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Abstract

Gut microbiota in a healthy population is shaped by various geographic, demographic and

lifestyle factors. Although the majority of research remains focused on the bacterial commu-

nity, recent efforts to include the remaining microbial members like viruses, archaea and

especially fungi revealed various functions they perform in the gut. Using the amplicon

sequencing approach we analysed bacterial and fungal gut communities in a Slovenian

cohort of 186 healthy volunteers. In the bacterial microbiome we detected 253 different gen-

era. A core microbiome analysis revealed high consistency with previous studies, most

prominently showing that genera Faecalibacterium, Bacteroides and Roseburia regularly

comprise the core community. We detected a total of 195 fungal genera, but the majority of

these showed low prevalence and are likely transient foodborne contaminations. The fungal

community showed a low diversity per sample and a large interindividual variability. The

most abundant fungi were Saccharomyces cerevisiae and Candida albicans. These, along

with representatives from genera Penicillium and Debaryomyces, cover 82% of obtained

reads. We report three significant questionnaire-based host covariates associated with

microbiota composition. Bacterial community was associated with age and gender. More

specifically, bacterial diversity was increased with age and was higher in the female popula-

tion compared to male. The analysis of fungal community showed that more time dedicated

to physical activity resulted in a higher fungal diversity and lower abundance of S. cerevi-

siae. This is likely dependent on different diets, which were reported by participants accord-

ing to the respective rates of physical activity.

Introduction

The human gut microbiota is a diverse community comprised of bacteria, fungi, archaea,

viruses and protozoa. These microorganisms co-exist in a complex interdependence, shaped

by countless microbe-microbe and microbe-host interactions. Bacteria dominate the gut

microbiome, representing approximately 99.9% of the total cell population. Fungi, archaea

and protozoa combine to fulfill the remaining 0.1% [1,2]. Although bacterial community
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remains the primary focus of gut microbiota research, recent studies on archaea [3,4], viruses

[5,6] and fungi (mycobiome) [7–9] indicate potential involvement of these microbial groups

in health and disease.

Studies on bacterial microbiota largely focus on the comparison between different patient

populations and healthy controls, striving to define disease specific microbial patterns [10–12].

Major steps towards understanding the healthy microbiota were made in 2008 when both the

American Human Microbiome Project (NIH) and the European MetaHIT project launched

with the objective to optimize and standardize analytical methods, and increase the size of

studied cohorts in order to better address the interindividual variability [1,13,14]. Human gut

microbiota was, up until now, mostly studied in relation to age, diet and lifestyle-related

changes [2,15–19] as well as human genetics by screening twin-pairs [20]. Noteworthy are two

recent large cohort studies on healthy Belgian and Dutch populations, which succeeded to

associate bacterial microbiome patterns with a comprehensive collection of host and environ-

mental factors [21,22].

The fungal community received little attention up to date, especially in the healthy popula-

tion. Reported concentrations of fungi in stool samples range from 0 to 109 CFU g-1 per stool,

indicating high interindividual variability [23,24], but the discrepancies between culture-depen-

dent and culture-independent methods question the reliability of these estimates [23,25,26].

Even at several magnitudes lower count compared to the bacteria, fungi show significant pat-

terns in different gastrointestinal and other diseases, especially in the immune-compromised

patient populations [27], as well as various interactions with the host immune system [28]. The

beneficial effects of fungi in human gastrointestinal tract, on the other hand, are not well

known. Certain commercially available probiotics already utilize the ability of Saccharomyces
strains to limit the inflammatory response and increase immune health [29]. Certain filamen-

tous fungi with the potential to metabolize complex plant-derived carbohydrates were primarily

studied in insects [30] and rumen of cattle [31], but have also been detected in humans [8].

Here we present a study including a Slovenian cohort of 186 healthy volunteers. Both the

bacterial and fungal gut community structures were analyzed in relation to a set of 13 host spe-

cific factors. We report age- and gender-associated patterns in the bacterial communities, and

a weak association between the time dedicated to physical activity and the fungal community,

which is likely influenced by different dietary habits coinciding with physical activity.

