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Abstract 

Background:  Previous studies have reported associations between attention-deficit/hyperactivity disorder (ADHD) 
and lower socioeconomic status and intelligence. We aimed to evaluate the causal directions and strengths for these 
associations by use of a bi-directional two-sample Mendelian randomization (MR) design.

Methods:  We used summary-level data from the largest available genome-wide association studies (GWAS) to 
identify genetic instruments for ADHD, intelligence, and markers of socioeconomic status including the Townsend 
deprivation index, household income, and educational attainment. Effect estimates from individual genetic variants 
were combined using inverse-variance weighted regression.

Results:  A genetically predicted one standard deviation (SD) increment in the Townsend deprivation index conferred 
an odds ratio (OR) of 5.29 (95% confidence interval (CI) 1.89–14.76) for an ADHD diagnosis (p<0.001). A genetically 
predicted one SD higher education level conferred an OR of 0.30 (95% CI 0.25–0.37) (p<0.001), and a genetically pre-
dicted one SD higher family income provided an OR of 0.35 (95% CI 0.25–0.49; p<0.001). The associations remained 
after adjustment for intelligence whereas the lower odds of an ADHD diagnosis with higher intelligence did not 
persist after adjustment for liability to greater educational attainment (adjusted OR 1.03, 95% CI 0.68–1.56; p=0.87). 
The MR analysis of the effect of ADHD on socioeconomic markers found that genetic liability to ADHD was statisti-
cally associated with each of them (p<0.001) but not intelligence. However, the average change in the socioeconomic 
markers per doubling of the prevalence of ADHD corresponded only to 0.05–0.06 SD changes.
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Background
The diagnosis of attention-deficit/hyperactivity disorder 
(ADHD) has become highly prevalent during the last 
two decades [1], but there are considerable regional dif-
ferences, both within and between countries, in the pro-
portion of children and adolescents with this diagnosis 
[2–4]. These differences may be explained by true vari-
ation in the prevalence or to be attributable to cultural 
contexts, diagnostic resources, and practice, as well as to 
biological factors like genetics [5, 6]. Hitherto, there is no 
established clinically valid biological marker for the neu-
ropsychiatric diagnosis of ADHD [4].

Genetics clearly contribute to ADHD. Family studies 
indicate a five-fold higher risk in first-degree relatives 
of cases, and genetic liability to an ADHD diagnosis in 
children and adolescents is estimated to be 70–80% [7, 
8]. Boys have a higher ADHD prevalence than girls [1, 
6], but the heritability is higher for girls [8]. To date, 
genome-wide association studies have indicated sin-
gle-nucleotide polymorphism (SNP) heritability, the 
proportion of phenotypic variance explained by all 
measured and statistically significant SNPs, to be 20%, 
leaving considerable missing heritability, i.e., the dif-
ference between SNP versus twin heritability [9]. This 
is not uncommon in genome-wide association study 
(GWAS) research and can be explained by rare or weak 
genetic variants, which are only captured by very large 
datasets [10]. Another conceivable explanation for the 
missing heritability can be moderately strong genetic 
factors not causally related to the ADHD diagnosis 
per se, but rather associated with the probability of 
being diagnosed. Two such contributing factors may 
be socioeconomic status (SES) and intelligence. Dif-
ferent aspects of SES, such as educational attainment 
and income, typically display twin heritabilities of 40% 
[11, 12]. The heritability of intelligence increases lin-
early, from 40% in childhood to 80% in late adulthood 
but declines to about 60% after age 80 years [13]. The 
relative importance of SES, including parental income, 
education, occupation, and marital status [14] as well as 
intelligence, in relation to the diagnosis of ADHD has 
long been debated. Several longitudinal cohort studies 
have reported a close relationship between socioeco-
nomic disadvantage in childhood and a later diagnosis 
of an attention deficit/hyperactivity disorder (ADHD) 

[14–18]. Meta-analyses of measures of SES and their 
association with ADHD indicate that children in fami-
lies of low SES are on average at doubled risk of receiv-
ing an ADHD diagnosis than their peers in high SES 
families [14]. Specifically, parental financial difficulties, 
housing conditions, education, occupation, and marital 
status have been shown to significantly be associated 
with children’s likelihood to be diagnosed with ADHD 
[14–18]. An ADHD diagnosis is also associated with 
relatively poor academic achievement and work perfor-
mance [18–20] as well as with moderately lower intel-
lectual capacity [21, 22].

