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Background: Mitophagy is correlated with tumor initiation and development of
malignancy. However, HCC heterogeneity with reference to mitophagy has yet not
been systematically explored.

Materials and Methods: Mitophagy-related, glycolysis-related, and cholesterol
biosynthesis-related gene sets were obtained from the Reactome database.
Mitophagy-related and metabolism-related subtypes were identified using the
ConsensusClusterPlus algorithm. Univariate Cox regression was analysis was
performed to identify prognosis-related mitophagy regulators. Principal component
analysis (PCA) was used to create composite measures of the prognosis-related
mitophagy regulators (mitophagyscore). Individuals with a mitophagyscore higher or
lower than the median value were classified in high- or low-risk groups. Kaplan-Meier
survival and ROC curve analyses were utilized to evaluate the prognostic value of the
mitophagyscore. The nomogram and calibration curves were plotted using the“rms” R
package. The package “limma” was used for differential gene expression analysis.
Differentially expressed genes (DEGs) between high- and low-risk groups were used
as queries in the CMap database. R package “pRRophetic” and Genomics of Drug
Sensitivity in Cancer (GDSC) database were used to determine the sensitivity of 21
previously reported anti-HCC drugs.

Results: Three distinct HCC subtypes with different mitophagic accumulation (low, high,
and intermediate mitophagy subtypes) were identified. High mitophagy subtype had the
worst outcome and highest glycolysis level. The lowest degree of hypoxia and highest
cholesterol biosynthesis was observed in the low mitophagy subtype; oncogenic
dedifferentiation level in the intermediate mitophagy subtype was the lowest.
Mitophagyscore could serve as a novel prognostic indicator for HCC.High-risk patients
had a poorer prognosis (log-rank test, p < 0.001). The area under the ROC curve for
mitophagyscore in 1-year survival was 0.77 in the TCGA cohort and 0.75 in the ICGC
cohort. Nine candidate small molecules which were potential drugs for HCC treatment
were identified from the CMap database. A decline in the sensitivity towards 21 anti-HCC
drugs was observed in low-risk patients by GDSC database. We also identified a novel key
gene, SPP1, which was highly associated with different mitophagic subtypes.
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Conclusion: Based on bioinformatic analyses, we systematically examined the HCC
heterogeneity with reference to mitophagy and observed three distinct HCC subtypes
having different prognoses and metabolic patterns.
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INTRODUCTION

Hepatocellular carcinoma (HCC), a highly heterogeneous solid
malignancy, is the third leading cause of cancer-related deaths,
worldwide. The overall 5-years survival rate for HCC is 18%, and
it is the second deadliest malignancy after pancreatic carcinoma
(Beal et al., 2017). Tumor heterogeneities, including
microenvironmental discrepancies and morphological
heterogeneity, are frequently reported in HCC and play a
major role in tumor progression and resistance to treatment.
(Li and Wang, 2016), (Borgia et al., 2021), (Atwa et al., 2021)

A special form of autophagy, mitophagy, is a mechanism for
mitochondrial quality control. Damaged, defective, or
unfunctional mitochondria are identified by the mitophagic
machinery and subsequently degraded in the lysosome (Vara-
Perez et al., 2019).The PINK1/Parkin pathway is among the most
investigated pathway in mitophagy. Ordinarily, the serine/
threonine PTEN-induced putative kinase 1 (PINK1) is
transported to the inner mitochondrial membranes by the
translocase of the outer membrane (TOM) and the translocase
of the inner membrane (TIM) complexes. The presenilin-
associated rhomboid-like (PARL) proteins cleave PINK1
protein and target it for degradation to the mitochondrial
proteasome. Therefore, the intracellular level of PINK1 is
relatively low. Mitochondrial depolarization stops the
translocation of PINK1. PARL upon phosphorylation by
PDK2 loses its ability to cleave PINK1. (Jin et al., 2010),
(Lopez Domenech et al., 2018), (Wang et al., 2011) PINK1
accumulation promotes the E3 ubiquitin ligase activity of
Parkin by the phosphorylation of serine 65 residue of the
ubiquitin-like domain of Parkin. The impaired mitochondria
are isolated when critical mitochondrial proteins such as
MFN1, MFN2, and Miro1, are ubiquitinated by Parkin.
(Glauser et al., 2011), (Chen and Dorn, 2013) In addition,
phosphorylation of ubiquitin chains by PINK1 further
enhances Parkin recruitment and activation (Durcan and Fon,
2015). Subsequently, p62 and OPTN (autophagy cargo adaptors)
recognize the polyubiquitylation of mitochondrial proteins and
ultimately the autophagic machinery degrades the complex
formed by the interaction of mitochondrial proteins and LC3.
(Wong and Holzbaur, 2014), (Geisler et al., 2010)

