 7)
when aggregation is high [232]. In addition, Hanga et al. established that a lower starting
cell seeding density (1500 cells/cm2 for bovine adipose-derived stem cells) is the most
cost- and time-efficient, as the lower seeding density enables achieving more doublings
in the same bioreactor volume—leading to less processing steps and consequently lower
production costs [233].

Another important aspect to consider when planning to scale up is the culture medium
as one of the major large-scale bottlenecks since the media-related costs still represent the
highest proportion of total costs in CM/CS bioprocessing [19,234]. Different approaches are
being applied to reduce the media-related costs including media recycling and modifying
the medium composition (covered in Section 3.2.2 Biochemical cues) as well as applying
feeding strategies that maximize cell production while minimizing medium consumption.
Hanga et al. compared several media exchange options using different volumes of medium
in relation to the costs and achieved cell numbers and concluded that the costs of the 80%
medium exchange were significantly lower than the costs for 50% medium exchange while
yielding 28-fold expansion [233].

5. Future Perspectives

A major goal of CA is to achieve an economical and sustainable way of large-scale
CM/CF/CS production. However, this goal is at present still not attainable. What are the
obstacles to achieving this goal?

Existing challenges can be grouped in several key areas, the majority of which are of
scientific and technical nature, but the socio-economic ones are equally important: (1) stable
sources of cells; (2) cost-efficient cell culture medium; (3) sustainable and time/cost-efficient
large-scale bioprocess design (4) support structures used in different bioprocess phases
(MCs and scaffolds) (5) CA-based food safety; (6) consumer adoption & regulatory frame-
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work and (7) integration of CM/CF/CS production facilities into conventional meat pro-
duction ecosystem.

The first challenge of establishing stable sources of cells used as building blocks in
CM/CS bioprocessing is the focus of our current review. Such cell lines need not only
be stable and safe for human consumption but also usable in industry-scale settings and
acceptable to the consumers, who are notoriously against GMO/bio-engineered products.
The use of primary cell culture acquired by tissue biopsies is not time- and cost-efficient,
as shown throughout the review. Researchers are striving to establish immortalized food-
relevant cell lines, a process which has, up to now, been lagging behind other achievements
in the APs field.

Besides establishing cell lines, it is also utterly important to devise efficient protocols
for the stimulation of proliferation and differentiation of myogenic and adipogenic cells.
Major steps have been already done to this aim, as shown in this review, however, there are
still many unknowns that need to be resolved.

A very interesting opportunity for gathering more data concerning the differentiation
of myogenic cells is ongoing Israel’s Rakia Mission to the International Space Station,
launched on 8 April 2022. Within this mission, Israeli leading CM company Aleph farms
designed an experiment that investigates the effect of lack of gravity on the cell culture
and myogenic differentiation of pluripotent cells. Another aim of the experiment is to take
advantage of the limited resources existing in space. Namely, if the experiment shows that
it is possible to design and implement a CM bioprocess in such limited resources, this will
indicate that a similar CM bioprocess design can be utilized back on Earth within a circular
manufacturing process with a reduced carbon footprint.

Besides costs related to the whole CM/CS bioprocess and technical difficulties to
establish cell lines that need to be overcome, one must also consider the food safety
aspects—since the cell cultures do not possess an immune system and cannot fight off
the contamination on their own. Even though the CM/CS bioprocessing is performed
under strict sterile conditions, there are still major concerns that contamination can occur,
particularly when transferring to industry-scale settings. Currently for R&D phases of
CM/CS bioprocess development, low doses of antibiotics are still often used, similarly to
other cell culture systems, in order to mitigate bacterial contamination risks. Predictions are
that low-dose antibiotics will be necessary also in the production-scale systems in the future
as well [235]. However, this is not ideal, particularly in view of the antimicrobial resistance
emergence phenomenon. Another issue is the viral contamination, especially concerning
since the COVID-19 pandemic of a zoonotic virus. In order to address these issues, it
will be necessary to develop advanced sensing tools that can detect potential microbial
contaminants such as bacteria and viruses at ultralow levels relevant to industrial needs
and devise innovative, non-antibiotic strategies to inhibit both microbial threats without
resistance emergence. It is also necessary to devote more efforts to the characterization of
other potential risks in CM/CS bioprocessing, as well as to intensify activities aimed at
documenting the sensorial and nutritional properties of CM/CS products.

