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Abstract
Primary and secondary lymphoid organs are heavily innervated by the autonomic nervous system. Norepinephrine, the 
primary neurotransmitter secreted by post-ganglionic sympathetic neurons, binds to and activates β-adrenergic receptors 
expressed on the surface of immune cells and regulates the functions of these cells. While it is known that both activated 
and memory CD8+ T-cells primarily express the β2-adrenergic receptor (β2-AR) and that signaling through this receptor 
can inhibit CD8+ T-cell effector function, the mechanism(s) underlying this suppression is not understood. Under normal 
activation conditions, T-cells increase glucose uptake and undergo metabolic reprogramming. In this study, we show that 
treatment of murine CD8+ T-cells with the pan β-AR agonist isoproterenol (ISO) was associated with a reduced expres-
sion of glucose transporter 1 following activation, as well as decreased glucose uptake and glycolysis compared to CD8+ 
T-cells activated in the absence of ISO. The effect of ISO was specifically dependent upon β2-AR, since it was not seen 
in adrb2−/− CD8+ T-cells and was blocked by the β-AR antagonist propranolol. In addition, we found that mitochondrial 
function in CD8+ T-cells was also impaired by β2-AR signaling. This study demonstrates that one mechanism by which 
β2-AR signaling can inhibit CD8+ T-cell activation is by suppressing the required metabolic reprogramming events which 
accompany activation of these immune cells and thus reveals a new mechanism by which adrenergic stress can suppress the 
effector activity of immune cells.

Keywords  Adrenergic signaling · CD8+ T-cell suppression · Metabolic reprogramming · Tumor immunology · T-cell 
activation · Glycolysis
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Introduction

Immune organs are heavily innervated by the sympathetic 
nervous system (SNS) and immune cells express adren-
ergic receptors (ARs) for the SNS neurotransmitters nor-
epinephrine (NE) and epinephrine (Epi). Physiological 
or psychological stressors which induce an SNS “fight or 
flight” response can rapidly modulate immune cell activ-
ity, supporting early observations in the field of psycho-
neuroimmunology which revealed that stressful events 
can negatively impact immune function and the onset and 
progression of disease [1]. For example, in an infectious 
disease model, SNS activity can suppress the capabil-
ity of dendritic cells to activate an antiviral CD8+ T-cell 
response and this immunosuppression can be alleviated by 
treatment with a β2-AR antagonist (i.e., a β-blocker) [2]. 
However, many details regarding the intracellular path-
ways by which adrenergic signaling suppresses activation 
of CD8+ T-cells are still undefined.

More recently, it has also become clear that the SNS 
and stress-induced adrenergic signaling can play a key role 
in promoting tumor growth. We and several other groups 
have shown that tumor cells and associated stromal cells 
express adrenergic receptors and their signaling induces 
tumor cell proliferation and resistance to apoptosis, pro-
duction of vascular endothelial growth factor (VEGF), 
epithelial–mesenchymal transition (EMT)-associated 
changes which facilitate metastasis, and induction of the 
angiogenic switch in endothelial cells [3–7].

Our group has become interested in identifying the 
mechanisms by which adrenergic stress affects immunity 
and has exploited a chronic, physiological adrenergic 
stress associated with housing temperature of mice. It is 
known that mice housed at IACUC mandated tempera-
tures of ~ 22 °C are subjected to a mild, but chronic cold 
stress that has a profound impact on their physiology [8]. 
We discovered that the anti-tumor immune response is 
suppressed in these mice and that the level of circulating 
norepinephrine is significantly increased due to its role 
in stimulating heat production [4, 9]. When we housed 
mice at a thermoneutral temperature (~ 30 °C) instead 
of 22 °C, circulating norepinephrine levels significantly 
decreased and we observed that mice housed at 30 °C 
developed significantly stronger control of tumor growth 
and metastasis [8]. Later, we found that this immunosup-
pression is mediated by cold stress-induced release of 
NE and can be reversed by treating tumor-bearing mice 
with the pan-β-AR antagonist propranolol. We also found 
that blocking adrenergic signaling results in significantly 
improved tumor control and increased efficacy of the 
immune checkpoint inhibitor anti-PD-1 [10]. Moreover, 
our work has shown that the improved anti-tumoral effect 

of either housing mice at thermoneutrality or inhibition of 
β-AR signaling by β-AR blockers is dependent on CD8+ 
T-cells. Because the β2-adrenergic receptor (β2-AR) is 
the primary subtype expressed on immune cells (includ-
ing T-cells, dendritic cells, B cells, and macrophages [11, 
12]), we further investigated the role of this receptor using 
an adrb2−/− mouse. Our results supported the conclusion 
that the immunosuppressive effects of NE are mediated 
through the β2-AR [10]. Other studies have also confirmed 
that activated and memory CD8+ T-cells express β2-ARs, 
and their activation and function are impaired by β2-AR 
signaling [13].

