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Highlights 

• We developed MITE, an information theory method, to accurately infer directed 

functional connectivity among circadian cells. 

• SCN cell types with conserved connectivity patterns spatially organize into two regions 

and function as generators, broadcasters, sinks, or bridges of circadian information. 

• One-third of VIP neurons serve as hubs that drive circadian synchrony across the SCN. 

• Key connectivity features mediate the generation and maintenance of intercellular 

synchrony and daily waves of clock gene expression across the SCN. 

Abstract 

Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 
neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and 
genetic approaches have revealed diverse cell types and signaling mechanisms, the network 
wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome 
the challenges of revealing functional connectivity from fixed tissue, we developed MITE 
(Mutual Information & Transfer Entropy), an information theory approach that infers directed 
cell-cell connections with high fidelity. By analyzing 3447 hours of continuously recorded clock 
gene expression from 9011 cells in 17 mice, we found that the functional connectome of SCN 
was highly conserved bilaterally and across mice, sparse, and organized into a dorsomedial and a 
ventrolateral module. While most connections were local, we discovered long-range connections 
from ventral cells to cells in both the ventral and dorsal SCN. Based on their functional 
connectivity, SCN cells can be characterized as circadian signal generators, broadcasters, sinks, 
or bridges. For example, a subset of VIP neurons acts as hubs that generate circadian signals 
critical to synchronize daily rhythms across the SCN neural network. Simulations of the 
experimentally inferred SCN networks recapitulated the stereotypical dorsal-to-ventral wave of 
daily PER2 expression and ability to spontaneously synchronize, revealing that SCN emergent 
dynamics are sculpted by cell-cell connectivity. We conclude that MITE provides a powerful 
method to infer functional connectomes, and that the conserved architecture of cell-cell 
connections mediates circadian synchrony across space and time in the mammalian SCN. 
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Introduction 

Circadian clocks are biological mechanisms that drive daily changes—called circadian 
rhythms—in vital processes such as sleep, metabolism, immune responses, and cell division, in 
alignment with solar day-night cycles1–7. In mammals, ~20,000 neuronal clocks in the 
hypothalamic Suprachiasmatic Nucleus (SCN) drive these daily rhythms8. These neuronal clocks 
intrinsically generate autonomous rhythmic gene expression and firing patterns through a 
conserved transcriptional-translational feedback loop that operates with ~24-hour periodicity8–10. 
However, individual SCN neurons are sloppy cellular clocks11 so that, when cells can’t 
communicate, they lose coherence and amplitude of their circadian rhythms12–15. When SCN 
cells synchronize, they  exhibit a high amplitude, precise, wave of circadian gene expression that 
starts in the dorsal region and moves ventrally to drive daily rhythms in physiology and 
behavior12–16. Revealing the anatomical and functional neural interactions that underlie such 
emergent behavior remains a major challenge in neuroscience17–20. This study tests for cell-cell 
connectivity features that generate and sustain synchronized circadian rhythms in the SCN. 

Based on gene and protein expression profiling, the SCN has been described to comprise 
8 cell classes and 11 transcriptionally distinct cell types expressing over 25 neuropeptides 
organized into a dorsal 'shell', dominated by vasopressin (AVP) neurons, and a ventral 'core', 
which primarily contains vasoactive intestinal peptide (VIP) and gastrin-releasing peptide (GRP) 
expressing neurons8,21–31. Tracing anatomical projections and light responses in SCN cells has 
led to a canonical model in which the retinorecipient core region signals photic information to 
the shell, synchronizing the organism to day-night cycles23,32–38. Pharmacology and genetic 
manipulations have placed VIP as a critical synchronizer of SCN cells29,39–47. However, other 
neuropeptides (e.g., GRP and Prokineticin, PROK2) serve as weaker synchronizers, as evidenced 
by a subset of mice that retain circadian behaviors even after loss of SCN VIP, its receptor 
(VPAC2) or the neurons16,23,25,26,29,30,48. Furthermore, contrary to their previously believed roles 
as circadian output cells, the AVP neurons were recently found to exhibit pacemaker-like 
properties and couple SCN rhythms48–55. In one striking example, SCN explants did not 
synchronize when molecular clocks were disrupted within AVP, but not the VIP neurons52, 
suggesting that circadian synchrony depends on SCN AVP cells. Here, we aimed to test whether 
connectivity patterns are cell-type specific and important for SCN timekeeping. 

Electron microscopy and fluorescence imaging have aided the construction of anatomical 
complete connectomes and testable predictions about neuronal function in smaller organisms like 
Caenorhabditis56 and Drosophila57,58, and about 0.2% of the mouse brain59–63. With the goal of 
complementing structural maps of intercellular communication, there have been efforts to map 
cell-cell functional connectomes17–19 based on physiological data64–68. For example, one study 
used circadian gene expression of synchronizing SCN cells and identified sparse, undirected 
connections which are higher in and between the bilateral core regions67. Another study found 
that GABA-dependent firing patterns revealed a distinct, faster cell-cell communication network 
that changes strength with time of day and weakly opposes synchronization of circadian 
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rhythms68. Modelling studies have predicted a wide range of possible SCN connectivity 
topologies including, small-world69, mean-field70,71, nearest-neighbor72 and mix of multiple 
topologies73, each shaping SCN dynamics. An essential next step towards understanding how 
network topology mediates these dynamics requires mapping cell-cell connectivity to cell types 
and their functions. Because data limitations hindered accurate inference of directed connections 
using existing methods64,74,75, we hypothesized that novel methods and data sets would allow us 
to reveal the directed cell-cell connectivity that mediates daily rhythms in the SCN. 

Results 

MITE Infers SCN Cell-Cell Connectivity with High Fidelity 

Based on the premise that connected cells share causally related clock-gene dynamics during 
synchronization of their circadian rhythms, we developed a method to map SCN cell-cell 
connectivity from real-time recordings of PERIOD2 (PER2) expression. We compared three 
undirected (Dynamic Time Warping, DTW76; Maximal Information Coefficient, MIC77; and 
Mutual Information, MI78) and directed methods (Algorithm for Revealing Network Interactions, 
ARNI79; Granger Causality, GC80; and Transfer Entropy, TE81), each with their assumptions 
about causality and propensity to capture non-linear interactions among cells. 

We first tested the ability of these methods to infer true connectivity from 300 
simulations of 30 large circadian networks (600 cells/network, 10 simulations/network) with 
small-world, scale-free, or mixed topologies. Each simulated cell comprised a transcription-
based model of a circadian oscillator82 with hourly PER2 expression recorded over 6 days to 
emulate experimental conditions (Supplementary Fig. 1a-c). Area Under the Receiver Operator 
Characteristic (AUROC), comparing the inferred connectivity with true networks revealed that, 
among undirected methods, MI outperformed the others by up to 37% (had higher AUROC; 
Supplementary Figs. 1d and 2) and required at least five times less computation time, while TE 
outperformed others by up to 39.4% among the directed methods (Supplementary Figs. 1d and 
3). Reasoning that high MI and TE values together reflect most likely connections between cells, 
we multiplied the two values for each pairwise cell-cell interaction to generate MITE scores 
(Mutual Information & Transfer Entropy, See Methods). We found that MITE consistently 
outperformed TE with up to 39.8% higher AUROC across multiple network topologies 
(Supplementary Figs. 1e and 3). 