Methods

Stool samples were collected from 186 healthy volunteers from Maribor (Slovenia) and the sur-

rounding area. Samples included in the final analysis were required to be from participants

who were at least 18 years old and without any gastrointestinal infection or surgical procedure

on the gastrointestinal tract 3 months prior to sample collection. Participants diagnosed with

chronic inflammatory diseases were also excluded. Stool samples were collected together with

a completed questionnaire and a written informed consent in accordance with the approval of

the Republic of Slovenia National Medical Ethic Committee. Upon collection, each sample

was anonymized, deidentified and was further processed only with a study code.

Questionnaire covered information on volunteers age, gender, body mass index, type of

diet (regular, vegetarian, vegan, lactose free, gluten free or raw food), antibiotic therapy in last

3 months (yes or no), hospitalization in last 3 months (yes or no), digestion (regular, occa-

sional constipation or regular constipation), physical activity (none or occasional exercise,

exercise approximately once a week, exercise multiple times weekly or active athlete), surgical

removal of cecum (yes or no), probiotics or prebiotics usage (yes or no), smoking (yes or no)

and level of stress (1–5) (Table 1).
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Stool samples were collected in sterile containers. Faecal material was mixed thoroughly

with an inoculation loop, a portion corresponding to approximately 50 μL was stored in 1 mL

of Inhibitex buffer (QIAamp Fast Stool DNA Mini Kit, Qiagen) and frozen at -80˚C until fur-

ther use.

Isolation of the total bacterial DNA and high-throughput 16S rDNA

amplicon sequencing

Total DNA was isolated from stool samples using QIAamp Fast Stool DNA Mini Kit (Qiagen,

Hilden, Germany) with mechanical disruption (MagNA Lyser, speed 7000 for 70 s).

The bacterial community composition was determined by sequencing the V3V4 hypervari-

able region of the 16S rRNA gene using a broad-range set of primers Bakt_341F (5'-CCTA
CGGGNGGCWGCAG-3')–Bakt_805R (5'-GACTACHVGGGTATCTAATCC-3') [32]. The

library preparation was performed according to the recommended Illumina 16S Metagenomic

Sequencing Library Preparation manual protocol (Illumina, CA, USA). The fungal community

composition was determined by sequencing the Internal Transcribed Spacer 2 (ITS2) using a

broad-range set of primers ITS86F (5'-GTGAATCATCGAATCTTTGAA-3')–ITS4R (5'-T
CCTCCGCTTATTGATATGC-3') [33]. The library was prepared according to the 16S Metage-

nomic Sequencing Library Preparation manual (Illumina, CA, USA) with the exception of

using Q5 High-Fidelity DNA Polymerase (NEB, Massachusetts, USA) instead of the recom-

mended KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Massachusetts, USA). Sequencing

was performed on the Illumina MiSeq platform with MiSeq Reagent Kit V3 (2x300 cycle, 10%

PhiX).

Sequence data analysis

The analysis in mothur (v.1.36.1) [34,35] was done according to the MiSeq standard operating

procedure (SOP) for Illumina paired end reads. The bacterial 16S rRNA reads were processed

using the following criteria: i) reads were not allowed any ambiguous bases and the maximum

homopolymer length was set to 8 base pairs (bp); ii) The reads were aligned against the Silva

reference alignment (Release 123); iii) Chimeras were identified using the UCHIME algo-

rithm; iv) The classification of reads was performed using the RDP training set (v.9) with 0.80

bootstrap threshold value; v) Sequences were clustered into operational taxonomic units

(OTUs) at the 97% similarity cut-off. After quality filtering we obtained an average depth of

35484 reads per sample (min 297, max 89229). OTUs represented in the abundance less than

0.01% of total number of reads were removed followed by rarefying each sample to 3000 reads.

