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Utility of 3T single-voxel proton MR
spectroscopy for differentiating
intracranial meningiomas from
intracranial enhanced mass lesions
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Hiroki Yoshioka2, Yuichiro Nagao2, Kensuke Matsumoto1,
Kazuhiko Nakamura1 and Shinya Fujii3

Abstract

Background: Proton magnetic resonance spectroscopy (MRS) provides structural and metabolic information that is

useful for the diagnosis of meningiomas with atypical radiological appearance. However, the metabolite that should be

prioritized for the diagnosis of meningiomas has not been established.

Purpose: To evaluate the differences between the metabolic peaks of meningiomas and other intracranial enhanced

mass lesions (non-meningiomas) using MR spectroscopy in short echo time (TE) spectra and the most useful metabolic

peak for discriminating between the groups.

Material and Methods: The study involved 9 meningiomas, 22 non-meningiomas, intracranial enhancing tumors and

abscesses, and 15 normal controls. The ranking of the peak at 3.8 ppm, peak at 3.8 ppm/Creatine (Cr), b-c Glutamine-

Glutamate (bgGlx)/Cr, N-acetyl compounds (NACs)/Cr, choline (Cho)/Cr, lipid and/or lactate (Lip-Lac) at 1.3 ppm/Cr,

and the presence of alanine (Ala) were derived. The metabolic peaks were compared using the Mann-Whitney U test.

ROC analysis was used to determine the cut-off values for differentiating meningiomas from non-meningiomas using

statistically significant metabolic peaks.

Results: The ranking of the peak at 3.8 ppm among all the peaks, peak at 3.8 ppm/Cr, bgGlx/Cr, Lip-Lac/Cr, and the

presence of Ala discriminated meningiomas from non-meningiomas with moderate to high accuracy. The highest accu-

racy was 96.9% at a threshold value of 3 for the rank of the peak at 3.8 ppm.

Conclusion: A distinct elevated peak at 3.8 ppm, ranked among the top three highest peaks, allowed the detection of

meningiomas.

Keywords

Magnetic resonance imaging, magnetic resonance spectroscopy, meningioma, 3.8 ppm, short TE

Received 10 March 2021; accepted 23 March 2021

Introduction

Meningiomas are common intracranial neoplasms and

arise from the arachnoid cap cells of the leptomeninges.

The neoplasms account for approximately 13–40% of

intracranial neoplasms, making them the second most

common intracranial tumors in adults with an inci-

dence of 1.5–5.5 per 100,000.1,2 Currently, the majority

of meningiomas are evaluated preoperatively using

conventional MRI with gadolinium-DTPA enhance-

ment. However, 15% of meningiomas exhibit atypical

MRI features such as ring-like enhancement and

parenchymal invasion, resembling malignant brain
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lesions such as gliomas or metastatic brain tumors.3–5

Advanced MRI techniques, including diffusion weight-
ed imaging (DWI), susceptibility-weighted imaging
(SWI), perfusion-weighted imaging (PWI), and
proton magnetic resonance spectroscopy (MRS), pro-
vide specific physiologic information that is not avail-
able by conventional MRI alone.3,6–8

Proton MRS studies of meningiomas have shown an
increase in alanine (Ala), glutamate (Glu) –glutamine
(Gln) complex (Glx) and choline (Cho) and a decrease
in N-acetylaspartate (NAA), creatine (Cr), myoinositol
(mI) and lipid (Lip).9–13 Ala has been shown to be char-
acteristic for intracranial meningiomas,11,14 although
several meningiomas lack the Ala.9,13,15–19 Glx are also
commonly present in meningiomas. The resonance
peaks of Glx are contributed from its a, b, and c
proton groups, respectively. Several reports demonstrat-
ed elevation of Glx in meningiomas compared to other
brain masses.13,16,20–22 However, Ala and Glx concen-
trations are not always easy to evaluate during clinical
practice.18 Peak at 3.8 ppm on short TE spectra has also
been demonstrated as a distinct metabolic feature for the
differentiation of meningiomas among other cerebral
lesions.13,15–17,20,23 As for NAA, several authors have
mentioned that meningiomas may have endogenous
N-acetyl compounds (NACs) except for NAA and
may produce an elevated peak around 2.02 ppm.15,17

Thus, there are several metabolites for the diagnosis of
meningiomas, although it remains unclear which metab-
olite should be prioritized for the diagnosis of this
tumors.