Because SCN cells can spontaneously recover circadian synchrony after TTX-induced 
decoupling in vitro15,67,68, we next tested MITE on movies of cellular PER2 expression in 
synchronizing SCN explants recorded before, during, and after TTX treatment. Consistent with 
prior observations15,67,68, TTX addition induced SCN cells to lose coherent daily rhythms in 
PER2 expression which was gradually regained over several days after TTX removal (Fig. 1a). 
Similar to a strategy employed earlier67,68, we used PER2 traces of synchronizing SCN cells and 
based on comparisons of 9.49 million connections across 3081 cells, we computed the z-
transformed MITE scores for all possible cellular interactions, removed connections with z-
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scores below the empirically computed threshold for interactions between cells in separate SCN 
(i.e., impossible connections), and revealed SCN networks with low false discovery rates (below 
0.05, defined as probability of falsely identifying an impossible SCN connection) and high hit-
rates (above 95%, defined as percent of likely true intra-SCN connections among all identified 
connections; Fig. 1b-d and Supplementary Fig. 4a,b). 

 

Fig. 1 | Pipeline for inferring functional connectivity among cells of the Suprachiasmatic Nucleus 
(SCN). a, Longitudinal hourly bioluminescence imaging of cells (yellow) within a representative 
PERIOD2::LUCIFERASE SCN explant (left) generates PER2 expression (right) before, during, and after 
tetrodotoxin (TTX) treatment. PER2 expression (black line=mean) and synchrony index (orange line) 
calculated from the hundreds of SCN cells (blue, red, and green lines) illustrate how circadian cells 
spontaneously resynchronize after TTX removal. Phase maps show how the dorsal-to-ventral wave of 
daily cellular PER2 expression was abolished by TTX and restored after TTX removal. b, Using our 
Mutual Information & Transfer Entropy (MITE) algorithm, we processed the PER2 traces recorded 
during resynchronization (dotted blue box) to infer MITE connectivity matrix (c) of stronger (yellow) and 
weaker (blue) pairwise cellular interactions. d, After thresholding the connectivity matrix based on the 
empirically computed z-score of known false connections, we revealed the functional cell-cell 
connectivity map of SCN with more efferents (larger circles) or afferents (warmer colors). D, Dorsal; V, 
Ventral; M, Medial; L, Lateral; 3V, 3rd Ventricle; OC, Optic Chiasm. 

 

To further assess MITE's accuracy, we compared the bilateral SCN maps of seven mice 
of similar age, sex, and light-dark histories using two methods (Directed Graphlet Correlation 
Distance DGCD13 and DGCD129)83,84 and found highly conserved connectivity structure among 
independently recorded SCN (Supplementary Fig. 4c). These findings demonstrate that MITE 
accurately identifies directed cell-cell interactions that are revealed during circadian 
synchronization among SCN cells. 
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The Bilaterally Similar SCN Network has Sparse, Efficient, and Spatially Distinct 

Connectivity 

To understand the connectivity architecture that synchronizes SCN neural ensemble, we analyzed 
network features of the inferred SCN maps from seven mice. Consistent with prior 
findings21,67,85–87, SCN cells projected both ipsilaterally (within left or right SCN) and 
contralaterally (between left and right SCN). Ipsilateral SCN projections dominated in number 
(59.7 ± 1.2% vs. 40.3 ± 1.2%, ipsilateral vs. contralateral, mean ± SD, n = 7 SCN; Fig. 2a and 
Supplementary Fig. 5a and Supplementary Table 1) and strength (3% higher MITE scores for 
ipsilateral connections, p = 0.0015, Cohen’s d = 0.708). The SCN connectome was sparse, with 
each cell projecting to only 3.6 ± 0.3% of the network, or 719 ± 72 projections per cell (mean 
degree, defined as the percent of the network to which a cell connects); while some cells had 
high number of efferents (Fig. 2c and Supplementary Fig. 5b). The inferred networks' structural 
statistics indicated efficient coupling, based on a small-worldness coefficient greater than one 
and relatively short path lengths of 3.4 ± 0.4 cells (average number of cells connecting any two 
SCN cells; Fig. 2d and Supplementary Fig. 6a and Supplementary Table 1). 

Because two prior studies described SCN connections as distributed either exponentially 
(where cells have similar number of connections)67,88 or as a scale-free network with some highly 
connected hubs89, we compared fits of seven distributions (power-law, exponential, Weibull, 
lognormal, Poisson, truncated power law and normal) using maximum likelihood estimators90 
and found that distributions of incoming connections (number of afferents/cell) in all SCN were 
best fit by Weibull curves and all except one SCN had out-going connections (number of 
efferents/cell) best fit by Weibull curves (Supplementary Fig. 6b,c). We next evaluated long-
range interactions for their potential to improve information transmission69,91. Intriguingly, we 
found that dorsal SCN cells mainly projected to nearby cells, and ventrolateral SCN cells had 
more and longer efferents, some signaling halfway across the SCN (Fig. 2e,f and Supplementary 
Fig. 5b). This pattern was consistent when we analyzed the data from each unilateral or bilateral 
SCN (Supplementary Fig. 7), indicating that these long-range connections were not due 
projections to contralateral cells. These evidence for some highly connected cells, long-range 
interactions and Weibull distributed connections suggest that SCN has heterogeneous numbers of 
connections/cell that is best described as intermediate between scale-free and exponential92, with 
a few highly connected cells. 