Samples with less than 3000 reads were removed from further analysis (n = 1). Alternatively,

normalization of contingency table as described by Lagkouvardos et al., 2017 [36] was tested,

but did not significantly impact the final set of OTUs nor their relative abundance. Method

reportedly introduces lower bias in the representation of low abundant OTUs, but this advan-

tage was not observable in our dataset due to our conservative approach to remove OTUs with

overall abundance less than 0.01%.

Fungal ITS2 reads were processed using following criteria: i) The reads were not allowed

any ambiguous bases; ii) The removal of reads shorter than 205 bp or longer than 502 bp; iii)

The removal of reads containing homopolymers longer than 12 bp; iv) ITSx software was used

for binning in order to remove non-fungal reads; v) The reads were aligned pairwise using the

Needleman-Wunsch method (rewards +1 for a match and penalizes with -1 and -2 for a mis-

match and gap, respectively); vi) The sequences were clustered into operational taxonomic

units (OTUs) at a 98% similarity cut-off; vii) The classification was inferred using UNITE ITS

database (version 6) with 0.80 bootstrap threshold value. After quality filtering we obtained an
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average depth of 20901 reads per sample (min 504, max 66742). OTUs represented in the

abundance less than 0.01% of total number of reads were removed followed by rarefying each

sample to 950 reads. Samples with less than 950 reads were removed from further analysis

(n = 6).

The sequence data was deposited in the form of combined paired end reads (contigs) on

the Metagenomics RAST (MG-RAST) database server (http://metagenomics.anl.gov/) under

the project access number mgp85661 (https://www.mg-rast.org/linkin.cgi?project=

mgp85661). Seven samples (all fungal ITS2 metagenomes) did not meet the minimum criteria

of 1000000 bp per sample as required by MG-RAST and are available along with metadata for

all samples in Supporting Information (S1 Appendix).

The statistics and graphic representation were done in mothur (v 1.31.1) and R (version

3.1.3) using packages ‘ggplot2’ and ‘vegan’.

Core community analysis

The core community was defined in our study as selection of OTUs with a relative abundance

of at least 0.1% and present in more than 95% of tested samples. To compare our results with

already published data, we found 4 studies, in which comparable information was either

reported in the article or could be extracted from supplementary information. These studies

include 1) a study on combined Belgian Flemish Gut Flora Project (FGFP; discovery cohort;

N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N = 1135); The criteria

for a core community was the presence of a genus in at least 95% of the tested population [21];

2) A study on the collection of samples from the Human Microbiome Project (HMP, n = 238);

The criteria for a core community was the presence of OTUs in at least 95% of the tested popu-

lation [37]; 3) A study on a Mongolian cohort (n = 64); The criteria for a core community was

the presence of OTUs in at least 90% of the tested population [38] and 4) a study on European

individuals (n = 124). Authors used shotgun metagenomic sequencing, therefore the results

were presented at the species taxonomic level. To ensure consistency, we used only informa-

tion on genus taxonomy with the criteria of taxa being detected at the minimum 10% reference

coverage and present in at least 95% of the tested samples [1].

Results and discussion

Analysis of bacterial community

Amplicon sequencing approach targeting V3V4 variable region of 16S rRNA gene was used to

investigate the bacterial communities in a group of 186 healthy volunteers from the Slovenian

population. After quality filtering we obtained an overall richness of 27852 OTUs correspond-

ing to 253 bacterial genera. This falls short off the projected richness of 294 genera (Chao1

richness index), which would require an estimated 702 additional samples to reach. After the

removal of low abundance OTUs (overall relative abundance < 0.01%) and subsampling the

remainder to 3000 reads per sample, we obtained 395 bacterial OTUs (Fig 1), on average 121.2

OTUs per sample (S1 Table). Out of 7 detected bacterial phyla, Firmicutes and Bacteroidetes
show the highest abundance as well as interindividual variability (Fig 2A), but in contrast to

some related studies, we found no significant correlation between the Firmicutes/Bacteroidetes
ratio and host/environmental factors [39,40].