We performed a retrospective study to evaluate dif-
ferences between meningiomas and other intracranial
enhanced mass lesions in metabolic peaks using MRS
in short TE spectra and to assess the most useful
metabolite peak for discrimination between the groups.

Material and Methods

Patients

In this retrospective study, from January 2014 and
January 2021, 60 patients having intracranial mass

lesions showing gadolinium enhancement on T1-
weighted images and evaluated on MR spectroscopy
in short echo time (TE) spectra were identified.
A total of histologically confirmed 31 patients were
analyzed in this study; the remaining 29 patients were
excluded due to no histological confirmation (24
patients) or inadequate MRS examinations (5
patients). Nine of the 31 patients were diagnosed with
meningiomas. Twenty-two of the 31 patients were diag-
nosed with other tumors (non-meningiomas). The non-
meningiomas included brain abscess (n¼ 4), primary
central nervous system lymphoma (PCNSL) (n¼ 2),
adenocarcinoma (n¼ 5), glioblastoma multiforme
(GBM) (n¼ 5), anaplastic astrocytoma (n¼ 1), ana-
plastic oligodendroglioma (n¼ 1), anaplastic ependy-
moma (n¼ 1), hemangiopericytoma (n¼ 2), and
schwannoma (n¼ 1). Also, normal controls of the con-
tralateral brain showing normal brain were evaluated
in 15 of 31 patients. The demographics and histology of
meningiomas, non-meningiomas, and normal controls
are shown in Table 1.

Our hospital’s institutional review board approved
this study, and the requirement for written informed
consent was waived by the review board due to the
retrospective nature of the study.

Image acquisition

MR imaging in all 31 patients and 15 normal controls
was performed using the 3-Tesla MR system (Philips
Ingenia, Best, The Netherlands) with an eight-channel
phased-array head coil, following the standard proto-
col for adult brain imaging at our hospital: pre- and
post-contrast gadolinium-enhanced T1-weighted fast-
spoiled gradient echo sequence, TR/TE, 7.0/2.4ms;
slice thickness, 0.7mm; FOV, 240� 240mm; matrix,
360� 354; T2-weighted fast spin-echo sequence, TR/
TE, 4000/85ms; section thickness, 5mm; FOV,
240� 220mm; matrix, 380� 270; FLAIR image, TR/
TE/IR, 10,000/120/2200; section thickness, 5mm; FOV
240� 180mm; matrix, 320� 170; and axial spin-echo
single-shot echo-planar sequence (DWI), TR/TE, 4400/
68ms; slice thickness, 5mm; FOV, 240� 212mm;

Table 1. Demographics and histology of meningiomas, non-meningiomas, and normal controls.

Meningiomas Non-meningiomas Normal controls

Number 9　 22 15

Age (years), mean� SD 56� 17　 62� 16 64� 16

Female/male 6/3 8/14 6/9

Histology Grade I (7)

Glade II (2)

Brain abscess (4), PCNSL (2), AC (5),

GBM (5), AA (1), AO (1), AE (1),

hemangioblastoma (2), Schwannoma (1)

PCNSL: primary central nervous system lymphoma; AC: adenocarcinoma; GBM: glioblastoma multiforme; AA: anaplastic astrocytoma; AO: anaplastic

oligodendroglioma; AE: anaplastic ependymoma.
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matrix, 170� 128. DWI was performed using b values

of 0 and 1000 s/mm2. Apparent diffusion coefficient

(ADC) maps were calculated from the DWI.
Proton MR spectra were acquired after contrast

administration in all cases. Single-voxel MRS

(TR/TE¼ 2000/36; 128 averages) was performed.

Automated shimming and water suppression methods

were used. Signal contamination from fat tissue in the

skull and skull base was prevented by using spatially

localized saturation bands to suppress the signal from

the scalp or orbital fat on MRS. The acquisition time

for spectroscopic imaging studies varied between 7 and

10 min. For all MRS acquisitions, the volume of inter-

est (VOI) was manually placed to mainly include the

enhancing portions of the lesions on contrast-enhanced

axial T1-weighted images. The volume of the VOI was

adapted to the size and extent of the lesion, resulting in

voxel sizes ranging from 1.1� 1.1� 1.1 to 2.1� 2.1�
2.1 cm3. None of the cases received mannitol at the time

of MRS.