Interestingly, comparisons using mean degree, path length and two DGCD metrics 
revealed that the unilateral SCN maps were highly similar to each other and also to the bilateral 
SCN (Fig. 2a-d and Supplementary Fig. 8). This suggests that contralateral projection patterns 
largely mirror ipsilateral patterns. For example, we found that ventral-to-ventral projecting SCN 
cells within a unilateral SCN also project to contralaterally located ventral (and not) dorsal cells. 
Thus, SCN cells, connected as a sparse small-world network communicate with only ~4% of the 
network, typically through just 3-4 cells with spatially distinct, long-range and heterogenous 
connections–an architecture well suited for efficient information propagation. 
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Fig. 2 | MITE reveals two networks within the SCN that differ in their connectivity and circadian 
properties. a, Cell-cell connections identified across seven SCN show more ipsilateral (about 60% of all 
connections were within left or right SCN) than contralateral connections between left and right SCN 
(paired Student’s t-test for ipsi vs. contra comparisons, p < 0.05; Chi-squared test for comparisons with 
expected frequencies of 50%, p < 0.0001). Ribbon plot (right) of ipsilateral (thick lavender and sea-green 
arrows projecting within left and right SCN) and contralateral cell-cell connections (arrows projecting 
across left and right SCN) identified within a representative bilateral SCN (see Supplementary Table 1 for 
all seven SCN). b, The inferred mean degree (percent of network to which a cell connects, 3.6 ± 0.3%, 
mean ± SD) was consistently low both in SCN of different mice and in left and right SCN of the same 
mouse, suggesting that the SCN connectivity is sparse and conserved (one-way ANOVA with Tukey’s 
post-hoc comparisons, p > 0.05, n = 7 SCN). c, Ventral SCN cells sent more efferents (larger circles) 
while most SCN cells received similar numbers of afferents (blue saturation), shown from a 
representative SCN (see Supplementary Fig. 5 for all seven SCN). d, The path length (average number of 
cells that connect any two cells, 3.3 ± 0.4 cells, mean ± SD) was consistently low both in SCN of different 
mice and in left and right SCN of the same mouse, revealing highly efficient connectivity among SCN 
cells (one-way ANOVA with Tukey’s post-hoc comparisons, p > 0.05, n = 7 SCN). e, Ventral SCN cells 
(purple circles) had longer and more efferents (purple arrows) compared to dorsal cells (orange circles 
and arrows). These four representative cells are from SCN1 (see Supplementary Figs. 5 and 7 for maps of 
all seven SCN). f, Projection distances presented as mean Euclidian distance from a cell to all its targets, 
in a representative SCN (left, purple saturation) and from all seven SCN presented as the mean projection 
distance of cells grouped in 20% bins along the ventral-dorsal and medial-lateral axes. Note that 
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ventrolateral SCN cells sent longer functional projections reaching up to halfway across the SCN (one-
way ANOVA with Tukey’s post-hoc comparisons, n = 7 SCN, purple lines are non-linear fits with 95% CI 
shaded, error bars are SD across cells in the bin). g, Based on their relative density of connections, SCN 
cells clustered into Dorsomedial (DM, orange) and Ventrolateral modules (VL, green), with only a few 
excluded from either (grey circles). Numbers within parentheses indicate module size (mean ± SD, 
percent of all cells in the module; See Supplementary Fig. 10 for clustering based on connectivity of all 
seven SCN). h, Cells projected more within their module (DM-to-DM:32.5 ± 7.5%, VL-to-VL: 38.9 ± 
8.9%), but VL cells also sent six times more projections to DM cells (VL-to-DM: 24.2 ± 4.6%, DM-to-
VL: 4.3 ± 0.7%; two-way ANOVA with Tukey’s post-hoc comparisons, letters indicate p < 0.01, n = 7 
SCN). The schematic (right) summarizes the fraction (mean ± SD across 7 SCN) of all ipsilateral 
connections projecting within and across DM (orange) and VL modules (green). i, Circadian properties 
correlated with functional connections. VL cells synchronized their circadian PER2 rhythms about a day 
faster than DM cells (54.2 ± 19.7 h vs. 80.4 ± 9.28 h after TTX removal, VL vs. DM, paired Student’s t-
test, n = 6 SCN, reliable fit was not obtained for one SCN, see Methods). j, After TTX removal, cells 
transitioned from random phase-relationships on day 1 to a reliable wave of PER2 expression with DM 
cells peaking 1.6 ± 0.4 h (mean ± SD) earlier than VL cells (one sample Student’s t-test comparing with 0 
h phase difference, n = 6 SCN). V, Ventral; M, Medial; L, Lateral; 3V, 3rd Ventricle; OC, Optic Chiasm. 

 

Two Asymmetrically Connected Cellular Modules Underlie SCN Synchronization  

Given their spatially distinct and reproducible projection patterns, we analyzed each SCN 
topology using three community detection methods (Greedy Modularity93, Girvan-Newman94 
and Label propagation95). We report communities based on Greedy Modularity because it 
identified communities more robustly (had lower inter-SCN variation) while also retaining 
information about connection directions. Since community detection groups cells based on high 
intra-group and low inter-group connections, we used unilateral maps to avoid artifacts caused 
by the less frequent contralateral projections. We consistently found three cellular communities 
in all SCN (Supplementary Fig. 9a). Two groups comprised the vast majority of SCN cells 
(Greedy Modularity: 65-88% of recorded cells, Label Propagation: 71-88%, Girvan-Newman: 
72-90%, n = 14 unilateral SCN) and localized to the ventral or dorsal SCN (Supplementary Fig. 
9b). A third, smaller group comprising about 8.8 ± 5.2% cells (mean ± SD, n = 14 unilateral 
SCN) varied in its location and was found within the dorsal group in 12 of 14 unilateral SCN. 
Subsequently, clustering the three communities across all SCN by their mean Out-degree 
(percent of the network to which a cell projects) consistently revealed two cellular modules in 
the ventrolateral (VL) and dorsomedial (DM) SCN (Fig. 2g and Supplementary Figs. 9c-d and 
10). As a further test of modular organization of the SCN, we applied MITE to three explants that 
failed to resynchronize their PER2 expression after TTX removal. We did not detect the VL and 
DM communities in these SCN, indicating that the two-module topology is reproducible and 
underlies circadian synchrony in the SCN (Supplementary Fig. 11). 

The VL module was smaller and more densely connected than DM module. Within each 
unilateral SCN, the VL module comprised 42.8 ± 10.9% of all cells and sent about 63% of all 

projections to cells in both the VL and DM modules (mean ± SD, n = 14 unilateral SCN; Fig. 2g-

h). We identified a strong ventral-to-dorsal connectivity (24.2% ± 4.6% of all projections went 
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from VL to DM cells), over six times the number of backward projections from DM cells that 
mostly projected locally among themselves (Fig. 2e-h and Supplementary Fig. 7). Contralateral 
projections followed the same pattern as well (Supplementary Fig. 10b), consistent with the 
bilateral similarity in their network properties (Fig. 2a-d and Supplementary Fig. 8). We thus 
conclude that SCN network is organized as two functionally coupled cellular modules that are 
hierarchically and bilaterally organized with dense projections from ventral to dorsal cells and 
fewer reverse connections. 

Ventral SCN Cells Synchronize Faster Than Dorsal Cells 

Based on the rates at which cells synchronize and respond to light, signals from ventral SCN 
cells are believed to entrain the dorsal cells35,38,96–104, although, surprising recent findings 
implicated dorsal-to-ventral connectivity as critical to synchronize the SCN48–55. We found that 
VL cells stabilized their circadian period about 32% faster than DM cells after TTX removal 
(54.2 ± 19.2 h vs. 80.4 ± 9.6 h, VL vs. DM, mean ± SD, n = 6 SCN, based on Gompertz curve 
fits to estimate the time until mean daily period of the module varied less than 0.5-hour day-to-
day; Fig. 2i and Supplementary Fig. 12). Once their circadian periods stabilized, DM cells 
peaked each day about 1.6 h earlier than VL cells, consistent with previously observed PER2 
phase-wave (Fig. 2j and Supplementary Fig. 12a). These results suggest that, in the absence of 
light, ventral SCN cells synchronize to each other and then drive synchrony among the dorsal 
cells to produce the spatiotemporal daily dorsal-to-ventral wave of PER2 expression. 