TCR-induced activation is known to drive T-cells to 
undergo metabolic reprogramming (increasing glycolysis 
and oxidative phosphorylation) to meet the cellular ener-
getic and biosynthetic demands of activation, differentiation, 
and effector function [14–17]. Previously, we have demon-
strated that effector CD8+ T-cells isolated from tumors of 
mice housed at 22 °C have lower surface expression of the 
glucose transporter GLUT1 than do CD8+ T-cells isolated 
from mice housed at thermoneutrality 30 °C [8]. Here, we 
demonstrate that β2-AR stimulation suppresses metabolic 
reprogramming as judged by both glycolysis and oxidative 
phosphorylation and could, therefore, be a major mechanism 
by which adrenergic stress suppresses cellular immune activ-
ity in the setting of anti-tumor immunity, or other T-cell-
dependent immune functions.

Materials and methods

Isolation and culture of CD8+ T‑cells

8–12-week-old female BALB/cAnNcr (BALB/c), 
C57BL/6NCr (C57BL/6), and adrb2−/− mice on a BALB/c 
background [13] were used for isolating CD8+ T-cells. Mice 
were sacrificed and spleens and lymph nodes were collected. 
Single-cell suspensions were made from spleen and lymph 
nodes by crushing and filtering through a 70 µm nylon cell 
strainer (Corning). Red blood cells were lysed by ACK lys-
ing buffer (Gibco). CD8+ T-cells were purified from suspen-
sions using a negative isolation kit (CD8a+ T-cell isolation 
kit, Miltenyi Biotec) following the manufacturer’s protocols. 
CD8+ T-cells were cultured at 1 × 106/ml in the presence 
of plate-coated anti-CD3/anti-CD28 antibodies (anti-CD3 
clone 145-2C11 2 µg/ml; anti-CD28 clone 37.51 2 µg/ml, 
BioXcell) in RPMI 1640 (Corning) supplemented with 10% 
fetal bovine serum, 1% l-glutamine, 1% Penicillin/Strepto-
mycin, 0.1% HEPES buffer, 0.1% sodium pyruvate, 0.05% 
2-mercaptoethanol, and 0.1% non-essential amino acids. 
CD8+ T-cells were activated in the presence or the absence 
of 10 µM isoproterenol in PBS. OT-1 spleen cell suspen-
sions were cultured at 2 × 106/ml with the OVA peptide 
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(SIINFEKL, 10 nM) in supplemented media as indicated 
above.

Metabolic assays

For all extracellular flux assays, CD8+ T-cells were plated on 
cell-tak-coated Seahorse XF96 cell-culture microplates at a 
density of 2 × 105 cells per well. The assay plates were spin 
seeded for 5 min at 1000 rpm and incubated at 37 °C without 
CO2 prior to performing the assay on the Seahorse Biosci-
ence XFe96. The mitochondrial stress test was performed in 
XF Base Media containing 10 mM glucose, 1 mM sodium 
pyruvate, and 2 mM l-glutamine and the following inhibitors 
were added at the final concentrations: oligomycin (2 µM), 
carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone 
(FCCP) (2 µM), and rotenone/antimycin A (0.5 µM each). 
The glycolytic stress test was performed in XF Base Media 
containing 2 mM l-glutamine and the following reagents 
were added at the final concentrations: glucose (10 mM), 
oligomycin (2 µM), and 2-deoxy-d-glucose (2-DG, 50 mM).