The bacterial core community, defined as OTUs with relative abundance of at least 0.1%

and present in 95% of samples or more, consists of 9 OTUs, classified into 7 different bacterial

genera (Fig 3). The two most abundant core OTUs correspond to the genus Faecalibacterium
(B_OTU1; B_ and F_ prefixes before OTU indicate bacterial and fungal OTU, respectively)

and Bacteroides (B_OTU2). The remaining 7 OTUs all classify to the family Lachnospiraceae,

Bacterial and fungal gut microbiota in Slovenian healthy cohort
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with the most prevalent being genus Blautia (B_OTU6, B_OTU10, B_OTU35) along with sin-

gle representatives from genera Roseburia (B_OTU5), Lachnospiracea (B_OTU14), Anaeros-
tipes (B_OTU15) and Clostridium XIVa (B_OTU38) (Fig 3, S1 Table).

The bacterial core microbiome in healthy population was previously analyzed in different

studies, including European [1,21], American [37] and Mongolian cohorts [38]. Despite the

different methodologies used, we observed a high degree of consensus with their results,

Table 1. Host/environmental factors with sample distribution and PERMANOVA analysis. A list of host and environmental factors, which were collected with ques-

tionnaire, with corresponding distribution of samples inside their respective factor category. To the right we show the results of the PERMANOVA test (1000 permuta-

tions, Bray-Curtis distances), presented with the value for explained variance (R2) for each factor in relation to the bacterial or fungal community. Host/environmental

factors with a significant P value, after adjustment with Benjamini-Hochberg correction (FDR< 0.05), are highlighted in grey.

PERMANOVA

Host factor Categories Distribution of samples Explained variance (R2) in bacterial

community

Explained variance (R2) in fungal

community

Gender Male 69 (37.1%) 0.01114

(P = 0.026)

0.00446

Female 117 (62.9%)

Age min 18, max 85, mean

45.2

0.01065

(P = 0.045)

0.00387

Diet Regular 151 (81.2%) 0.03633 0.05478

Vegetarian 23 (12.4%)

Vegan 5 (2.7%)

Gluten free 2 (1.1%)

Lactose free 4 (2.2%)

Raw food diet 1 (0.5%)

BMI min 16.5, max 38.7,

mean 24.8

0.0081 0.00622

Antibiotic therapy in the last 3 months Yes 12 (6.5%) 0.00724 0.00519

No 174 (93.5%)

Hospitalization in the last 3 months Yes 5 (2.7%) 0.0063 0.00333

No 181 (97.3%)

Digestion rate Regular 158 (84.9%) 0.00598 0.00272

Occasional

constipation

25 (13.4%)

Frequent

constipation

3 (1.6%)

Time dedicated to physical activity Occasionally 75 (40.3%) 0.00578 0.04188

(P = 0.026)

Once per week 49 (26.3%)

Multiple times per

week

58 (31.2%)

Active athlete 4 (2.2%)

Cecum removal Yes 11 (5.9%) 0.00579 0.00238

No 175 (94.1%)

Chronic disease None 166 (89.2%) 0.01654 0.01203

IBS 3 (1.6%)

Unspecific 17 (9.1%)

Probiotics or prebiotics usage in the

last 3 months

Yes 27 (14.5%) 0.00441 0.00744

No 159 (85.5%)

Smoker Yes 20 (10.8%) 0.00439 0.00433

No 166 (89.2%)

Stress 1–5 mean 3.151 0.00389 0.03556

https://doi.org/10.1371/journal.pone.0209209.t001
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especially in the case of the combined dataset from FGFP (Belgian Flemish healthy cohort),

LLDeep (Dutch healthy cohort) and some other U.K. and U.S. studies [21] (Fig 3). Among the

14 core genera reported in this combined dataset, 6 coincide with our set of core OTUs,

although only at the family taxonomic level in case of Lachnospiraceae. Genus Anaerostipes
was the only additionally detected genus in our analysis while 7 genera were detected by Fal-

ony et al., but not by us [21]. Comparing our results to all four other studies we found that at

this core inclusion criteria, Faecalibacterium always comprises core community, while

Fig 1. Rarefaction curves for bacterial and fungal OTUs. Rarefaction curves for bacterial (blue) and fungal (red)

OTUs were calculated by rarefying both bacterial and fungal community to 950 reads/sample (only for this specific

analysis we rarefied bacterial community to 950 reads/sample in order for the rarefaction curves to be comparable).