Image analysis

Review of MRS studies was performed by a single

experienced neuroradiologist (E.M.). Pre- and post-

contrast T1-weighted, T2-weighted, FLAIR and

diffusion-weighted images, clinical and histopathologi-

cal findings were accessible during analysis of MRS

data. The following peaks were measured: peak at

3.8 ppm; Cho at 3.21 ppm; Cr at 3.02 ppm; NACs at

2.02 ppm; Ala at 1.48 ppm; bgGlx at 2.1–2.5 ppm; Lip

at 1.3 ppm; lactate (Lac) at 1.33 ppm. In this study, Lip

and Lac were recorded as Lip and/or Lac (Lip-Lac)

because lipids usually overlap with lactate. The peak

heights of the metabolites were used in determining the

ratios. The relative quantity of each metabolite was

measured as the ratio of its peak height to the peak

height of creatine. For the metabolite peak at

3.8 ppm, the ranking of the peak at 3.8 ppm among

all the peaks was also determined.

Statistical analysis

The Mann-Whitney U test was used to analyze the dif-

ferences between meningiomas and non-meningiomas,

as well as meningiomas and normal controls, for the

seven metabolic parameters: the ranking of the peak at

3.8 ppm, peak at 3.8 ppm/Cr, Cho/Cr, NACs/Cr, bgGlx/

Cr, Lip-Lac/Cr, and presence of Ala. Finally, we select-

ed the statistically useful metabolic parameters for fur-

ther analysis.
For the differentiation of meningiomas from non-

meningiomas, the cutoff values that provided the best

combination of sensitivity and specificity for each

adapted metabolic parameter were selected using

receiver operating characteristic (ROC) analysis. The

cutoff values were determined using the Youden

index. We determined the accuracy, sensitivity, specif-

icity, positive predictive value, and negative predictive

value of each parameter using chi-squared analysis.

The area under the ROC curve (AUC) of each param-

eter was also evaluated. P< 0.01 was considered indic-

ative of a statistical significance.
All the statistical analyses were performed with EZR

(Saitama Medical Center, Jichi Medical University,

Saitama, Japan), which is a graphical user interface

for R (The R Foundation for Statistical Computing,

Vienna, Austria).24

Results

Nine cases of meningioma were characterized by prom-

inent Cho and peak at 3.8 ppm. Cr was reduced in eight

cases and distinct in one case. All the cases revealed

distinct NACs at 2.02 ppm and bgGlx at 2.1–2.5 ppm.

Lip-Lac was distinct in eight cases with meningiomas,

whereas it was the prominent peak in one case with

atypical meningioma. Ala was present in six of nine

cases of meningioma. A summary of the MRS findings

for the meningiomas is shown in Table 2.

Representative MR images of meningiomas with cor-

responding spectra are shown in Figs. 1 and 2.
Among 22 cases with non-meningiomas, the peak at

3.8 ppm was visible in 15 of 22 cases and undetectable

in the remaining 7 cases, including one PCNSL, one

abscess, two adenocarcinomas, two GBMs, and one

anaplastic oligodendroglioma. Cr was not visible in

four cases, including one abscess, one adenocarcinoma,

one hemangioblastoma, and one Schwannoma. Cho

was undetectable in two cases, including one abscess

and one hemangioblastoma. bgGlx was invisible in

five cases, including two abscesses, one adenocarcino-

ma, one hemangioblastoma, and one schwannoma.

NACs at 2.02 ppm were not visible in two cases, includ-

ing one abscess and one adenocarcinoma. Lip-Lac

levels were increased in all 22 cases. MR images of

non-meningiomas with the corresponding spectra are

shown in Figs. 3 to 5.
In the 15 normal controls, the spectra revealed peaks

of NACs, bgGlx, Cr, and Cho and a peak at 3.8 ppm.

Only two controls showed a small Lac-Lip. No Ala was

visible in any of the normal controls. A representative

MR image of the normal control with its correspond-

ing spectrum is shown in Fig. 6.
The seven metabolic parameters, including the rank-

ing of the peak at 3.8 ppm, peak at 3.8 ppm/Cr, Cho/

Cr, NACs/Cr, bgGlx/Cr, Lip-Lac/Cr, and the presence

of Ala in meningiomas, non-meningiomas, and normal

controls, are shown in Table 3. Scatterplots of the six
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metabolic parameters, except the presence of Ala, are
also shown in Fig. 7.