Flow cytometry

Cells were harvested at either 24 h or 48 h after activation 
and washed twice with flow running buffer (0.1% BSA in 
PBS). Cells were stained with following antibodies: anti-
CD3 (clone 145-2C11) conjugated to either APC-Cy7, 
BV786, or PE; anti-CD8α (clone 53–6.7) conjugated to 
BUV395, APC, or FITC; anti-CD69 (clone H1.2F3) conju-
gated to PE; anti-CD44 (clone IM7) conjugated to PE; and 
anti-CD62L (clone MEL-14) conjugated to APC. All anti-
bodies were purchased from BD biosciences. Live/dead fix-
able violet, aqua, and yellow cell dyes from Thermo Fisher 
were used to gate out dead cells.

For β2-adrenergic receptor surface staining, cell-surface 
markers were first labeled and live/dead fixable dye was used 
to gate out dead cells, and then, cells were incubated with 
β2-AR antibody (clone H-20), following secondary antibody 
conjugated with Ax647.

For intracellular staining, cell-surface markers were first 
labeled and live/dead fixable dye was used to gate out dead 
cells, and then, cells were fixed and permeabilization using 
the FoxP3/transcription factor staining buffer set (Thermo 
Fisher) following the manufacturer’s protocol. Cells 
were then stained with either anti-GLUT1/Ax647 (clone 
EPR3915) or isotype control/Ax647 from Abcam.

Glucose uptake was analyzed using 2-NBDG {2-[N-(7-ni-
trobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose}, a 
fluorescent glucose analog. Cells were incubated in glucose-
free RPMI1640 with 100 µM 2-NBDG (Sigma) at 37 °C for 
30 min and then stained with extracellular antibodies and 
live/dead fixable dye as previous described.

For staining with mitochondrial dye, cells were first 
stained with extracellular antibodies and live/dead fixable 
dye as previous described and then incubated with RPMI 
1640 containing either 30  mM MitoTracker Green FM 
(mitochondrial mass) or MitoTracker Orange CMTMRos 
(mitochondrial membrane potential) at 37 °C for 30 min. 
All mitochondria dyes were purchased from Thermo Fisher.

All flow data were collected using an LSR Fortessa flow 
cytometry (BD biosciences) and analyzed with FlowJo v10.

ImageStream

Cells were harvested at 48 h after activation and intracellular 
GLUT1 staining was performed. Data were collected using 
ImageStream X Mark II (Amnis, MilliporeSigma).

Statistical analysis

Data between two groups were compared using the Student’s 
two-tailed t test. Data between multiple groups, one-way 
ANOVA with Tukey adjusted post-hoc tests. All data are 
graphed as mean ± SEM.

Results

β‑Adrenergic receptor signaling inhibits glucose 
transporter expression during CD8+ T‑cell activation

Previously, we reported that reducing adrenergic stress 
by housing mice at thermoneutrality (30 °C) compared 
to 22 °C resulted in increased GLUT1 expression during 
activation [8]. Here, we first asked whether adrenergic sup-
pression of GLUT1 expression could be reversed by treat-
ing tumor-bearing mice with the β-blocker propranolol. 
As shown in Supplementary Fig. 1, in a melanoma model 
(B16-OVA), tumor-infiltrating CD8+ T-cells isolated 
from tumors of mice housed at 22 °C and treated with 
β-blockers do express higher levels of GLUT1 than cells 
from control mice receiving PBS. Therefore, we hypoth-
esized that β-AR signaling suppresses CD8+ T-cell effec-
tor function by suppressing GLUT1 expression, thereby 
inhibiting metabolic reprogramming during activation. 
To investigate this hypothesis, we examined the effects 
of adrenergic signaling on CD8+ T-cells activated in the 
presence of the β-AR agonist isoproterenol (ISO). CD8+ 
T-cells were isolated from spleen and lymph nodes from 
BALB/c mice and activated with plate-bound anti-CD3/
CD28 antibodies in the presence or the absence of ISO 
and GLUT1 expression was measured by flow cytometry 
(Fig. 1). It has been reported that GLUT1 expression can 
be detected at 24 h after activation [18, 19]; therefore, 
GLUT1 expression was tested both at 24 h and 48 h after 
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activation. GLUT1 expression was undetectable by flow 
cytometry in unstimulated CD8+ T-cells (Fig. 1a). GLUT1 
expression in control and ISO-treated CD8+ T-cells was 
examined (Fig. 1a, b) after activation. Comparison showed 
that adrenergic signaling significantly reduced GLUT1 
expression in CD8+ T-cells during activation. During 
T-cell activation, GLUT1 expression is increased and it 
is translocated to the cell membrane to take up glucose 
from the outside environment [18]. To determine whether 
the decreased expression of GLUT1 that was observed by 
flow cytometry represented decreased cytoplasmic and/or 