Plotted data points represent the mean value of OTUs for the respective number of samples (1000 iterations) with a

95% confidence interval.

https://doi.org/10.1371/journal.pone.0209209.g001

Fig 2. Bacterial and fungal phyla relative abundance. A box plot presentation of relative abundances of bacterial (A)

and fungal (B) phyla. Only phyla with an overall relative abundance greater than 1% are shown.

https://doi.org/10.1371/journal.pone.0209209.g002
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Bacteroides and Roseburia each failed to be included into core community by only one of the

other four studies. It should be noted that in the study by Qin et al., Bacteroides vulgatus
missed the core community inclusion criteria by a single study participant. Other core genera

reported by four comparator studies vary substantially among investigated cohorts [21,37]

(Fig 3). Recently, researchers became more inclined to investigate the bacterial “functional

core” using shotgun metagenomic approach [41]. Functional profile showed more redundancy

among individuals [42] as a result of same metabolic traits being performed by a variety of dif-

ferent bacterial groups. Still, our findings in congregation with others support, to some extent,

the “outdated” idea of a taxonomical core. Observed core genera either indicate a common

microbial evolution [43] or a possession of a unique set of traits which facilitate their persis-

tence in the gut despite the alternating environment. Defining the core community at the spe-

cies level and identifying unique metabolic traits of these taxa might further elucidate this

observations.

Age and gender associated differences in bacterial community

We identified gender and age to be significantly associated with the bacterial microbiome,

jointly explaining 2.2% of the interindividual bacterial community variation (Permutational

multivariate analysis of variance (PERMANOVA) using Bray-Curtis distances, false discovery

rate (FDR) < 0.05). All host/environmental factors, collected with the questionnaire, and PER-

MANOVA test results are shown in Table 1.

We observed an age-associated increase in bacterial richness and diversity (Pearson’s

r = 0.217, P = 0.003 and r = 0.213, P = 0.003 for Chao1 and Shannon indices, respectively)

(Fig 4A). The Pearson correlation test most prominently showed an age-related decrease in

the genera Bifidobacterium (B_OTU46, B_OTU119) and Bacteroides (B_OTU2, B_OTU27),

and an increase in representatives from the genus Clostridiales (B_OTU49, B_OTU69,

B_OTU114) and unclassified Proteobacteria (B_OTU93) (Fig 4B).

Fig 3. Core microbiome analysis. The core microbiome is shown as a percent of samples (%) that include the corresponding percent (%) of fungal (red) and bacterial

(blue) OTUs. To the right is the list of bacterial (n = 9) and fungal (n = 1) OTUs, which meet the criteria for inclusion into the core community. We compared our

observed core taxa with four other studies also reporting core communities (information on studied cohorts and core community inclusion criteria are included in

Materials and Methods). The dot indicates that the core taxa identified in our cohort was also reported by respective study at genus or family taxonomic level.

https://doi.org/10.1371/journal.pone.0209209.g003
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Multiple studies have looked into the dynamics of microbiota throughout the human life-

span with mostly contradicting results. As previously reported, we also observed an age-related

increase in Proteobacteria and a decrease in the genera Bifidoacterium and Bacteroides [44–46]

However, we did not confirm the often-reported age-associated decrease of Faecalibacter-
ium and Clostridium cluster XI [47,48]. In addition, a significant increase in known short

chain fatty acids producers from families Ruminococacceae and Lachnospiraceae observed in

this study to some extent contradict the previously reported lower availability of total SCFAs

in the elderly population [19]. The decline in SCFAs levels and other changes in metabolome

were suggested to be linked with a transition from a saccharolytic metabolism, typical in

adults, towards a predominantly putrefactive metabolism [49]. But these changes might very

well be environment dependent and therefore vary between cohorts based on subjects long-

term and short-term dietary habits [50].