Hepatocytes each contain approximately 1,000 mitochondria,
which constitute about 18% of cell by volume (Koh et al.,
2018).Previous studies have reported that Mitochondria are a
major source of reactive oxygen species (ROS) production.
Meanwhile, immoderate ROS lead to DNA, protein, and lipids
lesion that tightly associated to the pathogenesis of cancers. By the
way, Over 90% of HCCs are intimately linked to hepatic injury
and inflammation. Dysfunctional mitochondria allows the release
of ROS and mitochondrial DNA (mtDNA) into the cytosol.The

condition can activate the major innate immune response and
result in HCC initiation and progression. (Schieber and Chandel,
2014), (Severi et al., 2010) Therefore, mitophagy plays an essential
role in preventsing HCC tumorigenesis which is extremely
important for relieving intracellular oxidative stress by
removing damaged mitochondria.

However, uncontrolled proliferation of tumor cells need
mitophagy to ensure the normal mitochondrial homeostasis,
dysfunction of which will disrupt metabolism and increase
oxidative stress, inducing tumor cell apoptosis (Ferro et al.,
2020). Furthermore, mitophagy mediated through PINK1 lead
to tumor suppressor p53 inactivation in mitochondria, which is
considered to be a significant role to maintain the HCC stem cell
(CSCs) quantity (Liu et al., 2017). In summary, mitophagy
prevents HCC tumorigenesis by suppressing dysfunctional
mitochondria accumulation, cellular oxidative stress, genome
instability and inflammation. When a tumor mass forms,
conversely, mitophagy is hyperactivated to meet cancer cells
metabolism demand and facilitate HCC progression.

Therefore, mitophagy might become a promising but
challenging therapeutic direction for HCC in the future and
exploring tumor heterogeneity of mitophagy accumulation is
of great significance for HCC prevention and treatment.

MATERIALS AND METHODS

Data Acquisition and Processing
Data sets of transcriptomic sequencing and clinical details were
downloaded from the TCGA and ICGC databases.

After excluding the cases having a follow-up time of less than
30 days, a total of 571 cases (342 cases from TCGA-LIHC and 229
cases from ICGC-LIRI-JP databases) were included in this study.
TCGA-LIHC cohort was designated as the training set, and the
ICGC-LIRI-JP cohort was designated as the test set.

Reactome database was used to obtain data for three
mitophagy-related signaling pathways, including mitophagy
(R-HSA-5205647), pink1 prkn mediated mitophagy (R-HSA-
5205685) and receptor mediated mitophagy (R-HSA-8934903).
Based on the union of these gene sets, 28 regulators of mitophagy
were identified (Supplementary Table S1). Two additional gene
sets, for cholesterol biosynthesis (R-HSA-191273) and glycolysis
(R-HSA-70171), were also downloaded from the Reactome
database (Supplementary Table S1).

Malta et al. developed a new machine learning algorithm
named one-class logistic regression (OCLR) to evaluate the
transcriptome and epigenetic signatures. OCLR-based
transcriptomic or epigenetic feature set was generalized to
TCGA database to estimate the stemness index, with the
mRNA expression-based stemness index (mRNAsi) reflecting
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gene expression, and the epigenetically regulated (EREG)-
mRNAsi reflecting epigenetically regulated mRNAsi. The
stemness index contributes to elucidation of the
dedifferentiation of tumor cells, and higher index values were
closely associated with the progression of multiple types of
cancers (Malta et al., 2018). The mRNAsi scores for the
TCGA-LIHC samples were obtained from previous studies
(Malta et al., 2018). mRNAsi score is a novel gene expression-
based stemness index for assessing the degree of oncogenic de-
differentiation; the value ranges from (0,1).

Identification of Mitophagy Subtypes
Unsupervised hierarchical clustering was performed using the
“ConsensusClusterPlus” package in R to cluster the mitophagy
regulators. The parameter settings were as follows: reps � 50,
pItem � 0.8, pFeature � 1, and distance � Euclidean (Wilkerson
and Hayes, 2010). Mitophagy subtypes were obtained. For a total
of 97 genes from the cholesterol biosynthesis and glycolysis gene
sets, unsupervised hierarchical clustering was performed with the
above settings and different metabolic classifications were
obtained.

We also calculated the enrichment scores for each sample in
the cholesterol biosynthesis and glycolysis gene sets by the single
sample Gene Set Enrichment Analysis (ssGSEA) algorithm
(Supplementary Table S2) (Hänzelmann et al., 2013).