Due to a complex web of interrelated associations, 
the independence and direction of the associations 
between a diagnosis of ADHD with specific markers of 
socioeconomic status and intelligence is unclear [14]. 
The observational nature of most studies of ADHD’s 
association with SES and intelligence hampers causal 
inference due to potential biases from residual con-
founding and reverse causation.

The Mendelian randomization (MR) design can over-
come such biases, thereby strengthening causal infer-
ence regarding an exposure-outcome association by 
leveraging genetic variants as instrumental variables for 
an exposure [23]. In this approach, causality is inferred 
from associations between genetic instrument proxies 
for a putative modifiable risk factor and the outcome 
of interest. Bidirectional MR, with analyses assessing 
causality in both directions, can help tease apart causal 
temporal directions of two related variables [24]. In this 
case, if low SES or lower intelligence leads to a higher 
risk of an ADHD diagnosis, then genetic variants asso-
ciated with lower SES or lower intelligence should be 
related to higher risk for a diagnosis of ADHD. Con-
versely, if ADHD is causally related to markers of low 
SES or intelligence, a genetic variant associated with a 
higher risk for a diagnosis of ADHD should be associ-
ated with lower SES or lower estimated intelligence. 
One recent Mendelian randomization study showed 
that genetic liability to higher education was associ-
ated with a lower risk of an ADHD diagnosis inde-
pendently of intelligence but an analysis in the reverse 
direction displayed a modestly strong association [25]. 
This implies that lower education contributes as a cause 
and not a clear consequence of ADHD. Other aspects 

Conclusions:  Our results indicate that an ADHD diagnosis may be a direct and strong intelligence-independent con-
sequence of socioeconomic related factors, whereas ADHD appears to lead only to modestly lowered socioeconomic 
status. Low intelligence seems not to be a major independent cause or consequence of ADHD.
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of SES in relation to an ADHD diagnosis have not been 
investigated by the use of a Mendelian randomization 
design.

Our aim was therefore to use a bi-directional two-sam-
ple MR design to assess the associations between mark-
ers of SES or intelligence and an ADHD diagnosis.

Methods
We used a two-sample MR design in which the genetic 
instruments for the exposure, and the outcome are 
extracted from independent GWAS data sources. Our 
analyses were bidirectional, first assessing the causal 
effect of the socio-economic variables on ADHD and 
then investigating the reverse relationship. Each analy-
sis used multiple genetic variants obtained from publicly 
available GWAS summary data [26]. None of the data 
sources investigated both ADHD and socioeconomic sta-
tus or intelligence, and there is no known subject overlap 
between the two sources of data [9].

Data sources
Data regarding the Townsend index of deprivation (TID) 
[27], household income, educational attainment, intelli-
gence, and ADHD were obtained from four sources.

Genetic instruments for the TID (including the compo-
nents unemployment, lack of car ownership, lack of home 
ownership, and household overcrowding) was retrieved 
from the UK Biobank (n=462,464; https://​gwas.​mrcieu.​
ac.​uk/​datas​ets/​ukb-b-​10011/) using a z score with a mean 
of −1.29 and a standard deviation (SD) of 3.10. A greater 
TID corresponds to a lower socioeconomic status. The 
UK Biobank was also used for a GWAS of self-reported 
household income (n=397,751; https://​gwas.​mrcieu.​ac.​
uk/​datas​ets/​ukb-b-​7408/), calculated as the average total 
household income in 2006–2010 before tax reduction.

We obtained genetic instrument data for education 
level from the Social Science Genetic Association Con-
sortium (n=766,345), based on longitudinal assessment 
of cohort participants measured at an age of at least 30 
[28]. Education level was defined as the number of years 
of education with durations harmonized across studies 
according to the International Standard Classification 
of Education categories [28]. The sample-size-weighted 
mean of years of education year was 16.8 years with a SD 
of 4.2 years.

We used Savage et  al.’s GWAS meta-analysis of intel-
ligence (children, young adults, middle-aged and older 
individuals with n=269,867) [29]. Included cohorts 
extracted a single sum score, mean score, or factor score 
from a multidimensional set of cognitive performance 
tests in a GWAS, with the exception of the High-Intel-
ligence/Health and Retirement Study in which a logis-
tic regression GWAS was run with “case” status (high 

intelligence, top 0.03% tail in the normal population) ver-
sus controls (a population sample of unselected individu-
als) [29].