Contrary to common narrative [47,49], we observed a slight increase in bacterial commu-

nity diversity and richness with age, but similar trends have already been reported by others

[22,51]. The discrepancies between studies likely arise from generation-specific dietary habits

and lifestyle. Therefore, longitudinal studies, accounting for interindividual variability and

age-related physiological changes, are needed to improve our knowledge on aging microbiota.

Bacterial communities in our cohort significantly differ between males and females

(AMOVA, P < 0.001), with females showing a slightly higher Shannon diversity (Kruskal-

Wallis test, P = 0.014) (Fig 3A) (Fig 5A). In the male population, we observed a significant

increase in the abundance of several OTUs from the order Clostridiales (B_OTU6, B_OTU48,

B_OTU63, B_OTU65, B_OTU86), while females most prominently display higher abundance

of Akkermansia (B_OTU25) in addition to multiple OTUs corresponding to the family Rumi-
nococcaceae (B_OTU24, B_OTU77, B_OTU98) and genus Alistipes (B_OTU32, B_OTU34,

B_OTU97) (Fig 5B).

Gender often ranks high among host covariates associated with bacterial microbiota

[21,22,52,53]. In agreement with our findings, Borgo et al. and Zhernakova et al. already

reported higher bacterial diversity in female populations. It should be noted that Borgo et al.

reported gender specific changes in bacterial diversity exclusively for mucosa-associated

microbiota, while lumen-associated microbiota showed no alpha or beta diversity distinction

between genders [22,53]. Specific gender-associated patterns in bacterial community vary

among studies. Our observed changes are predominantly characterized by a rearrangement of

several taxa corresponding to Firmicutes, while Dominianni et al. most notably showed a

Fig 4. Age-associated changes in bacterial communities. Graph shows bacterial community Shannon diversity index

in relation to age. The linear regression indicates the increase of the Shannon diversity with age and is presented with a

95% confidence interval (A) (Pearson’s r = 0.213, P = 0.003). The bar plot shows Pearson correlations of bacterial

OTUs that significantly increase (blue) or decrease (red) in relative abundance with age (FDR< 0.05) (B).

https://doi.org/10.1371/journal.pone.0209209.g004
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female-associated decrease in Bacteroidetes and Borg et al. reports a female mucosa-associated

enrichment with Bifidobacterium and a depletion in Veillonellaceae [52,53]. These patterns do

not seem to be diet-related, since dietary groups in our cohort showed a balanced distribution

between genders. Additionally, both host covariates (gender and diet) showed non-related

changes in bacterial communities (nested PERMANOVA, P = 0.370). Nevertheless, it should

be noted, that energy metabolism varies between genders even under the same dietary regime

[54,55]. In agreement with previous studies, we conclude that gut microbiota shows gender-

specific patterns, but these seem to be cohort specific. Better understanding will follow from

an incorporation of gender-associated differences in physiology [56] and immune response

[57] into gut microbiota studies.

Analysis of fungal communities

Amplicon sequencing of ITS2 spacer region was used to investigate fungal communities. After

quality filtering we obtained an overall richness of 2158 OTUs corresponding to 195 fungal

genera, which is just one short of predicted 196 (Chao1 richness index), indicating that the

majority of the present fungal genera were most likely detected. After the removal of low abun-

dance OTUs (overall relative abundance < 0.01%) and rarefying the remainder to 950 reads

per sample we obtained 251 fungal OTUs (Fig 1), on average 7.5 OTUs per sample (S2 Table).

Analysed fungal community is largely dominated by representatives from Ascomycota (Fig

2B), further emphasized by the fact that the 4 most abundant fungal OTUs, Saccharomyces cer-
evisiae (F_OTU1), Candida albicans (F_OTU2) and unclassified species from genera Penicil-
lium (F_OTU3) and Debaryomyces (F_OTU4) (detected in 98.9%, 61.8%, 21% and 50% of

samples, respectively), together cover over 80% of total obtained reads. In comparison, it

requires top 82 bacterial OTUs to reach the same total read coverage. Fungal communities

exhibit low diversity and high interindividual variability. Individual fungal OTUs appear on

average in 5.6 out of 186 tested samples (3%). Consequently, only Saccharomyces cerevisiae
met the criteria for inclusion in the core community (Fig 3, S2 Table). However, it is highly

likely that substantial proportion of S. cerevisiae sequences were food derived.