Regarding the peak at 3.8 ppm, the ranking of the
peak at 3.8 ppm was the second or third for the menin-
giomas, the third to seventh for the non-meningiomas,
and the fifth to seventh for the normal controls. For the

meningiomas, seven cases ranked second (Fig. 1) and
two cases ranked third (Fig. 2). For the non-
meningiomas, six cases ranked less than the fifth; one
case of PCNSL ranked the third (Fig. 3), and two cases
of GBM (Fig. 4), one case of anaplastic ependymoma,

and two cases of brain abscess (Fig. 5) ranked the
fourth. Significant differences were observed between

meningiomas and non-meningiomas (P< 0.001), as

well as meningiomas and normal controls (P< 0.001).
Regarding the other metabolic parameters, signifi-

cant differences were observed between meningiomas
and non-meningiomas for the peak at 3.8 ppm/Cr

(P< 0.001), bgGlx/Cr (P< 0.01), Lip-Lac/Cr
(P< 0.01), and the presence of Ala (P< 0.001). No sig-

nificant difference was observed between meningiomas

and non-meningiomas for NACs/Cr (P¼ 0.04) and
Cho/Cr (P¼ 0.08). We adapted statistically useful met-

abolic parameters, except NACs/Cr and Cho/Cr.
The results of the diagnostic tests for the adapted

five metabolic parameters for differentiating

Fig. 1. A representative MR image of meningioma with its corresponding spectrum in case 1. (a) A coronal Gd-enhanced T1-
weighted image of meningioma at left temporal base. (b) The spectrum from the VOI shown in (a). Prominent Cho and peak at 3.8
ppm (arrowed) are seen. The ranking of the peak at 3.8 ppm is the second. The peak at 3.8 ppm/Cr ratio, 2.77, Cho/Cr ratio, 3.8,
NACs/Cr ratio, 1.92, bgGlx/Cr ratio, 1.38, and Lip-Lac/Cr ratio, 1.64. Ala showing doublet is also seen at 1.48 ppm.

Table 2. Summary of MRS findings for the meningiomas.

Case Age/sex Histology Location

Ranking of

3.8 ppm 3.8 ppm /Cr Cho /Cr NACs /Cr bgGlx/Cr　 Lip–Lac /Cr Ala

1 73/M Meningothelial

Grade I

Temporal base 2nd 2.77 3.8 1.92 1.38 1.64 1

2 43/M transitional

Grade I

Convexity 2nd 3.62 4.5 2.41 1.76 2.07 1

3 68/F atypical

Grade II

Convexity 3rd 3 7.41 3.61 2.57 6.11 1

4 73/F fibrous

Grade I

Posterior fossa 2nd 2.41 3.16 1.64 1.08 1.3 －

5 55/F transitional

Grade I

Falx 2nd 1.44 2.87 0.68 0.6 0.74 1

6 68/F fibrous

Grade I

Posterior fossa 2nd 3.25 4.25 2.5 1.75 1.88 1

7 36/M meningothelial

Grade I

frontal base 2nd 2.03 1.69 1.92 1.52 1.23 1

8 25/F atypical

Grade II

posterior fossa 2nd 2.87 1.95 2.32 1.44 1.59 －

9 61/F fibrous

Grade I

Posterior fossa 3rd 1.55 3.34 1.95 1.29 1.24 －

3.8 ppm: peak at 3.8 ppm; Cr: creatine; Cho: choline; NACs: N-acetyl compounds; bgGlx: b-c Glutamine-Glutamate; Lip–Lac: lipid and/or lactate.
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Fig. 2. A representative MR image of meningiomas with its corresponding spectrum in case 3. (a) An axial Gd-enhanced T1-weighted
image of meningioma at right temporo-occipital convexity. (b) The spectrum from the VOI shown in (a). Prominent Cho, Lip-Lac at 1.3 ppm
and the peak at 3.8 ppm (arrowed) are seen. The ranking of the peak at 3.8 ppm is the third. The peak at 3.8 ppm/Cr ratio, 3.02, Cho/Cr
ratio, 7.41, NACs/Cr ratio, 3.61, bgGlx/Cr ratio, 2.57, and Lip-Lac/Cr ratio, 6.11. Small Ala showing doublet is also seen at 1.48 ppm.