Ventral SCN Hub Cells Generate and Broadcast Signals for Circadian Synchrony 

Although over 40 cell-types have been identified in the SCN, their roles in circadian 
synchronization remain unknown8,27. Having identified the dorsomedial and ventrolateral SCN 
modules based on the relative density of connections within and among them, we next quantified 
each SCN cell's influence based on their projection patterns to the network with six centrality 
measures105–107. The Reverse Pagerank centrality identifies "generators" of synchrony signals–
cells at the top of the hierarchy that project to other influential cells, while Out-degree centrality 
(percent of the network to which a cell projects) highlights "broadcaster" cells with many 
outgoing connections that disseminate signals. We also characterized "receiver" cells with many 
incoming connections based on high In-degree centrality (percent of the network from which a 
cell receives afferents), "sink" cells where more connections converge based on Pagerank 
centrality, "bridge" cells that mediate information flow between distinct regions based on 
Betweenness centrality, and cells that either quickly transmit or receive signals based on their 
topological proximity (short path lengths to and from other cells in the network), measured as 
Closenessout-degree and Closenessin-degree centrality, respectively105–107. 

We found that VL cells had higher Reverse Pagerank (0.1 ± 0.008 vs. 0.02 ± 0.007, VL 

vs. DM, mean ± SD, n = 14 unilateral SCN) and Out-degree centralities than DM cells (6.2 ± 

1.3% vs. 2.6 ± 0.2%, VL vs. DM; Fig. 3a and Supplementary Fig. 13). Interestingly, these two 
centrality measures were uncorrelated among VL cells, indicating the presence of two, partially 
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overlapping VL cell types (Supplementary Fig. 14). For instance, most VL cells, irrespective of 
where they projected to, functioned as signal generators (had high Reverse Pagerank), whereas 
only those that exclusively projected to both the modules were broadcasters with high Out-
degree (Supplementary Fig. 13b). These VL signal generators and broadcaster cells also had high 
Closenessout-degree, indicating that signals from the ventral SCN spread through the network faster 
than those originating from dorsal SCN (0.6 ± 0.08 vs. 0.3 ± 0.07, VL vs. DM; Supplementary 
Fig. 13b). Given the evidence for highly influential connectivity and partial overlap among the 
generators and broadcasters, we conclude that hub cells in the VL SCN send on average over 
two-times more efferents than DM cells and comprise partially overlapping classes of signal 
generators and broadcasters 

 

Fig. 3 | A subset of VIP neurons have highly influential connections. VL cells (green) had higher 
Reverse Pagerank centrality compared to DM cells (orange). This suggests VL cells act as primary 
circadian signal generators (top-left, larger cell = higher centrality, thick borders highlight cells in the top 
30%). VL cells also had higher Out-degree centrality (suggestive of signal broadcasters, top-middle) and 
DM cells had higher Pagerank centrality (indicative of sink cells to which signals ultimately flow, top-
right). Cells of the VL module had marginally higher Betweenness centrality (bridges mediating 
information flow, bottom-left). Cells of the two modules had similar In-degree (percent of the network 
from which a cell receives afferents, bottom-middle), whereas DM cells had higher Closenessin-degree 
centrality (cells that are topologically closer and receive signals faster, bottom-right; unpaired Student’s t-
test, n = 14 unilateral SCN). b, VIP (green) and AVP (coral) neurons subjected to MITE analysis in 
representative unilateral Vip-Cre (left) and Avp-Cre (right) SCN explants (grey circles = non-VIP and 
non-AVP cells, respectively). c, Frequency histograms of Out-degree (% of network to which a cell 
projects) for VIP (green) and AVP (coral) neurons show that VIP cells sent more projections (4.6 ± 0.2 % 
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vs. 1.7 ± 1.1%, mean ± SD, VIP vs. AVP, n = 264 VIP neurons in three VIP-Cre and 572 neurons in four 
AVP-Cre mice). Some VIP neurons had strikingly more efferents than others (long tail in VIP histogram). 
d-e, Unsupervised hierarchical clustering revealed two groups of VIP neurons, in a representative SCN 
(left; See Supplementary Fig. 14 for all SCN). One group (“Hub” neurons, dark green, 31.6 ± 9.6% of all 
VIP neurons, mean ± SD) clustered with high Out-degree, acting as signal broadcasters by projecting to 
11.2 ± 1.4% of the network, five times more than other SCN cells. The second group (“non-Hub” VIP 
neurons, 68.3 ± 9.6% of all VIP neurons) projected to only 1.7 ± 0.4% of SCN cells (one-way ANOVA 
with Tukey’s post-hoc comparisons; n = 6 and 8 unilateral SCN from three VIP-Cre and four AVP-Cre 
mice). f, VIP Hub neurons had higher Reverse Pagerank compared to other cells, acting as generators of 
circadian synchronization signals (one-way ANOVA with Tukey’s post-hoc comparisons; n = 6 and 8 
unilateral SCN from three VIP-Cre and four AVP-Cre mice). D, Dorsal; V, Ventral; M, Medial; L, Lateral; 
3V, 3rd Ventricle; OC, Optic Chiasm. 

 

We also found populations of SCN bridge and sink cells. Although both VL and DM cells 
received similar numbers of afferents (from 4.1 ± 0.7% vs. 4.2 ± 0.9% of the network, VL vs. 

DM, mean ± SD, n = 14 unilateral SCN), DM cells had higher Closenessin-degree (0.3 ± 0.12 vs. 

0.4 ± 0.07, VL vs. DM; Fig. 3a and Supplementary Fig. 13), i.e. they were topologically 
positioned to receive circadian signals faster. Projections from VL cells mostly terminated at the 
interface with the DM module where another population of cells sent and received projections 
from both modules. These bridge cells exhibited high Betweenness centrality and were well 
positioned to mediate circadian transmission across the dorsoventral SCN (Fig. 3a and 
Supplementary Fig. 13). In contrast, DM cells appear to serve as sink cells which received VL 
and DM inputs and projected primarily to other DM cells, resulting in high Pagerank values 
(0.02 ± 0.008 vs. 0.07 ± 0.02, VL vs. DM; Fig. 3a and Supplementary Fig. 13). Altogether, based 
on their functional connectomes, we identified four SCN cell types belonging either to the DM 
and VL modules, and posit that circadian signals critical to synchronize the network are 
generated and disseminated by two types of VL hub cells (with high Reverse PageRank and Out-
degree) and propagated to the DM sink cells through bridge cells in the central SCN. 