Construction and Validation of the
Prognostic Mitophagy Regulator-Based
Signature
Univariate Cox analysis was used to distinguish between
prognosis-related mitophagy regulators. The overlapping
prognostic mitophagy regulators (p < 0.05) in TCGA-LIHC
and ICGC-LIRI-JP cohorts were selected for further analyses.
Principal component analysis (PCA) was performed to establish
the mitophagy-related gene signature. The sum of the principal
components 1 and 2 gave the mitophagy regulator signature
scores (mitophagyscore). The approach focused on the signature
scores in the set with the largest block of well correlated (or
anticorrelated) genes, while down-weighing the contributions
from genes that were not associated with other set members.
The mitophagyscore was identified by performing a method
similar to GGI. (Sotiriou et al., 2006), (Zeng et al., 2019)

We calculated the mitophagyscore for each patient and
divided them into the high-risk and low-risk groups based on
the median in their respective cohorts. K-M analysis and log-rank
test were used to evaluate the prognostic value of the
mitophagyscore. Based on tumor stage and mitophagyscore we
plotted the nomogram for predicting survival outcomes using the
“rms” package in R (Huang et al., 2020a). Calibration plots were
plotted to compare the predictive efficacy of nomograms for the
1-, 3-, and 5-years OS probability.

Screen for Candidate Small Molecule Drugs
Differentially expressed genes (DEGs) between the high-risk and
low-risk groups were identified using the“Limma” package in R
(parameters: |fold change| >2 and FDR-adjusted p-value < 0.05)

(Xu et al., 2020). A Venn diagram was drawn to depict the
intersection of DEGs in the TCGA-LIHC and ICGC-LIRI-JP
cohorts; these overlapping DEGs were selected for further
downstream analyses. Functional enrichment analysis for the
intersecting DEGs was performed using the“clusterProfiler”
package in R (Liu et al., 2020). Enrichment analysis results of
the top 20 enriched KEGG and GO terms with smallest adjusted
p-value are displayed in dotplot. Then we rerun the enrichment
analysis by Metascape database (http://metascape.org) to verify
each top 20 enriched KEGG and GO terms. The intersection of
DEGs was used as the input for the Connectivity map (CMap)
database (https://portals.broadinstitute.org/cmap/). The selection
criteria were as follows: p-value<0.05, enrichment < −0.8 (Shen
et al., 2019).

Drug Sensitivity Prediction
Drug-response prediction was assessed using the“pRRophetic”
package in R, where the half-maximum inhibitory concentration
(IC50) of each patient was estimated using Ridge’s regression, and
the accuracy of the prediction was estimated by 10-fold cross-
validation, based on the Genomics of Drug Sensitivity in Cancer
(GDSC) database (Ding et al., 2021).

Identification of DEGs Among Different
Mitophagy Subtypes
We obtained multiple distinct mitophagy subtypes and gene
differential expression analysis was performed using
the“limma” package in R for pairwise analyses to evaluate
specific DEGs between the subtypes. The screening criteria
were set as follows: | log2FC |> 1 and adjusted p < 0.05. This
process was performed for both TCGA-LIHC and ICGC-LIRI-JP
cohorts simultaneously. The intersecting DEGs from the two
cohorts were considered as candidate DEGs which were highly
correlated with the mitophagy subtypes. The difference in
expression of candidate DEGs between tumor and normal
tissues was estimated using the GEPIA database. The
expression of candidate DEGs in different tumor stages and
their effect on HCC prognosis were assessed using the GEPIA
database (Tang et al., 2017).

The HPA database was used to obtain protein expression
levels of candidate DEGs based on immunohistochemistry (IHC)
staining and IHC image data downloaded from the HPA database
(Song et al., 2020).