Finally, we included genetic data from the interna-
tional Psychiatric Genomics Consortium, which involved 
20,183 individuals diagnosed with ADHD and 35,191 
controls [9]. This GWAS did not include UK Biobank 
data. There was no heterogeneity of effects when the 
investigators compared different types of studies [9], 
including those based on children, those based on 
adults, and those who used the International Classifica-
tion of Diseases (ICD) 10 clinical diagnosis of ADHD 
(code F90.0), ADHD treatment, and those employing 
continuous quantitative population measures of ADHD-
related behaviors [9]. Specifically, in this GWAS [9], the 
genetic instruments associated with a clinical diagnosis 
of ADHD and ADHD treatment were also associated 
with population measures of ADHD-related behaviors. A 
genetic correlation analysis provided additional evidence 
that effects were consistent across cohorts included in 
the analysis [9]. Results based on data collected from 
populations in Western Europe and North America were 
accordingly similar. We extracted harmonized GWAS 
data for all phenotypes through the MR-Base platform 
[30]. In the current analyses, we restricted our analysis to 
results based on individuals of the European ancestry.

Genetic instruments
Genetic instruments, identified at a genome-wide sig-
nificance threshold of p<5×10-8, were selected from the 
corresponding genome-wide association studies. Link-
age disequilibrium (defined as R2>0.01 or clump distance 
<10,000 kb) between SNPs was assessed based on the 
1000 Genomes European reference panel (https://​www.​
inter​natio​nalge​nome.​org/). For SNPs in linkage disequi-
librium, those with the strongest association with the 
exposure were retained. Remaining independent SNPs 
who had met a GWAS-wide significance threshold were 
used as genetic instruments. SNPs that were unavailable 
in an outcome dataset were replaced by suitable proxies 
(minimum linkage disequilibrium R2=0.8) where avail-
able. We removed SNPs without an imputed substitute 
as well as all palindromic SNPs. Our genetic instru-
ments included 17 SNPs for the TID, 42 SNPs for house-
hold income, 219 SNPs for educational attainment, and 
132 SNPs for intelligence. These explained 0.13%, 0.53%, 
2.8%, and 3.2% of the variance in the TID, household 
income, educational attainment, and intelligence, respec-
tively. For the analysis with ADHD as the exposure, we 
used nine (out of 12) [9] conditionally independent SNPs 
associated with ADHD (Additional file 1: Table S1); these 
SNPs explained 0.6% of the variance in ADHD.

https://gwas.mrcieu.ac.uk/datasets/ukb-b-10011/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-10011/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-7408/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-7408/
https://www.internationalgenome.org/
https://www.internationalgenome.org/
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Statistical analysis
Since our different phenotypes are linked to each other, 
we first illustrate these relationships by the genetic corre-
lations of ADHD with attained education, family income, 
TID, and intelligence using LD score regression [31].

In our main analysis, we assessed the direction and 
strengths of the associations of ADHD with socioeco-
nomic markers and intelligence in a bi-directional design. 
We first estimated the impact of our SES variables and 
intelligence on the odds of ADHD, estimating both the 
total effect of each variable and the direct effect inde-
pendent of intelligence and SES, respectively, by use of 
multivariable Mendelian randomization [32]. Secondly, 

we examined the association in the reverse direction, i.e., 
the influence of ADHD on SES and intelligence.

The principal analyses (Fig. 1A) were conducted using 
an inverse-variance weighted (IVW) approach in a mul-
tiplicative random-effects model, which assumes that all 
SNPs are valid instrumental variables [26, 33] and that 
the estimates can be interpreted to reflect the total effect 
of the exposure. In addition, we used multivariable MR 
analysis and the inverse-variance weighted method [32] 
with markers for SES adjusted for intelligence, and vice 
versa (Fig.  1B). This method was used to estimate the 
independent direct causal effect of each of the exposure 
on the outcome [32].

Fig. 1  Panel A illustrates the assumptions underpinning a Mendelian randomization analysis of the association between an exposure (e.g., 
education) and an outcome (e.g., ADHD). SNPs indicate single-nucleotide polymorphisms. The arrows represent causal pathways. The dashed 
arrows represent potential causal associations between variables that would violate the Mendelian assumptions. Panel B displays one such possible 
violation with inclusion of an exposure B (independent exposure, mediator, or confounding factor), in our example proposed to be intelligence. 
One method to examine the influence of this possible violation is multivariable Mendelian randomization analysis (MVMR) and the inverse-variance 
weighted method [32] with markers for education adjusted for intelligence. The remaining direct causal effect of education on ADHD is illustrated 
by the bold arrow
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We report odds ratios (ORs) of ADHD per one SD 
increase of genetically predicted socioeconomic marker 
or intelligence. For ADHD as the exposure, effect sizes 
are expressed as SD changes in the socioeconomic mark-
ers or intelligence per unit increase in genetically pre-
dicted log odds ratio of ADHD. A log odds ratio of one 
thus corresponds to an OR of 2.7, and the average change 
in socioeconomic markers per doubling of the preva-
lence of an ADHD diagnosis equals 0.693 (=loge 2) times 
the causal estimate on the untransformed scale [34]. All 
statistical tests were two-tailed. Associations that were 
statistically significant at a p-value <0.006 (with Bonfer-
roni correction for 8 main outcomes) were considered to 
show strong evidence of association. P-values <0.05, but 
higher than 0.006, were regarded as showing suggestive 
evidence of associations, requiring confirmation.