Fig. 3. An MR image of PCNSL with its corresponding spectrum mimicking meningiomas. (a) An axial Gd-enhanced T1-weighted
image of PCNSL at right cerebellar hemisphere. (b) The spectrum from the VOI shown in (a). Prominent Cho, NACs and peak at 3.8
ppm are seen. Ranking of the peak at 3.8 ppm is the third ranking. The peak at 3.8 ppm/Cr ratio, 1.52, Cho/Cr ratio, 2.54, NACs/Cr
ratio, 1.77, bgGlx/Cr ratio, 1.15, and Lip-Lac/Cr ratio, 1.36. No Ala is seen.

Fig. 4. A representative MR image of GBM with its corresponding spectrum. (a) A coronal Gd-enhanced T1-weighted image of GBM
at left temporal lobe. (b) The spectrum from the VOI shown in (a). Prominent Cho and Lip-Lac are seen. The ranking of the peak at
3.8 ppm is the fourth. The peak at 3.8 ppm/Cr ratio, 1.14, Cho/Cr ratio, 2.78, NACs/Cr ratio, 0.84, bgGlx/Cr ratio, 0.52 and Lip-Lac/
Cr ratio, 1.94. No Ala is seen.

Matsusue et al. 5



Fig. 5. A representative MR image of brain abscess with its corresponding spectrum. (a) An axial Gd-enhanced T1-weighted image of
brain abscess at left frontal lobe. (b) The spectrum from the VOI shown in (a). Prominent Lip–Lac and small Ala showing doublet is
seen. A small peak at 3.8 ppm (arrowed) ranks fourth.

Fig. 6. A representative MR image of the normal control with its corresponding spectrum. (a) An axial Gd-enhanced T1-weighted
image of brain abscess at left frontal lobe, same as Fig. 5(a). VOI is placed at the normal contralateral (right) fronto-parietal lobe. (b)
The spectrum from the VOI shown in (a). Prominent NACs, Cr, and Cho are seen. The ranking of the peak at 3.8 ppm (arrowed) is
the fifth. The peak at 3.8 ppm/Cr ratio, 0.43, Cho/Cr ratio, 0.83, NAA/Cr ratio, 1.36, bgGlx/Cr ratio, 0.28, and Lip–Lac/Cr ratio, 2.07.
No Lip–Lac and Ala are seen.

Table 3. The metabolic parameters in meningiomas, non-meningiomas, and normal controls.

Metabolic factors

Meningiomas

(9 cases)

range (median)

Non-meningiomas

(22 cases)

range (median) Pa

Normal controls

(15 cases) range

(median) Pb

The ranking of 3.8 ppm 2–3 (2) 3–7 (5) <0.001 5–7 (7) <0.001

3.8 ppm/Cr 1.44–3.62 (2.77) 0.41–2.11 (1.14) <0.001 0.2–0.47 (0.35) <0.001

Cho/Cr 1.69–7.41 (3.34) 0.7–12.57 (2.57) 0.08 0.66–1.12 (0.93) <0.001

NACs/Cr 0.68–3.61 (1.95) 0.75–2.93 (1.51) 0.04 0.99–1.59 (1.36) <0.001

bgGlx/Cr　 0.6–2.57 (1.44) 　0.3–2.6 (0.8) <0.01 　0.18–0.29 (0.24) <0.001

Lip–Lac/Cr 0.74–6.11 (1.59) 0.3–30.12 (5.99) <0.01 0.17–0.22 (0.2) 0.02

Ala 6/9 2/21 <0.001 0/15 <0.001

3.8: peak at 3.8 ppm; Cr: creatine; Cho: choline; NACs: N-acetyl compounds; bgGlx: b-c Glutamine-Glutamate; Lip–Lac: lipid and/or lactate; Ala:

alanine.
aMeningiomas vs. 21 non-meningiomas.
bMeningioma vs. 15 normal controls.
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meningiomas from non-meningiomas are summarized

in Table 4. The highest accuracy was 96.9% at a cutoff

value of 3 for the ranking of the peak at 3.8 ppm. The

second highest accuracy was 92.3% at a cutoff value of

1.44 for the peak at 3.8 ppm/Cr. The third highest accu-

racy was 80.6% at a cutoff value of 2.07 for Lip-Lac/

Cr. The fourth highest accuracy was 80.1% at a cutoff

value of 1.29 for bgGlx/Cr. The lowest accuracy was

78.8% for the presence of Ala.