Statistical Analysis
Statistical tests were carried out by R software for statistical
computing (R version 4.0.4). Significance was estimated via
the nonparametric Wilcoxon test in comparisons between two
groups, while via Kruskal-Wallis test in multiple comparisons.
Categorical data were tested by the chi-square test and the chi-
square test for trends. K-M analysis for OS and Progression-free
survival (PFS) was performed between different subgroups,
followed by log-rank test. Operating characteristic curve
(ROC) for 1-year survival was established for evaluation of the
predictive efficacy of the mitophagyscore. Correlation analyses
were performed using Spearman’s correlation. A statistical p
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FIGURE 1 | In TCGA cohort, the boxplot of the expression level of the mitophagy regulators in normal and HCC samples (B) In ICGC cohort, the boxplot of the
expression level of the mitophagy regulators in normal and HCC samples (C) The location of CNV alteration of mitophagy regulators on chromosomes using TCGA
cohort (D) The CNV variation frequency of mitophagy regulators in TCGA cohort. The height of the column represented the alteration frequency. The deletion frequency,
green dot; The amplification frequency, red dot (E) The mutation frequency of mitophagy regulators in 364 patients with HCC from TCGA-LIHC cohort. Each
column represented individual patients. The upper barplot showed TMB, The number on the right indicated the mutation frequency in each regulator. The right barplot
showed the proportion of each variant type. The stacked barplot below showed fraction of conversions in each sample. The asterisks represented the statistical p value
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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FIGURE 2 | Identify different mitophagy subtypes (A) Consensus matrices of the TCGA cohort for k � 3 (B) Unsupervised clustering of overlapping mitophagy
regulators in TCGA cohorts to classify patients into different subtypes (cluster A-C). Grade, stage, gender, survival status and age were utilized as patient annotations (C)
Survival analyses for the three clusters in TCGA cohort including 102 cases in cluster A, 131 cases in cluster B, and 109 cases in cluster C. Kaplan-Meier curves with Log-
rank p value < 0.001 showed a significant survival difference among three clusters. The cluster B showed significantly worse OS than the other two clusters (D)
Consensus matrices of the ICGC cohort for k � 3 (E) Unsupervised clustering of overlapping mitophagy regulators in ICGC cohorts to classify patients into different
subtypes (cluster A-C). Stage, gender, survival status and age were utilized as patient annotations (F) Survival analyses for the three clusters in ICGC cohort including 58
cases in cluster A, 56 cases in cluster B, and 115 cases in cluster C. Kaplan-Meier curves with Log-rank p value < 0.001 showed a significant survival difference among
three clusters. The cluster B showed significantly worse OS than the other two clusters.
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FIGURE 3 | The gene expression of each mitophagy regulators between the different mitophagy subtypes in TCGA LIHC (A) and ICGC LIRI-JP (B).The enrichment
score of three mitophagy-relayed gene sets between the different mitophagy subtypes in TCGA LIHC (C) and ICGC LIRI-JP (D). The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p
value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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value of 0.05 was considered indicative of significance.
Enrichment analysis of all Reactome pathways performed by
GSEA (https://software.broadinstitute.org/gsea/index.jsp).Under
the premise of NOM p-val less than 0.05, only the top ten
pathways with highest absolute values of the normalized
Enrichment Score (NES) are presented as the most
enriched items.

RESULTS

Landscape of Mitophagy Regulators in
Liver HCC
We separately investigated the levels of expression of mitophagy
regulators in TCGA-LIHC and ICGC-LIRI-JP cohorts
(Figure 1A, B). Genes detected in less than two cohorts were
excluded and we obtained a total of 26 mitophagy regulators in
this study. However, the expression of TOMM6 was zero in more
than 90% of samples in TCGA cohort.Therefore, TOMM6 were
not included for futher analysis of TCGA cohort (Zoni et al.,
2019). Among the 26 genes, only PINK1, MAPILC3A and UBB
were significantly downregulated in tumor samples as compared
to normal samples and other genes were significantly upregulated
in tumor samples. The locations of CNV alterations in mitophagy
regulators on chromosomes are shown in Figure 1C. Compared
with normal liver tissues, PINK1 and MFN2 showed a distinctly
higher proportion of copy number alterations and 13 mitophagy
regulators showed a higher proportion of gain in CNVs (e.g.
TOMM20 and MLN1) (Figure 1D). Mitophagy regulators were
rarely mutated; the frequency was 5.77%. The results indicated
that VDAC1 and UBC exhibited the highest mutation frequency.

Description of Mitophagy Subtypes in
Liver HCC
Consistent clustering of 26 mitophagy regulators was established
using the “ConsensusClusterPlus” package in R and all tumor
samples were classified into three subtypes (cluster A, cluster B,
and cluster C) (Figure 2A). The gene expression pattern of
mitophagy regulators is shown using a heatmap of hierarchical
clustering (Figure 2B). Kaplan-Meier survival analyses were
performed for the three clusters (Figure 2C). The analysis
procedure was identical for both TCGA-LIHC and ICGC-
LIRI-JP cohorts (Figure 2D–F). A vast majority of the
mitophagy regulators had their highest expression levels in
cluster B and the lowest in cluster A (Figure 3A, B). ssGSEA
was employed to impute the enrichment scores of mitophagy-
related pathways.Neither in the TCGA-LIHC nor the ICGC-
LIRI-JP cohorts, the enrichment scores of mitophagy pathway
and receptor mediated mitophagy pathway were significantly
highest in cluster B (Figure 3C, D).

We then defined the samples as low mitophagy (cluster A),
high mitophagy (cluster B), and intermediate mitophagy (cluster
C) subtypes. Patients with high mitophagy subtype had the worst
prognoses.

A total of 97 genes from cholesterol biosynthesis and glycolysis
gene sets were used for unsupervised hierarchical clustering and

three metabolic classifications were obtained in the TCGA-LIHC
cohort (mixed, quiescent, and glycolytic; Figure 4A). The gene
expression patterns for cholesterol biosynthesis and glycolysis
genes in the TCGA-LIHC cohort are shown in Figure 4B. Cluster
A, the low mitophagy subtype, showed a particularly prominent
advantage in quiescent metabolic classification (71.4%) and was
inferior in glycolytic classification (2.9%). In contrast, there was a
significantly greater proportion of mixed metabolic classification
and a smaller proportion of quiescent classification in clusters B
and C as compared to cluster A (Chi-square test p-value<0.0001;
Figure 4C); a smaller proportion of mixed metabolic
classification and a larger proportion of quiescent classification
was found in cluster B as compared to cluster C (Chi-square test p
value � 0.023; Figure 4C).