cell-surface GLUT1, the GLUT1 expression was localized 
using the ImageStream. Our results showed that adrener-
gic signaling decreased GLUT1 cell-surface expression 
(Fig. 1c). By treating CD8+ T-cells with different doses 
of ISO, we were able to demonstrate that the effect of ISO 
on GLUT1 expression is dose dependent (Supplementary 
Fig. 2a) without affecting cell viability. In addition, the 
effect of ISO can be blocked by the β-AR antagonist pro-
pranolol (Supplementary Fig. 2b) and our results showed 
that propranolol itself did not have an effect on GLUT1 
expression. However, the effect of ISO is not reversible 
by merely washing it out (Supplementary Fig. 2c), which 
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Fig. 1   βAR signaling inhibits glucose transporter 1 (GLUT1) up-
regulation during T-cell activation. CD8+ T-cells from BALB/c 
mice were isolated and purified from lymph node and spleen of non-
tumor-bearing mice, and activated with anti-CD3/CD28 antibodies 
with or without isoproterenol (ISO). GLUT1 expression was tested 

by flow cytometry. GLUT1 expression in CD8+ T-cells; a at 24  h; 
b at 48  h after activation; c GLUT1 surface expression was tested 
by imageStream; n = 4–6; data were analyzed using Student’s t test, 
**p < 0.01
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indicates that the effect of ISO is on the initiation, or at 
least an early stage, of T-cell activation. Adrenergic signal-
ing also suppressed GLUT1 expression in a second strain 
of mice, C57BL/6 (Supplementary Fig. 3).

β‑AR signaling inhibits glucose transporter 
expression during CD8+ T‑cell activation primarily 
through β2‑AR and β2‑AR expression is associated 
with CD28 co‑stimulation

Studies have shown that immune cells primarily express 
β2-AR and the effect of catecholamines on CD8+ T-cells is 
through β2-AR [13]. First, we examined the β2-AR expres-
sion on CD8+ T-cells and found that β2-AR is undetect-
able by flow cytometry in unstimulated CD8+ T-cells, but 
when CD8+ T-cells were stimulated with anti-CD3/CD28 
antibodies, the expression of β2-AR was increased. How-
ever, when CD8+ T-cells were stimulated with anti-CD3 
antibody alone, β2-AR expression was undetectable as in 

unstimulated T-cells, which indicates that the increased 
expression of β2-AR during T-cell activation with anti-
CD3/CD28 antibodies is associated with CD28 co-stim-
ulation (Supplemental Fig. 4). To test the hypothesis that 
the inhibitory effect of adrenergic signaling on GLUT1 
expression is specifically through β2-AR, we investigated 
the response of CD8+ T-cells from BALB/c adrb2−/− mice. 
These knockout mice have been used previously in several 
other studies and both T and B cells from these mice have 
been activated in vitro. From these studies, there appear to 
be no obvious differences between T and B cells from the 
wild-type mice and adrb2−/− mice [13, 20, 21]. At base-
line, these mice do not show major defects. However, we 
find that differences between wild-type and adrb2−/− mice 
appear when the animals are stressed [10, 22]. In cells 
lacking β2-AR, there was no difference in GLUT1 expres-
sion during activation between the control and ISO-treated 
cells (Fig. 2), indicating that β2-AR is the main receptor 
responsible for the decreased up-regulation of glucose 
transporter during CD8+ T-cell activation. In addition, we 
activated and compared CD8+ T-cells from wild-type and 
knockout mice, and in the absence of ISO, there were no 

Fig. 2   Inhibition of GLUT1 up-
regulation by adrenergic signal-
ing depends on the β2-AR. 
CD8+ T-cells were isolated and 
purified from spleen and lymph 
nodes of adrb2−/− mice. Cells 
activated with anti-CD3/CD28 
antibodies with or without ISO 
showed no difference in expres-
sion of GLUT1 as quantified 
by flow cytometric analysis; 
n = 4; data were analyzed using 
Student’s t test
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differences in GLUT1, CD69, and CD44 expressions (Sup-
plemental Fig. 5), which confirmed the previous study that 
found no obvious difference between activation of wild-
type and adrb2−/− CD8+ T-cells.