Based on their anatomical location, we hypothesized that hub cells in the VL module 
include SCN VIP neurons. To test this, we inferred connectivity from published SCN explant 
recordings52 similar to ours, but with VIP and AVP neurons identified (264 VIP and 572 AVP 
neurons among 1472 neurons recorded in three VIP-Cre and four Avp-Cre SCN explants; Fig. 
3b). The mean degree (3.3 ± 1.3% vs. 3.6 ± 0.3%, Shan et al vs. this study, mean ± SD, n = 6 
VIP-Cre and 8 AVP-Cre unilateral SCN, unpaired Student’s t-test, p = 0.6), mean path lengths 
(2.2 ± 0.4 vs. 3.3 ± 0.4, unpaired Student’s t-test, p = 0.69), and clustering coefficients (0.17 ± 

0.07 vs. 0.19 ± 0.03, unpaired Student’s t-test, p = 0.7) of these SCN aligned with our data. We 
found that VIP neurons sent approximately three times more projections than AVP neurons, and 
some VIP neurons had notably more efferents (Fig. 3c). Unsupervised hierarchical clustering of 
VIP neurons by their out-degree consistently revealed two groups in each SCN (Fig. 3d and 
Supplementary Fig. 15a). Independently, k-means clustering similarly identified two VIP cell-
groups with more than 90% agreement (mean Rand Index = 0.91). One subset of VIP neurons 
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(31.7 ± 9.1%), termed the VIP hub cells, sent significantly more projections to 11.2 ± 0.9% of the 

network (had high Out-degree , 2,240 ± 175 projections/cell) and high Reverse Pagerank values 
compared to other non-hub VIP and AVP neurons (Fig. 3f). Interestingly, these VIP hubs also 
projected distally and sent about two times longer projections compared to other cells of the 
network (mean projection distance: 0.3 ± 0.06 vs. 0.18 ± 0.05, VIP vs. other cells; 
Supplementary Fig. 15b). We therefore conclude that a subset of VIP neurons are hubs that 
generate and broadcast circadian signals across the SCN through their long-range and highly 
influential connectivity. 

A Subset of Distinctly Connected VIP Hub Neurons Drive SCN Intercellular Synchrony 

To test the roles of these different cell types in SCN function, we simulated the experimentally 
inferred SCN networks, ablated cells based on their centrality and measured their ability to 
synchronize or sustain circadian rhythms (Fig. 4a, left panel; see Methods; n = 12 unilateral SCN 
with 10 simulations each, one SCN topology could not be simulated to synchronize within our 
parameter space). Consistent with experimental results, intact SCN networks (Control) 
synchronized their PER2 rhythms, with increasing coherence over six simulated days (Fig. 4a 
and Supplementary Fig. 16a). Intriguingly, the synchronization rates and phase relationships of 
the dorsomedial and ventrolateral SCN cells highly correlated between in silico and 
experimentally recorded explants, indicating that cell-cell connectivity architecture strongly 
dictates circadian synchronization patterns in space and time (Fig. 4b). 

Ablating cells based on their centrality dose-dependently reduced the ability of the in 
silico SCN to self-synchronize (synchronizability). Specifically, we tested the effects of deleting 
10-30% of cells with highest centrality values and found that deleting the VL hub cells with high 
Reverse Pagerank or Out-degree (generators or broadcasters) had the greatest impact on 
synchronizability (Supplementary Fig. 16b,c). Ablating 30% of the cells with top Reverse 
Pagerank or Out-degree in the VL module reduced SCN synchrony by up to 20% (day 6 sync 
index: 0.78 ± 0.04 vs. 0.64 ± 0.05 vs. 0.62 ± 0.06, Control vs. Rev. Pagerank vs. Out-degree VL 

cells ablated, mean ± SD, n = 12 unilateral SCN with 10 simulations each; Fig. 4c). This globally 
reduced coherence among both VL and DM cells (Supplementary Fig. 16d,e), while halving the 
amplitude of daily PER2 rhythms (0.43 ± 0.09 vs. 0.26 ± 0.04; Fig. 4d). In contrast, ablating the 
top Reverse Pagerank or Out-degree cells in the DM module did not impact SCN synchrony (day 
6 sync index: 0.78 ± 0.04 vs. 0.70 ± 0.02 vs. 0.70 ± 0.02, Control vs. Rev. Pagerank vs. Out-
degree DM cells ablated; Fig. 4c). This further demonstrates that VL cells propagate information 
globally across the SCN while DM cells tend to signal locally (Supplementary Fig. 16e). We next 
similarly deleted cells in fully synchronized SCN (on day 6 rather than 0 of the simulation) and 
found that, in general, loss of 30% hubs (generators and broadcasters) in the VL module or 
bridge cells decreased network’s ability to sustain synchrony (Supplementary Fig. 17). 
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Fig. 4 | Circadian synchronization of the SCN requires VIP hub neurons. a, To test the roles of 
different cell types in synchronizing circadian cells of the SCN, we simulated the ability of in silico SCN 
networks with connectivity inferred experimentally from unilateral PER2::LUC recordings to recover 
from a desynchronized state (left). Raster plots from three representative simulations show how PER2 
expression of DM (orange) and VL (green) cells changed over 6 days (middle). Ablating (yellow X) 30% 
VL cells with high Reverse Pagerank (signal generators) or Out-degree (broadcasters) impaired 
synchronization, as shown by their low sync index (SI, brown line) on day 6 compared to the Control 
SCN with no cells ablated. Similarly, PER2 peak-time distributions (right) on day 1 (grey dashed box and 
histograms) vs. day 6 (purple dashed box and histograms) showed spontaneous synchronization in the 
intact control SCN, but not when key cells were deleted. b, Time required by the DM and VL modules in 
simulated control SCN networks to reach synchrony (top) and their steady state circadian PER2 phase 
relationships (VL-DM phase difference, bottom) highly correlated with their behavior in recorded SCN 
explants (r, Pearson correlation coefficient, n = 6 SCN, reliable fit was not obtained for one SCN). Data 
for simulations was averaged across left and right SCN to facilitate comparisons c, SCN networks with 
30% highly central (Reverse Pagerank or Out-degree) VL cells ablated (green) had reduced synchrony 6 
days after ablation compared to DM cell ablations (orange). Blue line and shaded region are mean ± SD 
for control (no cells ablated, two-way ANOVA with Tukey’s post-hoc comparisons, n = 12 unilateral 
SCN) d, Ablating 30% of the highly central VL cells reduced daily PER2 amplitudes of individual cells 
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and their ensemble rhythms measured 6 days after ablation. e, Ablating 30% of VIP cells (green striped 
bar) with high Reverse Pagerank or Out-degree reduced SCN synchronization compared to ablation of 
AVP cells (coral striped bar, two-way ANOVA with Tukey’s post-hoc comparisons, n = 4 unilateral). D, 
Dorsal; V, Ventral; M, Medial; L, Lateral; 3V, 3rd Ventricle; OC, Optic Chiasm. 

 

Using the same strategy on networks simulated with the connectivity maps derived from 
recordings of four unilateral VIP-Cre and AVP-Cre SCN each, we found that loss of high 
Reverse Pagerank or Out-degree VIP hubs reduced the sync index drastically by up to 44% (day 
10 sync index: 0.77 ± 0.01 vs. 0.42 ± 0.21 vs. 0.54 ± 0.07, VIP-Cre Control vs. Rev. Pagerank vs. 

Out-degree VIP cells ablated, mean ± SD, n = 4 unilateral SCN/genotype with 10 simulations 
each; Fig. 4e). These simulations predict that while AVP neurons act primarily as outputs of the 
SCN network, VIP Hub cells, a third of VIP neurons, are critical to initiate and to sustain high 
amplitude, synchronous circadian rhythms in the SCN. 