In sensitivity analyses, the following approaches were 
applied: (1) the weighted median method, which pro-
vides a causal estimate if at least 50% of the weight in the 
analysis comes from valid instrumental variables [33]; 
(2) MR-Egger regression, which can detect and adjust 
for directional pleiotropy but has low precision [33]; (3) 
the Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
method, which can detect and adjust for horizontal plei-
otropy by outlier removal [35]; (4) the contamination 
mixture method, which performs MR robustly and effi-
ciently in the presence of invalid instrumental variables 
[36]; the (5) MRMix method, which also aims to estimate 
causal effects in the presence of invalid instruments [37]; 
the (6) Generalised Summary-data-based Mendelian 
Randomisation (GSMR) method, which performs MR 
analysis with multiple near-independent instruments to 
test for causal associations [38]; and the (7) MRMode, 
which has been proposed to provide a single causal effect 
estimate from multiple genetic instruments [39] but, in 
accordance with MR-Egger, has only moderate precision 
[37].

With traditional MR methods there remains a concern 
that valid instrument selection are often violated, lead-
ing to false positive findings through correlated horizon-
tal pleiotropy. To avoid this bias, we adopted a new MR 
method as the eighth (8) sensitivity analysis, using sum-
mary effect estimates (MR-CAUSE), to differentiate cor-
related pleiotropy from causal effects [40]. MR-CAUSE 
assumes that the relationship between the genetic instru-
ment’s effect on exposure and on outcome is a mixture of 
both causal and shared correlated pleiotropy. It estimates 
posterior distributions of a null effect, a shared effect, 
and a causal effect of the exposure [40, 41], and model fit 
comparisons are done by Δ Expected Log Pointwise Pos-
terior Density (ELPD).

The TwoSampleMR [30], MendelianRandomization 
[42], MRPRESSO [35], and MR-CAUSE [40] packages 

were used for the statistical analyses. We restricted our 
analysis to participants with the European ancestry.

Results
Genetic variants with a positive effect on ADHD tended 
to have a negative association with intelligence and edu-
cational attainment: the genetic correlations were −0.37 
(95% CI −0.44 to −0.30) and −0.51 (−0.57 to −0.45), 
respectively. Education and intelligence were genetically 
related, as expected (r=0.73; 95% CI 0.68 to 0.78)), and 
education was also correlated with household income 
(r=0.77; 95% CI 0.70 to 0.84)) and with TID (r=−0.40; 
95% CI −0.46 to −0.35). Intelligence was correlated with 
both household income (r=0.64; 95% CI 0.56 to 0.72) and 
TID (r=0.20; 95% CI 0.15 to 0.24).

Total and direct effect of genetically predicted SES 
indicators and intelligence on ADHD
In IVW-random effect models, genetically predicted TID, 
household income, and educational attainment were all 
strongly associated with ADHD (Fig. 2). One SD higher 
genetically predicted duration of education conferred 
an OR of 0.30 (95% CI 0.25–0.37) (p<0.001), and one SD 
higher genetically predicted family income gave an OR 
of 0.35 (95% CI 0.25–0.49; p<0.001). A one SD incre-
ment in genetically predicated TID conferred an OR of 
5.29 (95% confidence interval [CI] 1.89–14.76) (p<0.001) 
for ADHD. The direct effects, after adjustment for intel-
ligence, were similar (Fig.  2), with ORs of 0.33 (95% CI 
0.21–0.50), OR 0.35 (95% CI 0.16–0.76), and 3.99 (95% CI 
1.31–12.09), respectively.

We also observed (Fig. 2) that intelligence was related 
to ADHD, with a somewhat more moderate OR of 0.58 
(95% CI 0.47–0.70; p<0.001) per SD higher predicted 
intelligence. This lower odds of genetic liability of an 
ADHD diagnosis with genetically predicted higher intel-
ligence did not remain after adjustment for educa-
tional attainment (OR 1.03, 95% CI 0.68–1.56; p=0.87). 
The estimate was also attenuated by the adjustment for 
household income (OR 0.71, 95% CI 0.50–0.99; p=0.04 
but not by adjustment for TID (OR 0.61, 95% CI 0.50–
0.74; p<0.001).