Compared to bacteria, fungi introduce the additional problem of differentiating between

gut commensals and transient colonizers, which derive primarily from food. Generally, the

minimum criteria to consider a fungus as a potential commensal, is its successful growth at

Fig 5. Gender-associated differences in bacterial communities. A box plot presentation of Shannon diversity indices

in females compared to males (Kruskal-Wallis test, P = 0.014) (A). The bar plot presents LEfSe results showing LDA

values for OTUs, which were significantly increased in males (red) and females (blue).

https://doi.org/10.1371/journal.pone.0209209.g005
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37˚C [58]. Although multiple species meet this criteria, some studies rightfully question the

ability of fungi to persist in the gut microbiota [9]. Still, it is important to note that mucosa-

associated fungi reportedly show more stability compared to luminal communities [59]. Yeast

S. cerevisiae is usually among the most abundant fungi detected in the gut [9,60] and is also the

most prevalent as well as abundant fungal OTU in our study. It was shown though, that despite

the ability to grow at 37˚C, S. cerevisiae does not persist in the gut for more than about 3 days

[61], and is therefore not considered a true commensal. Fungi most often reported to colonize

the gut include representatives from the genera Candida, Malassezia, Cladosporium and yeast

from the Dipodascaceae family [8,62]. Other commonly detected fungi in the gut, which are

not able to grow at 37˚C, include foodborne species from the genera Debaryomyces and Peni-
cillium. These fungi are often used at different food processing stages or are present as

unwanted food contaminants. They can also comprise normal skin or oral microbiota [15,63–

66]. A recent publication investigated the composition changes of fungal communities during

periods of controlled diet [9]. The authors demonstrated the importance of food and the oral

cavity as the major sources of commonly detected fungi, showing that switching to a S. cerevi-
siae free diet or improving oral hygiene resulted in a significant decrease of S. cerevisiae or C.

albicans abundance in stool, respectively [9].

Differences in fungal communities associated with physical activity

Physical activity was the only significant covariate associated with fungal microbiome, explain-

ing 4.2% of interindividual fungal community variation (PERMANOVA using Bray-Curtis

distances, false discovery rate (FDR) < 0.05). The physical activity factor was defined in the

questionnaire with 4 categories depending on the time participants dedicated to sport and rec-

reational activities, ranging from none or occasional exercise to an active athlete. We found,

that more frequent physical activity correlated with an increase in the total fungal diversity

(Spearman’s r = 0.217, P = 0.003) and a decrease in the abundance of S. cerevisiae (F_OTU1)

(Spearman’s r = -0.217, P = 0.003) (Fig 6). Additionally we report, that S. cerevisiae was

significantly associated with lower overall fungal community diversity (Pearson’s r = 0.712,

P<0.001) (S1 Fig), further supported by negative correlations it exhibits with highly abundant

C. albicans (F_OTU2) and unclassified Debaryomyces (F_OTU4) (S3 Fig).

Fig 6. Changes in fungal microbiota associated with the reported rate of physical activity. Box plots presenting the

Shannon diversity indices (A) and S. cerevisiae abundance (B) according to the rate of reported physical activity.