Discussion 

Mapping structure-function relationships in neural networks is fundamental to understanding 
how brains compute17–20. We report five, independent, in vitro and in silico tests indicating that 
MITE faithfully maps directed functional connections among SCN cells. Cellular connectivity 
maps inferred for 9011 SCN cells across 17 mice (including 264 VIP and 572 AVP neurons) 
revealed that connection patterns are organized by SCN region, reminiscent of the anatomically 
defined core and shell8,21,24,108. While the AVP and other cells in the dorsomedial SCN appear to 
act as sinks where circadian signaling converges, ventrolateral cells constituting a subset of hub 
VIP neurons (about 30% VIP cells) have critical efferent patterns that synchronize circadian cells 
throughout the SCN. This topology suffices to drive circadian synchronization and the daily 
wave of clock gene expression from dorsal to ventral SCN. 

We found directed, sparse and efficiently coupled SCN cells connected as a small-world 
network, consistent with findings from inferred undirected connections67 and with the principle 
that brain networks minimize wiring costs while maximizing functional efficiency109. 
Specifically, MITE estimates an average SCN cell communicates directly with 719 ± 72 other 
cells yet, can signal to anywhere in the bilateral SCN through just 3-4 intermediate cells. This is 
remarkably consistent with recent estimates of 4 intermediate cells based on one anatomically 
reconstructed micro-network of 45 SCN neurons63. In agreement with predictions from theory69, 
histology110 and imaging63,111, we identified long-range cellular connections that underlie SCN 
synchronization, especially arising in the ventrolateral SCN. The cells with long range 
projections up to half-way across the SCN included the VIP hub neurons. Given the electron 
microscopy estimates that each SCN neuron makes about 450 synaptic contacts24,63,112, our 
results suggest non-synaptic volumetric transmission largely underlies efficient and long-distance 
circadian information transmission across the SCN while the short time-scale synaptic 
communication, like GABAergic signaling modulates the stability of SCN rhythms68,113. 
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Previously, undirected connections inferred from PER2 expression recordings revealed that all 
SCN cells had similar connectivity (degree, defined as number of connections/cell, were 
exponential distributed)67, whereas directed connections inferred from the same data suggested 
that SCN could contain hub cells with large number of efferents (scale-free degree 
distribution)89. We find that ventral SCN cells have more efferents and properties intermediate to 
scale-free and exponential connectivity (both in-coming and out-going connections per cell were 
best fit by Weibull curves92), consistent with anatomical evidence for heterogeneity in the 
number of dendrites per SCN cell63. We conclude that the heterogeneity of SCN connections 
allows for sparse and efficient wiring with spatially distinct long-range interactions that drive 
intercellular circadian synchrony69,91. Given that modelling predicts SCN circadian dynamics and 
output as attributable to cellular heterogeneity114,115, future studies to manipulate arborization in 
specific SCN cell-types or regions will help understand the role of heterogenous connectivity in 
SCN function. Alternatively, given that SCN undergoes sex-dependent spatiotemporal 
synaptogenesis and the dorsoventral phase-wave develops postnatally116, MITE connectivity 
maps inferred from SCN of neonatal and postnatal mice can reveal the sexually dimorphic 
functional roles of SCN connectivity topology. 

 Based on their relative density of connections, we identified two reproducible cellular 
modules: a small, densely connected ventrolateral module that sent over six times more 
projections, both locally and globally, compared to the larger and sparsely connected 
dorsomedial module, which mostly projected locally. Notably, this modular architecture was not 
detected in explants that failed to synchronize, indicating the two modules are strongly linked to 
SCN synchronizability. These findings, remarkably similar to the core and shell SCN regions 
previously defined by their anatomical, light response, and gene expression patterns117–124, 
further support the conclusions that MITE faithfully uncovers functional roles of anatomical 
connections and aids structure-function mapping in neural networks. Although over 40 SCN cell-
types have been described by their anatomical, transcriptomic, histochemical, electrical, and 
light-response properties8,21–31,63, based on their functional interactions and simulations of 
experimentally inferred networks, we predict that four cell classes within the dorsal and ventral 
modules determine SCN function: Two types of Hub (circadian signal Generators and 
Broadcasters), Bridge, and Sink cells. While VIP is considered a critical synchronizer of SCN 
cells29,39–47, some recent findings have challenged this, placing AVP neurons as crucial for SCN 
synchronization48–54. We reveal that approximately one-third VIP neurons, based on their inferred 
connectivity and in silico ablation effects, function as SCN synchronization hubs. These VIP hub 
neurons, at the top of the signaling hierarchy, generate and disseminate synchronization signals 
through extensive and long-range projections. In contrast, AVP neurons appear dispensable, 
aligning with the loss of behavioral and body temperature rhythms observed in VIP-ablated but 
not AVP-ablated mice—an effect that seems age-dependent and warrants further 
investigation29,125. Based on recent findings that functioning clocks only in a subset of VIP 
neurons, the NMS-expressing VIP (VIPNMS), but not VIPGRP neurons, are critical for maintaining 
circadian body temperature and behavioral rhythms29 and that these neurons exhibit photoperiod-
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induced neurotransmitter switching126, we hypothesize the VIP hubs critical for SCN synchrony 
are the VIPNMS neurons. Notably, Bridge cells positioned between the dorsal and ventral SCN 
modules, resemble the Prokineticin 2 (PROK2) and possibly, GRP neurons. Since GRP 
expression is unaffected by photoperiod126,127, we speculate that, by their network positioning as 
bridges, and their daily and seasonal changes in signaling25,127, PROK2 cells modulate 
information flow to couple the dorsal and ventral SCN and reorganize the two regions across 
seasons. Studies to test the impact of ablating these cell populations on SCN coherence and 
entrainment to different day-lengths will clarify the roles of these functional cell-types. 

Interestingly, circadian dynamics of cells when connected in silico using MITE inferred 
SCN maps mirrored their experimentally recorded explants. Ventrolateral cells not only 
synchronized faster than dorsomedial SCN in silico, their PER2 expression recapitulated the 
dorsoventral phase-wave. These exciting findings, consistent with evidence that cell-intrinsic 
differences do not drive the daily PER2 wave16,119,128, demonstrate that emergent properties like 
spatial and temporal synchronization among SCN cells are sculpted by their connectivity 
architecture. Finally, while the functional connectome complements anatomical and 
transcriptomic classification of SCN cell populations, it enhances our understanding of the roles 
of these cell types in network behavior and circadian time computation. 