Kruskal-Wallis test showed significant differences in the
enrichment scores for cholesterol biosynthesis and glycolysis
genes between the mitophagy subtypes. Cluster A had the
lowest median enrichment score for glycolysis genes and
highest enrichment score for cholesterol biosynthesis genes,
while cluster B had the highest median enrichment score for
glycolysis genes (Figure 4D, E). This indicated that the
mitophagy subtypes were strongly associated with the
metabolic differences in liver HCC.

We compared the gene expression of HIF1A, a hypoxia
marker, between different mitophagy subtypes, and observed a
significant downregulation in cluster A (Figure 4F).

The median mRNAsi score was the highest in cluster C and
there were no significant mRNAsi score differences between
clusters A and B. (Figure 4G).

To examine the change in biological functions upon the
increase in mitophagic accumulation, we performed GSEA for
clusters A and B. Ten most enriched terms in cluster B are shown
in Figure 4H; four other terms were enriched in cluster A
(Figure 4I) including the terminal pathway of the complement
system, biosynthesis of maresin-like SPMs, fructose catabolism,
and tyrosine catabolism pathways.

Prognostic Role of Mitophagy Regulators
in HCC
Univariate analysis of mitophagy regulators for OS indicated that
there were 18 potential prognostic mitophagy regulators in the
TCGA-LIHC cohort and 15 in the ICGC-LIRI-JP cohort
(Supplementary Figure S1A, B). Ultimately, 12 mitophagy
regulators were identified as predictors for poor prognosis in
both cohorts, including PGAM5, TOMM22, TOMM5, MFN1,
CSNK2A2, VDAC1, TOMM40, FUNDC1, CSNK2A1, CSNK2B,
RPS27A, and SRC were included in subsequent analyses.

PCA analysis reduced the above 12 mitophagy regulators into
two principal components, PC1 and PC2. We summated the
values of PC1 and PC2 for each patient and calculated the
mitophagyscore.

Patients were divided into two groups according to the median
values for mitophagyscore (median value in TCGA � 0.060;
median value in ICGC � -10.353). Patients with
mitophagyscores below the median were classified in the low-
risk group (TCGA:n � 171; ICGC:n � 114) and those with higher
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FIGURE 4 | Identify different metabolic subtypes (A) Consensus matrices of the TCGA cohort for k � 3 (B) Unsupervised clustering of total 97 genes from the
cholesterol biosynthesis and glycolysis gene sets in TCGA cohorts to classify patients into different subtypes (mixed, quiescent, and glycolytic). Grade, stage, gender,
survival status and age were utilized as patient annotations (C) The proportion of metabolic subtypes in the three mitophagy subtypes. Mixed subtype, red; quiescent
subtype, green; glycolytic subtype, blue. The enrichment score of glycolysis (D) and cholesterol biosynthesis (E) gene sets between the different mitophagy
subtypes in TCGA LIHC (F) Differences in HIF1A expression level among three mitophagy subtypes in TCGA LIHC cohort (G) Differences in mRNAsi score among three
mitophagy subtypes in TCGA LIHC cohort. The KruskalWallis test was used to compare the statistical difference between three subtypes. GSEA results enriched in
cluster A (H) and cluster B (I). The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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mitophagyscores values were classified into the high-risk group
(TCGA:n � 171; ICGC:n � 115). In the TCGA cohort, the low-
risk group showed a significant advantage in OS (Figure 5A; HR
� 1.88, 95%CI � 1.31–2.70, p < 0.001) and PFS (Figure 5B; HR �
1.61, 95%CI � 1.21–2.19, p � 0.0011). The median OS (3.7 years)
and the median PFS (1.2 years) in the high-risk group were
shorter than those in the low-risk group (median OS:
5.8 years; median PFS: 2.5 years). A similar result was observed
in the ICGC-LIRI-JP cohort, that the high-risk group had a worse
prognosis as compared to the low-risk group (Figure 5C; HR �
4.35, 95%CI � 2.07–9.17, p < 0.001).

The ROC curve was plotted to estimate the predictive ability of
mitophagyscore. The area under the ROC curve for OS at 1-year
was 0.77 in the TCGA-LIHC cohort and 0.75 in the ICGC-LIRI-
JP cohort (Figure 5D, E).