The results were largely the same in sensitivity analyses 
(Table  1) based on the weighted median, MR-PRESSO 
methods, and contamination mixture analyses. The 
MR-Egger analysis showed no clear evidence of hori-
zontal pleiotropy, with the exception of that for house-
hold income (p = 0.038). The MRMix analysis indicated 
independent causal effects of education, intelligence, and 
income (but not TID) on ADHD, while all four exposures 
remained statistically significant causes of ADHD when 
data were analyzed by GSMR. We found also similar 
patterns with MR-Mode although with lower precision 
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of the estimates. Sensitivity analysis by MR-CAUSE 
(Table 2) showed that intelligence and income, but espe-
cially education, remained as independent causes of 
ADHD, e.g., the causal model of education on ADHD 
was superior to the shared education model on ADHD.

Total effect of genetic liability to ADHD on markers 
of socio‑economic status and intelligence
IVW-random effect analysis in the reverse direction indi-
cated that genetic predisposition to ADHD was statisti-
cally significantly associated with SES variables but not 
with intelligence (Fig.  3). However, the strength of the 
associations in this direction were modest. One log odds 
ratio of genetically predicted ADHD conferred a 0.09 SD 
(95% CI 0.05–0.14) lower educational attainment (cor-
responding to 4.5 months lower education duration), a 
0.09 SD (95% CI 0.06–0.11) lower household income, and 
a 0.08 SD (95% CI 0.05–0.10) higher TID (all p<0.001). 
Expressed in another way, the average change in adverse 
socioeconomic markers per genetically predicted dou-
bling in the prevalence of the ADHD diagnosis corre-
sponded to only 0.05–0.06 SD units lower SES measures. 
The modest impact of ADHD on SES and intelligence 
can theoretically be a consequence of weak instrument 
bias given that we only included 9 ADHD SNPs in our 

analyses. However, the F-statistics with values between 
181 and 514 do not indicate such bias.

The results were similar in sensitivity analyses based on 
the weighted median, MR-PRESSO methods, and con-
tamination mixture approach (Table  3). There was lim-
ited evidence of unbalanced and correlated horizontal 
pleiotropy as estimated by MR-Egger regression (p-val-
ues from 0.11 to 0.78) as also indicated by analyses using 
MR-Mode, MRMix (Table 3), and MR-CAUSE (Table 4). 
The number of SNPs for ADHD (n=9) precluded an anal-
ysis by use of GSMR.

Discussion
Previously, the independence and direction of the asso-
ciations between a diagnosis of ADHD with different 
markers of socioeconomic and intelligence have been 
unclear. Our results based on a bidirectional two-sample 
MR-analysis design show that a genetic predisposition 
to socioeconomic position including attained educa-
tional level, household income, and TID has a direct and 
strong intelligence-independent association with ADHD. 
Genetically predicated intelligence per se was not inde-
pendently associated with ADHD. Genetic liability to 
ADHD was only modestly inversely associated with SES 
measures and not clearly with lower intelligence.

Fig. 2  Results of the Mendelian randomization analyses of the odds of ADHD conferred by the liability for one standard deviation increase in 
attained educational level, household income, Townsend deprivation index, or intelligence. Ordinary IVW estimates are provided for the total effect 
of the exposure, and MVWR IVW estimates for the direct effect of the exposure. Estimates for SES markers are adjusted for intelligence; that for 
intelligence is adjusted for education



Page 7 of 12Michaëlsson et al. BMC Medicine          (2022) 20:106 	

Using the bidirectional MR design, our study provides 
a deeper understanding of previous observational find-
ings [14–18, 29] by clarifying the directional strengths of 
the associations of ADHD with different aspects of SES 
as well as with intelligence. Our study also corroborates 
findings from a recent Mendelian randomization study 
[25] that reported a strong intelligence-independent 
association between genetic liability to higher educa-
tion with lower odds of ADHD, and only a moderately 
strong association in the reverse direction. We found 
that the impact of several different aspects of socioeco-
nomic factors on the diagnosis of ADHD was consider-
ably stronger than the influence of an ADHD diagnosis 
on attained educational level, household income, and 
TID. The findings also indicate that intelligence is not 
a major cause or consequence of an ADHD diagnosis, 
associations suggested in previous observational analyses 
[4, 43]. It should be emphasized that we are not using the 
actual measures but genetic instruments for lifetime SES, 

intelligence, and ADHD with the sequential ordering of 
events estimated by the bi-directional approach rather 
than by a timed course of events for the actual exposures 
and outcomes.