Methods 

In Silico Network Simulation 

To compare accuracy of different network inference methods, we generated networks of 600 
nodes to approximate the number of cells recorded per SCN in our experiments. Each node was 
modeled as a cellular circadian oscillator using ordinary differential equations, describing the 
transcription of the PERIOD2 gene mRNA ���� and production of cytosolic ���� and nuclear 
PER2 protein ���� in a single cell82,129. Cellular heterogeneity was introduced by varying the 
PER2 mRNA degradation rate ���,�� between 0.345 - 0.395, sufficient to generate cellular 

periods of 23.4 ± 0.7 h (mean ± SD), as observed experimentally11. All other model parameters 
were similar to prior studies (Supplementary Table 2)82. The intercellular coupling influences the 

mRNA transcription rate ���,�� of cell �, which is defined as 0.73 � ∑ ��
�		
�
� ������ � ���, 

where ���  denotes the strength of the input from cell � to cell � and ��  = 0 or 1, indicating 

absence or presence of connection between the cells � and �. Coupling strengths were selected 
such that the network synchronizes within 4-5 days to mimic experimental observations. 
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We modeled small-world, scale-free, and mixed (a combination of small-world and scale-
free) networks using Python NetworkX package130. The directed scale-free networks were 
generated using the ‘scale_free_graph’ function, with parameters α and β varying in the ranges 
[0.6, 0.69] and [0.26, 0.35], respectively, and � set to 0.05, ensuring that  � �  � �  � � 1. Here, 
� represents the probability of adding a new node connected to an existing node selected 
randomly based on its in-degree distribution (distribution of incoming connections), � represents 
the probability of adding an edge between two existing nodes (with one node chosen randomly 
based on its in-degree and the other based on its out-degree–number of outgoing connections), 
and � represents the probability of adding a new node connected to an existing node selected 
randomly based on its out-degree distribution. For small-world networks, undirected networks 
were first generated using the ‘connected_watts_strogatz_graph’ function, with the probability of 
rewiring each edge varying uniformly between [0.1, 0.25] and the mean degree varying between 
[4, 7]. We randomly deleted 100 edges from the connectivity matrix to convert the network into a 
directed one. Mixed networks were generated by combining outgoing connections (connectivity 
matrices) from both small-world and scale-free topologies. Each network was simulated 10 times 
varying the initial conditions and coupling strengths. 

To approximate the spontaneous synchronization dynamics of desynchronized SCN 
neurons after tetrodotoxin (TTX) removal, we simulated in silico networks from random initial 
conditions and recorded their PER2 mRNA at 1-hour intervals for 6 days, as in our experimental 
SCN recordings. We quantified coherence among circadian cells as the Synchrony Index (sync 
index, 0=circadian cells peak at random times relative to each other; 1=cells all peak at the same 
time) using the first-order Kuramoto order parameter by vectorial averaging of instantaneous 
phases on the complex plane131. 

Comparing MITE to Other Network Inference Methods on In Silico Data 

By pairwise comparisons of the simulated PER2 traces of all nodes, we generated an interaction 
score matrix for all possible cell-cell interactions in the network. We reasoned that if two cells 
couple, their PER2 dynamics should co-evolve as the network synchronizes, resulting in high 
interaction scores, whereas disconnected cells should exhibit lower scores. We inferred 
interaction scores using two categories of methods, each with three different statistics. The first 
category, undirected methods, included Dynamic Time Warping (DTW)132, Maximal Information 
Coefficient (MIC)77 and Mutual Information (MI)78, which identified cell-cell interactions 
without considering interaction direction. The second category, directed methods, inferred 
interaction direction and included the Algorithm for Revealing Network Interactions (ARNI)79, 
Granger Causality (GC)80 and Transfer Entropy (TE)81. 

DTW analysis was implemented using the ‘distance_matrix_fast’ function in 
DTAIDistance Python package133. Since DTW measures dissimilarity between time series 
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(higher scores indicate weakly connected cells), the DTW scores were inverted for further 
analysis. MI was estimated using ‘mutual_info’ function in PyInform134 python library and MIC 
analysis using MICtools for Docker135, with parameters previously used for analyzing similar 
datasets of spontaneously synchronizing SCN cells67. Unlike Abel et al.67, who used heuristic 
APPROX-MIC scores, MICtools computes MIC using a combination of MIC-based measures, 
MICe (a consistent estimator of the MIC population value) and TICe (total information 
coefficient)135,136, which have better bias/variance properties and are more computationally 
efficient.  

ARNI was implemented in Matlab (The MathWorks Inc. (2022). MATLAB version: 
9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com) 
using the author-provided code79. GC and TE analyses were performed using 
‘grangercausalitytests’ and ‘transfer_entropy’ functions in python statsmodels137 and PyInform134 
libraries respectively. The parameters maxlag (for GC) and history length (for TE) that decides 
the number of previous time points considered to compare two time series, was set to 1 because 
our in silico networks did not model delayed coupling. We computed univariate TE (considers 
two cells at a time), which is equally accurate (for short time-series) as the computationally 
intensive multivariate TE74. We inverted the resultant TE values to represent directed interactions 
among synchronizing oscillators. To generate MITE connectivity matrix (Mutual Information & 
Transfer Entropy), we scaled the MI and TE scores using min-max scaling to range between 0 
and 1, multiplied the two, and z-transformed them to produce MITE scores for each cell-cell 
interaction. 

We computed the Area Under the Receiver Operating Characteristic (AUROC) of MITE 
connectivity matrix by comparing to the true connectivity matrix using the scikit-learn python 
library138. For each network, we computed the AUROC across 10 simulations and averaged for 
statistical analysis. All analyses were performed on a Dell Precision 5820 Tower X-Series 
(Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz, 64.0 GB RAM, NVIDIA GeForce RTX 3090) 
or a Dell OptiPlex 7000 (12th Gen Intel(R) Core(TM) i7-12700 @ 2.10 GHz, 32 GB RAM, 
Intel(R) UHD Graphics 770). 

Animals and Housing Conditions 

Homozygous PERIOD2::Luciferase (PER2::LUC) knock-in mice (founders generously provided 
by J.S. Takahashi, UTSW) were housed under a 12-hour light:12-hour dark cycle maintained at 
constant temperature of 250C with food and water ad libitum in the Danforth Animal Facility, 
Washington University in St. Louis. All animal procedures were approved by the Animal Care 
and Use Committee at the university and adhered to NIH guidelines. 

Single Cell Bioluminescence Recording of PER2::LUC SCN Explants 

Coronal brain slices (300 μm thick) were obtained from neonatal (P4-P7) PER2::LUC mice 
using a vibratome (EMS). The slices were immediately placed in chilled Hanks’ balanced salt 
solution (HBSS) supplemented with 0.01 M HEPES, 100 U/ml Penicillin, and 4 mM NaHCO3. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.06.627294doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627294
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

The SCN region was carefully dissected from these slices using scalpels and cultured on 0.4 mm 
membrane inserts (Millicell-CM, Millipore) with 1 ml of HEPES-buffered air-DMEM (1.2 ml), 
supplemented with 10% newborn calf serum (Invitrogen) and 0.1 mM beetle luciferin 
(Biosynth). Each SCN sample was recorded using an ultrasensitive CCD camera (Andor Ixon or 
Ikon; 1 x 1 binning, 1-hour exposures) at 36°C. The recordings were conducted on an inverted 
microscope (Nikon TE2000 or Leica DMi8) equipped with a 20X objective and a 0.5X coupler, 
within a glass-bottom, sealed Petri dish containing media supplemented with 0.1 mM beetle 
luciferin (Biosynth) inside an In Vivo Scientific incubator, as described previously67,102,139. 