The heat map in Figure 6A represents the relative expression
of mitophagy regulators; the vast majority of them showed
increased expression in the high-risk group. The
mitophagyscore in the high mitophagy group (cluster B) was
the highest, followed by that in the intermediate subtype (cluster
C), and the low mitophagy (cluster A) group (Figure 6B). The
mitophagyscore in the early stages of HCC was significantly

FIGURE 5 | Kaplan-Meier plots for overall survival (OS) (A) and progression-free survival (PFS) (B) of HCC patients with a high or lowmitophagyscore in TCGA LIHC
cohort (C) Kaplan-Meier plots for overall survival (OS) of HCC patients with a high or low mitophagyscore in ICGC cohort. ROC curves for predicting 1-year OS by
mitophagyscore TCGA LIHC cohort (D) and ICGC cohort (E).
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FIGURE 6 | (A) The heatmap of gene expression in the high-risk group versus low-risk group for the mitophagy regulators in TCGA LIHC cohort. Violin plot of
different mitophagyscores between different mitophagy subtypes (B), stages (C) and survival status (D) of TCGA LIHC cohort (E) The heatmap of gene expression in the
high-risk group versus low-risk group for the mitophagy regulators in ICGC cohort. Violin plot of different mitophagyscores between different mitophagy subtypes (F),
stages (G) and survival status (H) of ICGC cohort. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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higher as compared to the advanced tumor stage (Figure 6C).
Mitophagyscores of patients who died during the follow-up were
significantly higher as compared to those who were alive
(Figure 6D). In addition, identical findings were obtained in
the ICGC-LIRI-JP cohort (Figure 6E–H).

Furthermore, we stratified both the TCGA-LIHC and ICGC-
LIRI-JP cohorts based on clinical features and performed K-M
survival analysis to determine whether the prognostic value of the
mitophagyscores was independent of other clinical
characteristics. The result indicated that mitophagyscores had
satisfactory prognostic prediction efficacy in different groups
stratified by clinical features (Supplementary Figure S2).

The prognostic nomogram was then constructed based on the
stage and mitophagyscores to facilitate further clinical prognostic
prediction (Figure 7A). The calibration curve for prediction of
survival at 1-year (Figure 7B), 3-years (Figure 7C), and 5-years
(Figure 7D) in the TCGA-LIHC cohort validated the predictive
accuracy of the nomogram.

Therapeutic Potential of Mitophagyscore
in HCC
Using the “Limma” package in R, a total of 197 upregulated genes
and 64 downregulated genes were identified in the high-risk

FIGURE 7 | Developed nomogram to predict the probability of survival in HCC patients (A) Nomogram built with tumor stage and mitophagyscore incorporated
estimating 1-, 3-,5-years OS for HCC patients in the TCGA LIHC cohort. The calibration curves describing the consistency between predicted and observed 1-(B), 3-
(C),5-(D) year OS at different time points in the TCGA LIHC cohort. The estimated survival was plotted on the x-axes, and the actual outcomes were plotted on the
y-axes. The gray 45-degree dotted line represents an ideal calibration mode.
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group (Supplementary Figure S3A, B). The significant
enrichment of biology processes was assessed using the
“clusterProfiler” package in R; 20 GO terms and KEGG
pathways with the smallest p-values are shown
(Supplementary Figure S3E–F). In addition, each top 20
enriched KEGG and GO terms werer validated on Metascape
database and the results of the two methods were consistent. The
details of functional enrichment analysis are provided in
Supplementary Table S3.

CMap analysis was utilized to explore small molecular
compounds having the potential to reverse the clinical
manifestations in the high-risk group, such as the poor
prognosis. A total of nine drugs met our selection criteria
(Table 1). Notably, DL-thiorphan with an enrichment score of
-0.94 showed extraordinary therapeutic potential.

From previous studies, we collated 21 drugs with reported and
experimentally verified the therapeutic potential for HCC
(Supplementary Table S4). The “pRRophetic” algorithm was
used to predict the sensitivity in high- or low-risk groups to the
above-mentioned 21 drugs. Higher estimated IC50 values were
obtained in the low-risk group as compared to the high-risk
group and this result indicated that higher mitophagyscore could
predict increased sensitivity towards these therapeutic drugs in
HCC patients (Figure 8).

Candidate DEGs Highly Correlate With the
Mitophagy Subtypes
Differential expression of SPP1 was identified as an important
factor for diversity in mitophagy subtypes (Supplementary
Figure S4). GEPIA-generated box plot was used to compare
the tissue-based expression patterns of SPP1 between HCC
(TCGA tumor) and paired normal adjacent tissue samples
(TCGA normal + GTEx normal). The expression level of
SPP1 was significantly high in tumors (p < 0.05)
(Supplementary Figure S5A). The relative expression level of
SPP1 was significantly lower in stage I tumor tissues
(Supplementary Figure S5B). A high expression of SPP1
(>median value) indicated a worse prognosis of HCC
patients (Supplementary Figure S5C). Additionally, IHC
staining data from the HPA database indicated that SPP1
had a moderate signal in HCC tissues (Supplementary
Figure S5D) but was not detected in normal liver tissues
(Supplementary Figure S5E); it was mainly localized in the

Golgi apparatus. Spearman’s correlation analysis suggested that
SPP1 was significantly positively correlated with.