Apart from technical and scientific challenges to CM/CF/CS upscaling and commer-
cialization, very important aspects to consider for future improvements are consumer accep-
tance and regulatory legislation. As with any type of novel food, regulatory framework and
public acceptance of CM/CF/CS are the keys to widespread adoption. Multidisciplinary
collaboration between various stakeholders, including scientists, social science researchers,
economists, and marketing experts are necessary in order to create social and legal space
for acceptance of CM/CF/CS products.

Importantly, members of the public need to be involved in the whole process of
introducing CM/CF/CS food to the market, making it a primarily innovation-driven and
truly co-creative process, offering direct solutions to the customers’ needs. In order to
achieve sustainability as well as efficient adoption, CM/CF/CS research needs to step out
of the confinement of the private companies. Existing CM/CS companies should begin
publicly sharing more of their findings. Equally important, public institutions should take
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a more active part in funding and performing CM/CF/CS research. A good recent example
is an initiative by the Dutch government that has recently announced a €60 million funding
for CM and precision fermentation. This is up to now the largest ever public investment in
CA.

Concerning the issue of integrating novel CM/CF/CS production into the conven-
tional meat industry, it is not easy to estimate the most likely scenario. As with other aspects
of such a nascent field, this facet of CA development will need to be further developed in
the years to come.
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ACAT2 acetyl-CoA acetyltransferase 2
ACSL1 Long-chain acyl-CoA synthetase 1
ACTC1 actin alpha cardiac muscle 1gene
ADSCs adipose tissue-derived stem cells
AIF1L allograft inflammatory factor 1 like
ALA alpha-linolenic acid
APOH apolipoprotein H
APs alternative proteins
ASCs adult stem cells
ATP adenosine triphosphate
BM bone marrow
BM-MSCs bone marrow-derived mesenchymal stem cells
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BSCs bovine satellite cells
BSMC bovine smooth muscle cells
CA cellular agriculture
C/BEP CCAAT/enhancer-binding protein
CDK4 cyclin-dependent kinase 4
Cdc25A Cell Division Cycle 25A gene
C/EBPα/β CCAAT enhancer-binding protein alpha/beta
CF Cultured/cultivated fat
circRNA Circular RNA
CM Cultured/cultivated meat
c-Met tyrosine-protein kinase Met gene
COL1A1 pro-alpha1 chains of type I collagen coding gene
COVID-19 Coronavirus Disease 2019
CRISPR clustered regularly interspaced short palindromic repeats
CRTC2 CREB-regulated transcription coactivator 2 isoform X1
CRTC3 CREB-regulated transcription coactivator 3
CS cultivated seafood
CSRP3 cysteine and glycine-rich protein 3
Cx43 connexin 43 gene
DEX dexamethasone
DFAT Dedifferentiated fat
DHA docosahexaenoic acid
DMEM Dulbecco’s Modified Eagle Medium
DNA deoxyribonucleic acid
DNApola DNA polymerase alpha gene
DrAMPCs Drosophila melanogaster adult muscle progenitor-like cells
ECM extracellular matrix
ECs endothelial cells
EGF epidermal growth factor
ELN Elastin gene
EPA eicosapentaenoic acid
ESCs embryonic stem cells
Ezh2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit gene
E2F5 E2F Transcription Factor 5 gene
FACS fluorescence-activated cell sorting
FAO Food and Agriculture Organization of the United Nations
FAPs fibro-adipogenic progenitor cells
FBS fetal bovine serum
FFCs feather follicular cells
FGF-2 fibroblast growth factor-2/basic fibroblast growth factor
FGF9 fibroblast growth factor 9
FGFR2 fibroblast growth factor receptor 2
FOS fructo-oligosaccharides
FoxO1 Forkhead Box O1 gene
Fstl1 Follistatin-like 1 gene
Gal-1 Galectin-1
GelMA Gelatin methacryloyl
GFI Good Food Institute
GFs growth factors
GLUT4 glucose transporter type 4
GM genetically modified
GMO genetically modified organism
GPR43 G-Protein Coupled Receptor 43
GR glucocorticoid receptor
G6PD glucose-6-phosphate dehydrogenase gene
HC hydrocortisone
HDAC4 Histone Deacetylase 4 gene
HeLa Henrietta Lacks
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Hox-A11 Homeobox A11 gene
HP-1β Heterochromatin Protein 1beta gene
IBMX isobutylmethylxanthine
ID1 Inhibitor Of DNA Binding 1
IFN-γ interferon-gamma
IGF-1/2 Insulin-Like Growth Factor 1/2 gene
IGF1R Insulin-Like Growth Factor 1 Receptor
IL-1α/β interleukin-1 alpha/beta
IL-
4/6/13/15