Bioluminescence recording was started one day after the slice preparation and following 
4-5 days of baseline recording, SCN explants were treated with 1.5 µM or 3µM tetrodotoxin 
(TTX, Sigma) to block spiking and cell-cell communication among SCN neurons for 6 days. 
Three full-volume exchanges of fresh medium were done and the washed SCN was recorded for 
at least another 6 days to monitor the resynchronization of cellular rhythms following the re-
establishment of cell-cell communication. To identify and track cellular PER2 bioluminescence, 
we employed a custom Python code that detected cells in each frame using a Difference of 
Gaussian blob detector67. The pixel intensities of the identified cells were measured over the 
course of the recording to extract PER2 time series traces for further analysis. Data from first 12 
hours of recording were not considered due to artifacts arising from TTX-wash or culture 
medium change. 

Circadian Rhythm Analysis of PER2 Gene Expression 

We measured periodicity of PER2 traces of all identified SCN cells with Lomb-Scargle 
implemented in MetaCycle140 and identified significantly circadian cells (BH.Q < 0.01 within a 
period range of 18 to 30 hours). We detrended and smoothed PER2 traces from circadian cells to 
compute instantaneous phase with continuous wavelet transformation and the Synchrony Index 
among cells as the first-order Kuramoto order parameter131 implemented in pyBOAT141. 

To analyze time taken by dorsal and ventral modules to synchronize, PER2 signals were 
averaged across cells within the module, and daily PER2 peak-to-peak periods were estimated 
using peak finding and fit to a Gompertz curve142 in SciPy143 python library. The curve fit 
provided the time rate of period change and we defined time to synchronize as the time after 
which the rate of period change was less than 0.1 h for the rest of the recording (0.01 h was used 
for in silico cells). 

Inferring SCN Cell-Cell Connectivity Using MITE 

Detrended PER2 bioluminescence traces recorded from synchronizing SCN cells after TTX 
removal were used to compute z-transformed pairwise MITE interaction scores (MITE 
connectivity matrix) as described for simulated networks, with the exception that history length 
was set to 4 hours to incorporate delayed cellular coupling (simulated networks were analyzed 
with history length of 1 as we did not model delayed interactions). The MITE connectivity 
matrix was then thresholded using an empirically determined cutoff of 2.07 (1.03 was used for 
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Vip-Cre and Avp-Cre SCN). This resulted in a MITE binary connectivity matrix with scores 
below this threshold considered as false cell-cell connections and those above as true 
connections. The binary connectivity matrix was used for further network analysis. Self-loops 
(connections from and to the same cell) were not considered for analysis. PER2 traces from 
AVP-Cre and VIP-Cre SCN reported in Shan et al52 were analyzed similar to our recordings. To 
ensure accurate estimation, cells with < 160 h of data or with > 1 h gaps in data were not 
considered for analysis. 

To determine the cutoff MITE score, we pooled PER2 traces from cells across four 
randomly chosen SCN constituting the Training set and estimated interaction scores of the 
impossible false connections identified between SCN of different mice (3081 cells with 9.49 
million pairwise comparisons). We empirically determined the threshold z-score (2.07) that 
minimizes the probability of detecting these ‘impossible between-SCN’ connections (false 
discovery rate < 0.05) while maximally retaining the possible within-SCN connections (hit-rate > 
95%). We similarly tested whether the chosen threshold reliably identified connections in an 
independent Test set with 3 SCN (1994 cells with 3.97 million comparisons). Connections 
between left and right SCN of the same mouse were not considered as they cannot be categorized 
as impossible connections. Threshold score for AVP and VIP connectivity were estimated 
similarly by pooling cells from seven Avp-Cre and VIP-Cre SCN (1472 cells with 3.16 million 
comparisons). 

In Silico Cell Ablation 
We compared circadian synchronization properties of in silico networks with targeted cell 
ablations. We simulated unilateral SCN networks generated using MITE binary connectivity 
matrices inferred from experimental recordings and simulated each SCN 10 times, varying the 
initial conditions and coupling strengths. All simulated SCN started in a desynchronized state on 
Day 1 and synchronized their PER2 rhythms by Day 6. We ablated cells with the top 10%, 20%, 
or 30% of specified centrality scores by deleting their incoming and outgoing connections and 
then repeated the simulations with the same initial conditions and coupling strengths as their 
corresponding unablated control SCN network. We measured sync index (SI) on Days 1 and 6 
using the Kuramoto order parameter averaged over 24 hours. Separately, to investigate the effect 
of cell ablation on sustaining synchrony, we repeated the simulations, deleted cells on Day 6 and 
similarly measured SI on Day 10 averaged over 24 hours. 

SCN Network and Spatial Connectivity Analysis 

We used the inferred MITE binary connectivity matrices to analyze SCN networks using 
Cytoscape144, Gephi145 and NetworkX packages130. We used author provided code to measure 
graphlet based network similarity (DGCD-13 and DGCD-129)83 as distances between each 
unilateral/bilateral SCN network and ten corresponding random networks with similar numbers 
of cells and connections, but with randomized connection patterns. We report the average DGCD 
distances from each SCN to 6 other SCN and with 10 corresponding random networks. We 
measured the small-worldness coefficient defined as the ratio of clustering coefficient (C) and 
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path length (L) of the SCN and corresponding random networks (denoted by subscript r) with 
similar number of nodes and connections - [C/Cr]/[L/Lr][C/Cr]/[L/Lr][C/Cr]/[L/Lr]

146. Scale-
free exponent (alpha) was estimated as the slope of power-law function (Pk ~ k-α) fitted to the 
probability distribution (Pk) of log-transformed out-degree (k, number of efferents). 

To identify cellular communities within each unilateral SCN, we used NetworkX130 
functions ‘greedy_modularity_communities’, ‘label_propagation_communities’, and 
‘girvan_newman’. The identified communities were clustered using k-means and hierarchical 
clustering based on their mean out-degree using SciPy143 with latter parameters: linkage 
method='ward', distance metric='euclidean'. Other cell-cell connectivity statistics were analyzed 
using custom python scripts. To assess spatial distribution of cells within each module, we 
normalized the cellular coordinate space (X,Y coordinates were min-max scaled using the cells 
in extrema) and used a combination of Kernel Density Estimation (‘gaussian_kde’ function in 
Scipy143) and local maxima detection (‘peak_local_max’ function in Scikit-image147) algorithms 
to identify the regions with high cell density. Histograms of cell density along the dorsal-ventral 
and medial-lateral axes were analyzed by binning cells in 10% and 20% bins respectively along 
the two axes. Similarly, to analyze projection distances, we used the normalized coordinate space 
and calculated the Euclidean distance of each cell to all its connecting cells. We used NetworkX 
functions ‘in_degree_centrality’, ‘out_degree_centrality’, ‘betweenness_centrality’, 
‘closeness_centrality’ (measures closenessin-degree), and ‘pagerank’ to compute centrality scores 
for each cell. The closenessout-degree and reverse pagerank centralities were analyzed using the 
same functions with transposed binary connectivity matrices to reverse the connection direction. 
Centrality values were min-max scaled to facilitate inter-SCN comparisons. 

All statistical analysis were implemented in GraphPad Prism version 10.0.0 for Windows, 
GraphPad Software, Boston, Massachusetts USA, www.graphpad.com, and data were plotted 
using Prism, Matplotlib148 and Seaborn149. 
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