Several mitophagy regulators (ρ � 0.43; p < 0.0001;
Supplementary Figure S5F) and mitophagyscore (ρ � 0.43;
p < 0.0001; Supplementary Figure S5G). The lowest
expression of SPP1 was found in cluster A, while the highest
was in cluster B (Supplementary Figure S5H). Three mitophagy-
related signaling pathways (R-HSA-5205647.4, R-HSA-
5205685.3, and R-HSA-8934903.3) were upregulated in A high
SPP1 (>median value) expression (Supplementary Figure S5I).

DISCUSSION

Mitophagy in inflammation, innate immunity, and tumor
progression owing to the interplay between mitophagy
regulators, has gained widespread attention from researchers.
(Zhou et al., 2011), (Sliter et al., 2018) The majority of previous
studies focus on individual regulators; the overall characterization
of integrated roles of multiple mitophagy regulators has not yet
been comprehensively elucidated. Recognizing the distinct
mitophagy alteration patterns in HCC will deepen the insight
for tumorigenesis and cancer progression and shed light for
innovation on strategies for treatment and prognosis of HCC.

In our study, we investigated the mRNA expression levels of
mitophagy regulators between normal and HCC samples, and
found that the alterations of CNV could be the prominent factors
resulting in perturbations on some mitophagy regulators
expression,particularly on PINK1. Compared to normal
tissues, PINK1 with the high-frequency of copy number losses
showed significantly lower expression in HCC tissues. PINK1 was
reported as the critical initiator of mitophagy (Lazarou et al.,
2015). Therefore, such parallel relationships between CNV and
gene expression in PINK1 may have contributed to the difference
in the extent of mitophagy between HCC and normal tissues. In
addition, three distinct mitophagy alteration patterns were
identified based on mitophagy regulators that may indicate the
difference in mitophagy accumulation. Furthermore, the results
demonstrated that high mitophagy accumulation was an
indicator of poor prognosis. Comparatively, low mitophagy
accumulation showed better prognoses in patients, particularly
in the ICGC-LIRI-JP cohort.

Mitophagy, a specific autophagy type, guarantees the selective
destruction of damaged or dysfunctional mitochondria. Because
of the indispensable role of mitochondria in vital metabolic
processes and bioenergetic functions, it is not unexpected that
mitophagy is inextricably related to the metabolism of cancer cells
to meet their bioenergetic needs. In pursuit of the mechanisms by
which the high mitophagy subtype showed the worst prognoses,
we turned our attention to the distinct metabolic patterns. Higher
HIF1A expression level as compared to low mitophagy subtype
indicated that in high mitophagy and intermediate subtype,
tumors experienced greater hypoxic environments. Previous
studies report that FUNDC1, a mitophagy regulator, interacts
with LC3 through its typical LC3-binding motif Y (18)xxL (21),
and mutation in this region impairs its interaction with LC3 and
the subsequent induction of mitophagy under hypoxia; this may

TABLE 1 | small molecular compounds having the potential to reverse the clinical
manifestations in the high-risk group.

Cmap name Mean Enrichment p Specificity

DL−thiorphan −0.788 −0.941 0.00742 0.0171
sanguinarine −0.724 −0.884 0.02696 0.05
chrysin −0.749 −0.858 0.00571 0.0152
blebbistatin −0.7 −0.853 0.04298 0.0811
metyrapone −0.727 −0.834 0.00137 0.0053
medrysone −0.757 −0.826 0.00006 0.0054
verteporfin −0.731 −0.822 0.0113 0.0465
apigenin −0.8 −0.82 0.00199 0.0272
meticrane −0.756 −0.804 0.00064 0
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be responsible for high mitophagy accumulation. Hypoxia leads to
glycolysis and lactate production. Lactate, generated during
glycolysis, decreases the tumor environmental pH and an acidic
pH distinctly impedes the function of normal immune cells, such as
T-cell and tumor-infiltrating lymphocytes. (Lardner, 2001),
(Calcinotto et al., 2012) Furthermore, the lactate-mediated
enhancement of tumor cell motility is reported not only in
single-cell motion but also in enforced bulk migration (Goetze
et al., 2011). Hyaluronan, synthesized by tumor-associated
fibroblasts (TAF), increases around the carcinoma regions at high
lactate concentrations and encourages the growth and motility of
cancer cells. (Stern, 2008), (Walenta and Mueller-Klieser, 2004)
Taken together, these findings may at least partially explain the
facilitation of tumor progression and the worse prognosis in the high

mitophagy subtype as compared to the low mitophagy subtype.
Furthermore, by comparing the intermediate and high mitophagy
subtypes, we found a particularly large difference in the mRNAsi
score, a quantification for cancer stem cells (CSCs) characteristics. As
tumor-initiating cells, the CSCs have the remarkable ability of self-
renewal and give rise to cells of the same phenotype or tumor cell
progenitors (Lapidot et al., 1994). CSCs are tightly linkedwith cancer
drug resistance and poor prognosis. The lower mRNAsi score in the
intermediate subtype may be one of the contributors to better
prognoses of patients in this group. (Zhu et al., 2018), (Pei et al.,
2020)