Discussion

The present study evaluated the metabolic features of

meningiomas that would distinguish them from other

intracranial enhanced mass lesions using MRS in short

TE spectra. The analysis showed a good test accuracy

for differentiating meningiomas from non-meningiomas

using statistically useful metabolic parameters. The

highest accuracy was 96.9% at a threshold value of

Fig. 7. Scatterplots of the ranking of the peak at 3.8 ppm, the peak at 3.8ppm/Cr, Cho/Cr, NACs/Cr, bgGlx/Cr and Lip-Lac/Cr.
Note: 3.8 ppm indicates the peak at 3.8 ppm.
Cr: creatine; Cho: choline; NACs: N-acetyl compounds; bgGlx: b-c Glutamine-Glutamate; Lip–Lac: lipid and/or lactate; Men:
meningioma; non-Men: non-meningioma; CO: cutoff value; ACC: accuracy, AI: asymmetry index; SBR: specific binding ratio.

Table 4. The diagnostic tests for the adapted five metabolic parameters for differentiating meningiomas from non-meningiomas.

AUC ACC SEN SPE PPV NPV P value

The Ranking of 3.8 ppm�3 0.99 96.9% 100% 93.8% 94.2% 100% <0.001

3.8 ppm/Cr�1.44 0.96 92.3% 100% 84.6% 86.7% 100% <0.001

Lip-Lac/Cr�2.07 0.82 80.6% 88.9% 72.2% 76.2% 86.7% <0.001

bgGlx/Cr�1.29 0.82 80.1% 77.8% 82.4% 80.5% 78.5% <0.001

Ala 0.79 78.8% 66.7% 90.9% 88% 73.2% <0.001

3.8 ppm: peak at 3.8 ppm; AUC: area under the curve; ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative

predictive value; Cr: creatine; Lip–Lac: lipid and/or lactate; bgGlx: b-c Glutamine-Glutamate; Ala: alanine.

Matsusue et al. 7



3 for the ranking of the peak at 3.8 ppm. Therefore,
a distinct elevated peak at 3.8 ppm, ranked among
the top three highest peaks, allowed the detection of
meningiomas.

An elevated peak at 3.8 ppm was observed in menin-
giomas, non-meningiomas, and normal controls. We
used the “ranking” as a simple objective indicator of
peak height at 3.8 ppm. The ranking of the peak at
3.8 ppm was the second or third for meningiomas, the
third to seventh for non-meningiomas, and the fifth to
seventh for normal controls. There are several metab-
olites at 3.8 ppm, including leucine, alanine, a-Glx, glu-
tathione, lysine, arginine, serine, guanidinoacetate,
phosphoethanolamine, oligosaccharide, trehalose, glu-
cose, and mannitol.23,25 In meningiomas, it was evident
that all cases revealed a distinct signal at 3.8 ppm,
showing the second or third ranking peak. This finding
was characteristic, and it differentiated them from
other cerebral lesions, obviously due to the underlying
metabolic differences. As metabolites at a peak at
3.8 ppm for meningiomas, a-CH amino acids, including
a-Glx and glutathione, phosphoethanolamine, oligo-
saccharide, or guanidinoacetate, have been postulat-
ed,12,13,16,17,20,23,26 although the chemical substance
observed at 3.8 ppm is still undetermined. As for non-
meningiomas, a distinct peak at 3.8 ppm has been
found in medulloblastomas, germinomas,27 tuberculo-
mas,25 and fungal abscesses,28,29 although the metabo-
lite remained unclear in those lesions. In the present
study, an important observation is that one case of
PCNSL revealed a distinct signal at 3.8 ppm, showing
the third ranking peak. To the best of our knowledge, a
distinct signal at 3.8 ppm in PCNSL has not been pre-
viously reported. As for the normal controls, the
metabolite for the peak at 3.8 ppm may have been
a-Glx, which is usually seen as a doublet or triplet at
3.65 to 3.8 ppm.30