β‑AR signaling inhibits uptake of glucose 
during CD8+ T‑cell activation

Whether reduced expression of GLUT1 led to diminished 
uptake of glucose was determined by incubating acti-
vated CD8+ T-cells with 2-NBDG, a fluorescent glucose 
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glucose analog 2-NBDG was analyzed by flow cytometry. Glucose 
uptake by CD8+ T-cells a at 24 h; b at 48 h after activation; and c by 
CD8+ T-cells from adrb2−/− mice; n = 4–6; data were analyzed using 
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analog which is transported into cells, but cannot be fur-
ther metabolized, allowing it to be quantitatively meas-
ured by flow cytometry. As expected, unstimulated CD8+ 
T-cells had low glucose uptake (Fig. 3a). By comparison, 
at both 24 h and 48 h after activation, ISO-treated CD8+ 
T-cells took up less glucose than non-treated CD8+ T-cells 
(Fig. 3a, b). This inhibition of GLUT1 expression and glu-
cose uptake by β-AR was also found in CD8+ T-cells from 
C57BL/6 mice (Supplementary Fig. 6a). In contrast, adr-
energic signaling did not impair glucose uptake in CD8+ 
T-cells from adrb2−/− mice (Fig. 3c).

Splenocytes from OT-1 mice were used to test whether 
the effect of β2-AR is restricted to strong activation 
through anti-CD3/CD28 antibodies. Our results showed 
that even through all cells express GLUT1, the glucose 
uptake was decreased by β-AR signaling (Supplementary 
Fig. 6b). In addition, other published studies showing that 
β2-AR suppresses TCR-mediated CD8+ T-cell effector 
function also showed that OT-1 effector function is inhib-
ited by β-AR signaling [13]. Overall, these data strongly 
suggest that the suppressive effects of β2-AR signaling 
are not restricted to cells which are activated by anti-CD3/
CD28 antibodies.

β‑AR signaling during CD8+ T‑cell activation inhibits 
glycolysis

Up-regulation of glycolysis during metabolic reprogram-
ming is dependent upon increased glucose uptake [18, 19] 
and our data show that GLUT1 and glucose uptake are inhib-
ited by β-AR signaling. To determine how this impacts gly-
colysis, we used the Seahorse Extracellular Flux Analyzer 
to measure glycolysis in CD8+ T-cells (controls and ISO 
treated) following 48 h of activation. The results of the gly-
colytic stress test (represented by changes in the extracellular 
acidification rate, ECAR) showed that the expected increase 
in glycolysis following activation of naïve CD8+ T-cells, as 
well as glycolytic capacity, was impaired by ISO (Fig. 4a). A 
second measure of CD8+ T-cell activation, increased CD69 
expression, was also significantly reduced at both 24 h and 
48 h after activation in the presence of ISO (Supplementary 
Fig. 7a, b). In addition, CD44 expression was decreased and 
there were fewer effector memory (CD44high CD62Llow) 
CD8+ T-cells (Supplementary Fig. 7c, d). We also found that 
CD28 was decreased at 48 h in the presence of ISO (Sup-
plementary Fig. 7e). In addition to the above experiments 
with T-cells from BALB/c mice, the inhibition of glycolytic 
function by β-AR signaling was also found in CD8+ T-cells 
from C57BL/6 mice (Supplementary Fig. 8). In the absence 
of β2-AR, there was no difference in glycolysis between con-
trol and ISO-treated activated CD8+ T-cells (Fig. 4b).

Next, we activated CD8+ T-cells in situ (in the Seahorse) 
to detect T-cell activation responses and ECAR was meas-
ured in real time to investigate effects of adrenergic signal-
ing at early timepoints. We again found that glycolysis was 
increased during activation of CD8+ T-cells; however, the 
addition of ISO decreased glycolysis in a dose-dependent 
manner even at these early stages of activation (Fig. 4c).