One possible explanation for the fact that we see that 
SES-related factors are strongly linked to the receipt of 
an ADHD diagnosis may be that social vulnerability, lack 
of cultural, and economic capital or immaturity can be 
a basis for difficulty concentrating and sitting still, e.g., 
in a school environment. Lack of cultural capital, in the 
form of the parents’ level of education, can be manifested 
as shortcomings in language competence, for example. 
Parental SES is related to language development in mul-
tiple domains throughout both childhood and adulthood 
[44]. Children from lower SES homes show on average 
lower sustained levels of language and communicative 
skill than children from higher SES homes, differences 
beginning in infancy [44]. Low maternal education in 
general, single parenthood, and social welfare support 

Table 1  Results of the Mendelian randomization sensitivity analyses associating the liability for one standard deviation increase in 
attained educational level, household income, Townsend deprivation index, and intelligence with the odds of ADHD

Exposure Method OR (95% C)) p-value

Education (219 SNPs) Weighted median 0.34 (0.27, 0.43) <0.001

MR-Egger 0.39 (0.18, 0.85) 0.018

MR-PRESSO (3 outliers) 0.30 (0.25, 0.36) <0.001

Contamination mixture 0.23 (0.17, 0.32) <0.001

MR-Mode 0.58 (0.27, 1.26) 0.168

MR-Mix 0.37 (0.23, 0.59) <0.001

GSMR 0.29 (0.25–0.34) <0.001

Household income (42 SNPs) Weighted median 0.49 (0.34, 0.72) <0.001

MR-Egger 1.64 (0.38, 7.00) 0.508

MR-PRESSO (1 outlier) 0.38 (0.29, 0.51) <0.001

Contamination mixture 0.37 (0.25, 0.54) <0.001

MR-Mode 0.69 (0.34, 1.40) 0.308

MR-Mix 0.37 (0.23, 0.60) <0.001

GSMR 0.28 (0.21, 0.38) <0.001

Townsend deprivation index (17 SNPs) Weighted median 5.51 (2.22, 13.71) <0.001

MR-Egger 0.04 (0.00, 229.4) 0.482

MR-PRESSO (2 outliers) 4.86 (2.11, 11.19) 0.002

Contamination mixture 8.25 (3.78, 27.39) 0.001

MR-Mode 8.94 (1.58, 50.69) 0.025

MR-Mix 1.00 (1.00, 1.00) 0.99

GSMR 4.92 (2.95, 8.21) <0.001

Intelligence (132 SNPs) Weighted median 0.59 (0.48, 0.73) <0.001

MR-Egger 0.68 (0.27, 1.72) 0.416

MR-PRESSO (4 outliers) 0.58 (0.48, 0.69) <0.001

Contamination mixture 0.53 (0.44, 0.62) <0.001

MR-Mode 0.59 (0.37, 0.97) 0.037

MR-Mix 0.50 (0.31–0.81) 0.005

GSMR 0.53 (0.46–0.60) <0.001
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are thought collectively to account for more than half 
of all ADHD medication prescriptions in Sweden [45], 
a country with a tax-supported health care system. In 
addition, children and young people from more deprived 
backgrounds in other areas Europe are also more likely to 
receive medication for ADHD [45, 46].

The resourceful family may also have greater oppor-
tunity to protect, stimulate, and train their children to 
become physically and mentally competent and thus 
avoid an ADHD diagnosis [47]. In addition to those 

possible mechanisms for low SES to lead to a diagnosis 
of ADHD, there are also non-causal possibilities for the 
association. A possible partial explanation might be that 
resourceful families, and individuals are reluctant to 
carry out the investigation leading to an ADHD diagnosis 
since a diagnosis limits rather than improves the individ-
ual’s opportunity for successful choices in life. This may 
involve a requirement for a medical certificate to obtain a 
driving license or disqualification from the possibility to 
obtain specific occupations. An additional aspect may be 
that an ADHD diagnosis fits poorly with the social prac-
tices in which a controlled temper is expected to accom-
pany the physical and mental abilities that characterize a 
cultivated person [47]. A controlled body and mind with 
an ability for sustained attention is a classic aristocratic 
ideal with historical roots from antiquity [48–50].

By some measures, children of lower socioeconomic 
status score more than 2 years behind their more well-
off peers on standardized language development tests 
by the time they enter school [51]. As a result, an indi-
vidual from a lower status family may have difficulty fol-
lowing longer instructions, trouble getting started with 
tasks, and problems with attention in general. A reason-
able theoretic interpretation is that these difficulties can 
lead to frustration and a range of behaviors that comprise 
ADHD.