The evaluation of tumors by MRS usually
involves the analysis of Lac and Lip. Lac is the product
of anaerobic glycolysis, and Lip is correlated with the
extent of microscopic cellular necrosis.31,32 Lip is
observed to be minimal in typical meningio-
mas11,13,17,22,33 but marked in Schwannomas, metastat-
ic tumors, brain abscesses, and glioblastomas.13,34 The
present study showed that Lip–Lac/Cr was significant-
ly lower in meningiomas than in non-meningiomas,
confirming the findings of the previous studies. Only
one case of an atypical meningioma showed prominent
Lip–Lac. This finding seemed to indicate microscopic
necrosis in atypical meningioma.33,35 Yue et al.
reported that Lip represents not only micronecrosis in
non-benign meningiomas but also microcystic changes
or fatty degeneration in benign meningiomas.17

The bgGlxs are spread over the range of 2.1–2.5 ppm
and merge with NACs at 2.02 ppm. Several studies

have revealed a higher occurrence of Glx in meningio-
mas than in other intracranial tumors.13,21,22,36

Regarding the assumed metabolic pathways of Glx in
meningiomas, Glu is utilized through the transamina-
tion and the oxidation of pyruvate. The deamination of
Gln to Glu, via glutaminase, could provide Glu for Ala
production.16 In this study, all cases of meningiomas
revealed distinct bgGlx. In addition, a significant dif-
ference related to bgGlx/Cr was observed between
meningiomas and non-meningiomas. Hazany et al.
indicated that the peak heights of bgGlxs over the
range of 2.1–2.5 ppm may facilitate the underestima-
tion of their quantity in the brain.20 Quantitative 1H-
MRS studies would be a better measure, as it revealed
an increased Glx concentration in meningiomas com-
pared with other intracranial tumors.16,21,22

Ala has been suggested by various studies to under-
lie meningioma, but it is found in abscesses37,38 and
rarely in other intracranial tumors.12,19,21,39–42 Ala is
thought to be an alternative reduced partner of pyru-
vate derived from glycolysis.23 Ala is affected by the J-
coupling effect and splits as doublets. In this study, the
Ala doublet was present in six of nine meningiomas
and two of four abscesses. For meningiomas, the fre-
quency of the presence of Ala varies with studies, rang-
ing from 32 to 100%.9 Voxel size has been suggested as
a factor underlying the variance of Ala.17 In the present
study, all Ala-positive cases had a sufficient voxel size,
confirming the report by the study of Yue et al.17

Hence, Ala is a unique marker of intracranial menin-
giomas, although its concentration may be underesti-
mated when compared with the observed elevated peak
at 3.8 ppm in meningiomas.

Regarding NACs, all cases of meningioma revealed
a distinct peak at 2.02 ppm, although no significant
difference related to NACs/Cr was observed between
meningiomas and non-meningiomas. The important
observation is the presence of a distinct peak at
2.02 ppm for meningiomas. NAA is a marker metabo-
lite for neurons, and it can be assumed that the spectra
obtained from voxels placed entirely within the menin-
giomas contained no NAA. Therefore, it should be
considered that a peak around 2.02 ppm for meningio-
mas represents other endogenous NACs, such as N-
acetylaspartylglutamate, N-acetylneuraminic acid and
N-acetylgalactosamine17 or short TE metabolites such
as bgGlx.

Our study has several limitations. First, this study
was carried out in a single hospital; thus, the study
population was small. In addition, only nine meningi-
omas were reviewed, and this was a retrospective study.
Second, only short TE spectra were obtained in this
study. It is preferable to obtain both short and long
TE spectra for the analysis of intracranial lesions.
Third, this study was qualitative, and it used ratios of

8 Acta Radiologica Open



peak heights to measure the levels of brain metabolites.

Quantitative inspection and the use of advanced

models for the evaluation of ratios are desirable.

Because of these limitations, further validation with a

greater number of cases is needed. Allowing for these

limitations, we believe our findings provide helpful

insights related to the diagnostic workup for meningi-

omas. Furthermore, this simple evaluation, involving

ranking the peak at 3.8 ppm, is expected to be a

useful indicator for differentiating meningiomas from

intracranial mass lesions in clinical settings.
In conclusion, prominent peak at 3.8 ppm, minimal

Lip/Lac, distinct bgGlx and the presence of Ala are

metabolic features that can be used to distinguish

meningiomas from non-meningiomas. A distinct ele-

vated peak at 3.8 ppm, ranked among the top three

highest peaks, facilitated the detection of meningiomas.
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