β‑AR signaling impairs CD8+ T‑cell mitochondrial 
function and mass increase during activation

T-cells increase aerobic glycolysis to support their acti-
vation, differentiation, and proliferation. However, the 
mitochondria remain a vital part of T-cell metabolism, 
since effector T-cells also significantly up-regulate mito-
chondrial oxidative activity [15]. To investigate the effects  
of adrenergic signaling on mitochondria, mitochondrial 
mass was measured by incubating activated CD8+  T-cells 
+/- ISO with Mitotracker Green FM. We found that at 24 h, 
there was a significant increase in mitochondrial mass in 
both groups compared to unstimulated cells, but slightly less 
in the ISO-treated group (Fig. 5a); this difference was sig-
nificant at 48 h (Fig. 5b). Following this observation, we per-
formed a mitochondrial stress test using the Seahorse Extra-
cellular Flux Analyzer to compare mitochondrial respiration 
(represented by oxygen consumption rate, OCR) between 
non-treated and ISO-treated CD8+ T-cells. The results 
showed that basal mitochondrial respiration was slightly less 
in ISO-treated CD8+ T-cells (Fig. 6a). However, the maxi-
mum mitochondrial respiration rate and mitochondrial spare 
respiratory capacity (SRC) were significantly decreased in 
ISO-treated CD8+ T-cells (Fig. 6a), which may indicate 
mitochondrial dysfunction and a defect in metabolic fitness 
[16]. The inhibition of mitochondrial respiration by β-AR 
signaling was also found using CD8+ T-cells from C57BL/6 
mice (Supplementary Fig. 9). These data demonstrate that 
β-AR signaling impairs mitochondrial respiration in CD8+ 
T-cells during activation. Since we observed a decrease in 
mitochondrial respiration rate, we further investigated mito-
chondrial function by measuring the mitochondrial mem-
brane potential (MMP). Correlating with the reduced mito-
chondrial respiration rate, we found that there was a decrease 
in mitochondrial membrane potential (without difference in 
cell death) in the ISO-treated CD8+ T-cells compared to 
that of the non-treated CD8+ T-cells at both 24 and 48 h 
after activation (Fig. 6b). To confirm that the impairment 
of MMP by ISO is mainly through β2-adrenergic receptor 
signaling, adrb2−/− CD8+ T-cells were tested and there was 
no effect on MMP in these cells (Fig. 6c). Altogether, these 
data suggest that the inhibition of mitochondrial respiration 
by β-AR signaling may cause mitochondrial dysfunction in 
CD8+ T-cell during activation.
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Discussion

Improving the anti-tumor immune response is a major goal 
of cancer research. Much of this effort is focused on improv-
ing CD8+ T-cell effector activity. These effector responses 
are suppressed by a variety of immune escape mechanisms 
and it is critical to identify additional immunosuppressive 
mechanisms that can be targeted to improve immunity 

against cancers and other diseases. Recent research in immu-
nology highlights how changes in cell metabolism support 
immune cell activation, growth, proliferation, and effector 
function and eventually, a return to homeostasis. During 
these changes, glucose metabolism is vital in regulating 
T-cell activation, differentiation, cytokine production, cyto-
lytic function, and even the onset of cell death [14, 23–27]. 
Naïve resting T-cells have a relatively low metabolic demand 
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activated with anti-CD3/CD28 antibodies with or without ISO for 
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oligomycin; and (3) 2-DG]; n = 4; data were analyzed using Student’s 
t test, *p < 0.05, **p < 0.01. c Real-time analysis of in situ-activated 
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Dotted line indicated timepoint when anti-CD3/CD28 antibodies 
were added to activate the T-cells
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and predominately metabolize glucose through oxidative 
phosphorylation. During T-cell activation, signaling by the 
T-cell receptor, co-stimulatory molecules, and cytokines 
drive increased T-cell metabolism predominately through 
induction of “metabolic reprogramming” in which T-cells 
become dependent on glycolysis, although OXPHOS per-
sists and also increases [15]. This high level of glycolytic 
flux in activated T-cells is vital to their effector function 
[15, 28]. Withdrawal of antigenic signal or nutrients such as 
glucose can induce metabolic stress in T-cells which impairs 
their effector function and can result in apoptosis [29, 30]. In 
addition, evidence shows that anergic T-cells are metaboli-
cally anergic, and failure to up-regulate metabolic pathways 
upon T-cell activation leads to a hypo-responsive pheno-
type [31]. Therefore, having a sufficient glucose supply and 
proper regulation of metabolism is critical for successful 
T-cell activation and effector function.