Indirect support for the view that immaturity can affect 
the likelihood to being diagnosed with ADHD, is the 
fact that children in Norway born in October through 
December are at 50% higher risk of being diagnosed 
and treated for ADHD compared with children born the 
same year but in January through March [52]. Children 
who are almost a year younger tend also to appear more 
immature than their classmates, which influences both 
their academic and physical performance. The young-
est children in a grade are often developmentally less 
mature and are more likely to behave more inattentively, 

Table 2  MR-CAUSE analysis associating the liability for 
one standard deviation increase in attained educational 
level, household income, Townsend deprivation index, and 
intelligence with the odds of ADHD

a Model 1 and Model 2 refer to the models being compared (null, sharing, or 
causal)
b Model fit is measured by Δ Expected Log Pointwise Posterior Density (ELPD); 
Negative values indicate that model 2 is a better fit

Model 1a Model 2a Δ ELPDb s.e. Δ ELPD z-score p-value

Education (SNPs=3733)
  Null Sharing −120.0 13 −8.7 2.0e−18

  Null Causal −120.0 14 −8.6 3.0e−18

  Sharing Causal −7.3 1.2 −6.2 2.1e−10

Income (SNPs =73)
  Null Sharing −3.6 1.5 −2.5 0.007

  Null Causal −9.7 3.4 −2.9 0.0022

  Sharing Causal −6.1 2.1 −3.0 0.0015

TDI (SNPs =27)
  Null Sharing −0.31 0.45 −0.70 0.24

  Null Causal −1.60 2.2 −0.74 0.23

  Sharing Causal −1.30 1.8 −0.73 0.23

Intelligence (SNPs=2945)
  Null Sharing −25.0 5.7 −4.4 5.5e−06

  Null Causal −31.0 7.1 −4.4 5.2e−06

  Sharing Causal −5.9 1.4 −4.1 1.8e−05

Fig. 3  Results of the Mendelian randomization IVW analysis for one standard deviation difference in attained educational level, household income, 
Townsend deprivation index, or intelligence from genetic liability to ADHD (9 SNPs)
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impulsively, and hyperactively than their older class-
mates [53]. Furthermore, the association between SES 
with school readiness and maturity is well established 
and globally observed [54, 55]. Thus, for some ADHD 
cases, there conceivably could have been a tendency to 
confuse immaturity with ADHD, a possibility that can 
be supported by the fact that half of the people who were 
diagnosed with ADHD as children do not sustain the 
diagnosis in young adulthood [4].

Collectively, our findings of a strong 3–5 fold change in 
the odds of ADHD diagnosis per SD change in genetically 
predicated various dimensions of SES raise questions 
about whether the current criteria for diagnosis are suffi-
ciently accurate and culturally generalizable tools to cor-
rectly identify ADHD, a descriptive diagnosis for which 
there is not yet any clinically valid biological marker. We 
definitely acknowledge that ADHD is regarded as a highly 

debilitating and costly disease [4], but our results suggest 
that refinement of the diagnosis may be warranted since 
there may exist subgroups with the diagnosis, especially 
in those with low SES.

In the Psychiatric Genomics Consortium GWAS, 
genetic markers for ADHD were identified either by an 
ADHD diagnosis or by having been prescribed ADHD 
medications, though without heterogeneity [9]. There-
fore, our results can be generalized to both these cat-
egories. This is of interest since treatment with ADHD 
medication alone seems similarly effective in children 
from families with low and high socioeconomic status 
whereas combined medication and behavioral treatment 
showed a superior effect only in children from educated 
families [56]. Evidence of treatment effects in placebo-
controlled randomized clinical trials with ampheta-
mine-like compounds, average a 0.5–0.8 SD reduction 

Table 3  Results of the Mendelian randomization sensitivity analyses using summary-level data from genetic liability to ADHD (9 SNPs) 
to a standard deviation change in attained educational level, household income, Townsend deprivation index, and intelligence

NA not applicable given that the genetic instrument for the ADHD exposure included only 9 SNPs, GSMR is not a suitable method

Outcome Method OR (95% CI) p-value

Education Weighted median −0.07 (−0.1, −0.03) <0.001

MR-Egger 0.03 (−0.15, 0.21) 0.760

MR-PRESSO (4 outliers) −0.06 (−0.10, −0.02) 0.046

Contamination mixture −0.12 (−0.19, 0.00) <0.001
MR-Mode −0.08 (−0.15, 0.00) 0.078