interleukin-4/6/13/15

IMF intramuscular fat
IMPs intramuscular preadipocytes
INSM1 Insulinoma-associated 1
iPSCs induced pluripotent stem cells
IWR1 tankyrase/Wnt inhibitor
KLF4 Krüppel-like factor 4
LA linoleic acid
LIF leukemia inhibitory factor
lncRNA long non-coding RNA
LPAR1 Lysophosphatidic Acid Receptor 1
LR3-IGF-1 long-chain human insulin growth factor-1
MAPK mitogen-activated protein kinase
MAs mature lipid-containing adipocytes
MC microcarriers
MEF mouse embryonic fibroblast
Mef2a Myocyte Enhancer Factor 2A gene
miRNAs microRNAs
MPCs muscle progenitor cells
MRF myogenic regulatory factor
MRF4 myogenic regulatory factor 4 gene
MSCs mesenchymal stem cells
mTOR Mechanistic Target Of Rapamycin Kinase gene
Myf5 Myogenic Factor 5 gene
Myf6 Myogenic Factor 6 gene
Myh 1/2/4 Myosin Heavy Chain 1/2/4 gene
MyoD myoblast determination protein 1
NASA National Aeronautics and Space Administration
NENF neudesin neurotrophic factor
N-Ras Neuroblastoma RAS Viral Oncogene Homolog gene
OCT4 octamer-binding transcription factor 4
OPTi-OX optimized inducible overexpression
O2 oxygen
PAI-
1/SERPINE1

plasminogen activator inhibitor 1

Pax3/7 Paired Box 3/7 gene
PDGF-BB platelet-derived growth factor BB
PDGFRA/B platelet-derived growth factor receptor A/B
PDLIM3/5 PDZ And LIM Domain 3/5
PDMS polydimethylsiloxane
POU5F1 POU domain, class 5, transcription factor 1
PPARγ peroxisome proliferator-activated receptor-gamma
PPI pea protein isolate
PPP3R1 protein phosphatase 3 regulatory subunit B, alpha
Pref1 preadipocyte factor 1
PTEN Phosphatase And Tensin Homolog gene
Purβ Purine Rich Element Binding Protein B
RGD Arginine-Glycine-Aspartate motif
RNA ribonucleic acid
ROCK1 rho-associated, coiled-coil-containing protein kinase 1 gene
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RPS6KA6 Ribosomal Protein S6 Kinase A6 gene
Rybp RING1 And YY1 Binding Protein gene
R&D research and development
SB203580 Adezmapimod, p38 MAPK inhibitor
SCs satellite cells
SEM scanning electron microscopy
SESN1 Sestrin 1 gene
SFA Singapore Food Agency
SkGM-2 Skeletal Muscle Cell Growth Medium-2
SMAD1/2/4 SMAD Family Member 1/2/4 gene
SOX2 SRY-Box Transcription Factor 2
Sox6 SRY-Box Transcription Factor 6 gene
SPI soy protein isolate
Sp3 Sp3 Transcription Factor gene
srebp2/ldlr KLF7-Krüppel-like factor 7
SRF serum response factor
SRSF10 serine and arginine-rich splicing factor 10
SSEAs stage-specific embryonic antigens
SVCs stromal vascular cells
TAZ transcriptional co-activator with PDZ-binding motif
TE tissue engineering
TERT telomerase reverse transcriptase
TFRC Transferrin Receptor
TGF-bR1 transforming growth factor-beta receptor type 1 gene
TGF-β transforming growth factor-beta
TIMP3 TIMP Metallopeptidase Inhibitor 3 gene
TNF-α tumor necrosis factor-alpha
TORC2 Transducer of regulated cAMP response element-binding protein (CREB) 2
TSP textured soy protein
UCP2 Uncoupling Protein 2 gene
UFA unsaturated fatty acid
US United States
Utrn Utrophin gene
Wnt1 Wnt Family Member 1 gene
XBP1 X-box binding protein 1
YAP Yes-associated protein
YY1 Yin Yang 1 gene
ZNF263 Zinc finger protein 263
5-Aza 5-Aza-2′-deoxycytidine
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Cultivated Meat Production. Micromachines 2022, 13, 402. [CrossRef]
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