Here, we have demonstrated that β-AR signaling inhibits 
CD8+ T-cell metabolic reprogramming during activation. To 
meet the high demand for glucose, activated T-cells usually 
increase glucose transporter expression (mainly GLUT1) 
and/or surface trafficking [28, 32, 33]. By activating CD8+ 
T-cells with anti-CD3/CD28 antibodies in the presence or 
the absence of the β-AR agonist isoproterenol, we found 
that adrenergic signaling impairs GLUT1 expression, glu-
cose uptake, and glycolysis, primarily through β2-AR signal-
ing. Mitochondrial respiration was also seen to be inhibited, 
particularly spare respiratory capacity, which is consid-
ered a measure of metabolic fitness. Finally, we found that 
β-adrenergic signaling decreases mitochondrial mass and 
mitochondrial membrane potential, suggesting an overall 
impairment of mitochondrial function.

Although these differences that we observed in activa-
tion-associated metabolic changes are subtle, they are robust 
in replication and statistical significance. However, it is 
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important to recognize that stress signaling occurs frequently 
in physiological settings; therefore, one would not expect 
major effects from mild chronic stressors (such as housing 
temperature), or otherwise, immune response would be seri-
ously impaired by repeated mild stress and this is generally 
not the case. Our thinking is that in the setting of chronic 
stress, T-cell activation occurs, but does not reach its full 
potential, and thus over time, this subtle immunosuppression 
could result in impaired immunosurveillance, or impaired 
anti-tumor immunity, which is in line with our previous find-
ing that chronic stress-induced adrenergic signaling impairs 
anti-tumor immunity and that blocking adrenergic signaling 

over time results in significantly improved tumor growth 
control.

Several conditions of the TME are known to compro-
mise T-cell effector function. Low availability of glucose, 
glutamine, and amino acids in the tumor microenvironment 
inhibits T-cell function, while metabolites such as lactic acid 
are immunosuppressive. Now, our data suggests the possibil-
ity that increased metabolic demand due to adaptive thermo-
genesis, or other metabolic outcomes of adrenergic stress, 
may further deplete available resources and we speculate 
that this generates, through β-AR signaling, a diminished 
capacity of CD8+ T-cells to acquire sufficient nutrients. Our 
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work suggests the possibility that stress may suppress the 
metabolically expensive immune response to direct limited 
resources to more immediately beneficial survival functions.

There are still many questions that need to be addressed. 
The precise pathways through which β-adrenergic signal-
ing inhibits metabolic reprogramming are still unknown. 
There is research showing that GLUT1 and glucose uptake 
are increased through the CD28–PI3k–Akt–mTOR path-
way [19] and the decrease in CD28 expression which we 
observed in the presence of a β-adrenergic agonist sug-
gests that adrenergic signaling may inhibit this signal path-
way. Our ongoing research is assessing in more detail the 
role of this pathway in regulating the impact of adrenergic 
stress on T-cell metabolism. Furthermore, the potential 
effects of β-adrenergic signaling on glucose flux through 
various metabolic pathways are unknown and could pro-
vide further insights into regulation of T-cell metabolism. 
Another important direction will be to determine if the 
effects of β-adrenergic signaling on metabolism that we 
found in vitro also occur in the tumor microenvironment. 
While ligation of the TCR and co-stimulatory receptors 
drives metabolic reprogramming, ligation of coinhibitory 
receptors such as PD-1 has the opposite effect, decreasing 
glycolysis and mitochondrial function [34]. Therefore, it 
will be important to investigate how adrenergic signaling 
affects these coinhibitory receptors.

In addition, there is evidence showing that β-AR signal-
ing also regulates Th1/Th2 differentiation of CD4+ T-cells, 
polarizing them towards a Th2 phenotype [35, 36]. Based 
on our work, it is likely that β-AR signaling regulates dif-
ferentiation of CD4+ T-cells by altering metabolism, but 
this remains to be investigated. It will also be important 
to see how adrenergic signaling alters the metabolism of 
immunosuppressive cells. In light of these findings, it is 
likely that the anti-tumor efficacy of CD8+ T-cells could be 
increased by β-blockers; perhaps, as clinical trials testing 
the repurposing of β-blockers in combination with other 
therapies such as chemotherapy or immune checkpoint 
inhibitors progress, these questions can be addressed by 
analysis of patient specimens in addition to preclinical 
mouse models.
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