Cancer cells require high levels of cholesterol for membrane
biogenesis and in general, cholesterol metabolism promotes
cancer cell proliferation, migration and invasion (Huang et al.,

FIGURE 8 | A total of 21 potential therapeutic drugs in HCC with differential IC50 between high- and low-mitophagyscore groups.
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2020b).In our study, cholesterol biosynthesis pathway is the most
enriched in low mitophagy subtype. This is hinting at the
possibility of an interaction between cholesterol metabolismr
and mitophagy. Research by Vicente et al. indicates that
intracellular cholesterol enrichment downregulate mitophagy
induced by amyloid beta (Aβ). Moreover, cholesterol
accumulation in mouse models of SREBF2 (a cholesterol-
related transcription factor) over-expression reduces
mitophagosome formation by cousing cytosolic aggregation of
the mitophagy adaptor OPTN (optineurin) (Roca-Agujetas et al.,
2021). This is partly in agreement with our results.

Based on 12 mitophagy regulators, a risk score model
(mitophagyscore) was constructed to estimate the accumulation
ofmitophagy; this was found to be a reliable prognostic indicator of
HCC. The prognostic predictive ability of the mitophagyscore was
stable across subgroups stratified by age, stage, T stage, and grade.
To gain further insight into the clinical applicability and utility of
mitophagyscore, the prognostic nomogram, a feasible tool to
predict the probability of survival at 1-, 3-, and 5-years in
patients with HCC was constructed. The CMap database and
GDSC database allowed for an in-depth exploration of the
association between the mitophagyscore and clinical treatment.
Therapeutic small molecules that can reverse the mitophagy
phenotype were obtained from the CMap database; these could
provide new treatment opportunities for HCC. Thus, further
experiments are needed to verify these findings. Additionally,
we found that sensitivity towards 21 anti-tumor drugs was
closely related to the mitophagyscore and this opened up
promising perspectives for its potential clinical applicability,
such as in the optimization of personalized therapy. Therefore,
mitophagyscore not only functions as an independent prognostic
tool to predict prognosis, but also triggers further thinking about
the relationship between mitophagy and therapeutic agents for
HCC. However, all the above results are based on bioinformatic
mining of TCGA and ICGC databases, and more molecular
biology-based experiments are required for their validation.

Due to the Spearman correlation analysis and the differential
SPP1 expression across mitophagy subtypes, SPP1 may be an
underlying reason for the mitophagy subtype specificity in HCC.
Moreover, SPP1may be a potential biomarker for the diagnosis and
prognosis of HCC. SPP1 has previously been reported in the
regulation of UPR- and ER stress-induced autophagy through
intracellular S1P homeostasis (Lépine et al., 2011). However, the
significance of SPP1 in associationwithmitophagy remains unclear.
Our present study offered a fresh perspective on the mitophagic
heterogeneity underlying HCC and identified a key gene, SPP1,
whichmay contribute to the formation of three differentmitophagy
subtypes. The findings laid the groundwork for further exploration
of mitophagy heterogeneity in HCC. However, further
experimentation is required to verify these findings.

Our research provides new ideas and materials for the
personalized clinical treatment plans for patients with HCC,
although some limitations of this study should be
acknowledged. Firstly, our study only included a
bioinformatics analysis, lacking the validation of solid clinical
specimens. Additionally, the research was conducted with a
retrospective design rather than a prospective one. However,

the present study was conducted in two independent cohorts,
therefore, the result is still reliable and acceptable. Thus, future
studies with prospective clinical trials and mechanistic
exploration are warranted to further validate the present result.

CONCLUSION

In conclusion, using 26 mitophagy regulators, unsupervised
clustering was performed to examine the mitophagy heterogeneity
inHCC. The differential expression patterns of mitophagy regulators
showed three distinct subtypes in HCC with extremely different
mitophagy accumulation levels. Furthermore, different mitophagy
subtypes showed distinct metabolic patterns and prognoses. The
high mitophagy subtype had the poorest prognosis and highest
glycolytic metabolism. Additionally, we constructed and validated a
novel mitophagy-associated risk score system, which may provide a
potential prognostic predictor for HCC. Moreover, based on the
Cmap database, our results provided a range of small molecule
compounds, which may ultimately pave the way for the
implementation of targeted risk model-related treatments for
HCC patients. We also demonstrated the difference in sensitivity
towards potential anti-HCC drugs across the clusters and the
findings were corroborated by previous research on mitophagy-
associated risk phenotypes.
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