MR-Mix −0.15 (−0.21, −0.09) <0.001

GSMR (<10 SNPs) NA

Household income IVW-random effects −0.09 (−0.11, −0.06) <0.001

Weighted median −0.09 (−0.12, −0.05) <0.001

MR-Egger −0.03 (−0.14, 0.07) 0.564

MR-PRESSO (0 outlier) NA NA

Contamination mixture −0.09 (−0.11, −0.07) <0.001

MR-Mode −0.08 (−0.14, −0.02) 0.026

MR-Mix −0.04 (−0.06, −0.02) 0.001

GSMR (<10 SNPs) NA

Townsend deprivation index Weighted median 0.06 (0.04, 0.09) <0.001

MR-Egger 0.01 (−0.07, 0.09) 0.762

MR-PRESSO (0 outliers) NA NA

Contamination mixture 0.08 (0.05, 0.09) <0.001

MR-Mode 0.07 (0.03, 0.10) 0.003

MR-Mix 0.07 (−0.02, 0.16) 0.132

GSMR (<10 SNPs) NA

Intelligence Weighted median −0.05 (−0.10, −0.01) 0.030

MR-Egger −0.24 (−0.49, 0.01) 0.108

MR-PRESSO (4 outliers) −0.06 (−0.13, 0.01) 0.149

Contamination mixture −0.11 (−0.15, −0.08) 0.020

MR-Mode −0.10 (−0.21, 0.02) 0.130

MR-Mix −0.14 (−0.22, −0.06) 0.001

GSMR (<10 SNPs) NA
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in ADHD symptom scoring [4, 57]. A comparable treat-
ment effect on similar measured modalities has also been 
observed in placebo-controlled trials in healthy young 
adult volunteers [58].

Strengths and limitations
Using genetic data from large-scale GWASs and genetic 
consortia, the present study is the first to comprehen-
sively and jointly investigate the causal effects of different 
aspects of SES and intelligence on the diagnosis of ADHD 
and vice versa. In addition, we disentangled the inde-
pendent effect of socioeconomic factors from intelligence 
using a multivariable MR approach. The analyses were 
based on data from individuals of the European ancestry 
thereby limiting the potential for population stratification 
bias. However, this restriction limits the transferability of 
the present findings to populations of the non-European 
ancestries.

Our genetic instruments for social class were not 
strong, as measured by the explained variance. How-
ever, this potential limitation can be regarded of less 
importance given our two-sample design, a large num-
ber of SNPs in the SES instrument variables, and large 
sample sizes [59, 60]. In any case, any bias due to weak 
instruments discovered in non-overlapping cohorts will 
be in the direction of the null [59, 60], supporting our 

findings of the associations of socio-economic factors 
leading to a diagnosis of ADHD.

Another conceivable serious limitation of the pre-
sent study is the possibility of unbalanced horizontal 
pleiotropy from genetic variants acting through sev-
eral different biological pathways. Thus, an alternative 
underlying causal explanations for the SES impact of 
on the risk of ADHD diagnosis might be factors linked 
to low SES such as parental mental health, substance 
abuse, and maternal smoking during pregnancy [14]. 
Carefully conducted studies have nevertheless not 
shown a major impact of maternal smoking or sub-
stance abuse on ADHD diagnosis [61, 62], and our 
findings in several different sensitivity analyses do not 
indicate major pleiotropic or genetically correlated 
influences that could explain the impact of genetic lia-
bilities of SES on ADHD.

Non-genetic familial influences could not directly be 
assessed in the present MR study and for obvious rea-
sons, some SES genetic liability markers in our study 
(household income, car ownership, educational level, 
and unemployment) pertain to the parent’s circum-
stances when a child receives an ADHD diagnosis. The 
genetic liability of low or high SES still pertains to the 
child. Nonetheless, our design precludes the evaluation 
of timing of exposure effects and induction periods on 
the occurrence of the outcomes. The strength of the 
associations from the analyses in different directions 
are not directly comparable, but the interpretation of 
the overall pattern was straightforward. Since identifi-
cation of socioeconomic patterns with specific ADHD 
subtypes was not in the scope of our study, we suggest 
refined evaluation of different disease development 
pathways between SES and ADHD.

Conclusions
We conclude that there is a strong direct impact of 
genetically predicted household income, educational 
attainment, and social deprivation index on the risk 
of an ADHD diagnosis. Lower intelligence seemed not 
to be a strong independent cause or a consequence 
of ADHD. The associated effect of genetic liability of 
ADHD on genetically predicted socioeconomic mark-
ers were modest.
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