Physical activity was defined with four categories, i.e. PA_1—occasional exercise; PA_2—exercise approximately once

a week; PA_3—exercise multiple times weekly; PA_4—active athlete.

https://doi.org/10.1371/journal.pone.0209209.g006
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Distinct patterns, associated with physical activity, were recently reported in relation to bacte-

rial communities. Authors mainly emphasized the physical activity-associated increase in bacte-

rial diversity and the decrease in relative abundance of Bacteroides [67,68], but we did not

observe any related changes in the bacterial community analysed in our cohort. We would like

to note, that the physical activity variable showed correlation with different dietary habits these

groups reported. Most notably, there were significant discrepancies in the proportion of partici-

pants with diet exempting or reducing meat consumption (veganism and vegetarianism). The

proportion of participants reporting veganism/vegetarianism was 8.7%, 8.9%, 29.3% and 50% for

the 4 groups ascending by the time dedicated to physical activity. Diet was also the second most

prominent covariate in the PERMANOVA test (explained variance (R2) of 5.5%, P = 0.007)

(Table 1), but did not manage to meet the false discovery rate (FDR) significance threshold.

The specific nature of fungal community compositions, especially the low richness and the

high interindividual variability, makes it challenging to determine significant correlations with

host factors. Conclusions from related studies confirm this observation, as Nash et al. were

unable to correlate any host factors with fungal community, and Auchtung et al. reported high

temporal variability, mainly attributed to short term diet [8,9]. To our knowledge, the only

other group that reported fungal community associated host covariates in a healthy population

was Strati et al., where authors showed age- and gender-associated changes in fungal commu-

nity, more specifically higher fungal richness in females compared to males, and in adults com-

pared to earlier stages of life [69].

Associations within and between bacterial and fungal communities

The Pearson correlation test was used to identify associations inside bacterial and fungal sets

of OTUs as well as between bacteria and fungi. A total of 41, 77 and 59 associations were

found for bacteria vs. bacteria, fungi vs. fungi and bacteria vs. fungi comparisons, respectively

(FDR< 0.05) (S2 and S4 Figs).

The bacterial communities were dominated by positive correlations with the only exception

of a weak negative correlation between Blautia (B_OTU2) and Prevotella (B_OTU4). We

found no indications of closely related bacterial groups exhibiting stronger correlations and

the number of correlations per individual phylum was proportional to its respective relative

abundance (S2 Fig).

Associations in the fungal community must be inspected with care because of the bias

introduced by low prevalence fungi. Here, strong associations occur as a result of co-occur-

rence in a small fraction of samples, potentially originating from the same food source. Conse-

quently, we observed significantly more associations in fungal community compared to

bacterial. When focusing solely on high prevalence fungi, we identified a negative correlation

between S. cerevisiae (F_OTU1) and both the C. albicans (F_OTU2) and the unclassified

Debaryomyces (F_OTU4) to be the most prominent (S3 Fig).

Detected associations between bacteria and fungi span across the top 6 most abundant bac-

terial phyla (Firmicutes, Bacteroides, Actinobactria, Proteobacteria, Verrucomicrobia and

Tenericutes) and top 2 most abundant fungal phyla (Ascomycota and Basidiomycota). Domi-

nated by positive correlations, they show random distribution and no preference towards any

particular taxonomic group (S4 Fig).

Conclusions

The variability in the healthy human gut microbiota remains largely unexplained despite

increasing effort to decipher the microbial patterns with host-specific and environmental fac-

tors. In this study we analysed bacterial and fungal communities in a cohort of 186 healthy
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individuals. Consistent with previous studies [8,9,62], we also report a low per sample fungal

diversity, accompanied by a high interindividual variability, which is most likely a conse-

quence of foodborne transient fungi. Out of 13 questionnaire-based host and environmental

factors we report 3 significant host covariates. These are age- and gender-associated differences

in bacterial communities and the rate of physical activity associated differences in fungal com-

munity. Fungal community is known to be largely affected by short-term diet, therefore we

assume that the observed patterns highly depend on different diets individuals reported

according to the time they dedicated to recreational activities and sport. We identified seven

bacterial core genera, out of which three (Faecalibacterium, Bacteroides and Roseburia) com-

monly appear as core candidates in related studies originating from different geographic

regions, including European, American and Mongolian cohorts. The consensus on these core

genera, especially in such a variety of studied populations, suggests their pivotal role in the gut,

that up to date remains undisclosed.

Supporting information

S1 Fig. Correlation of fungal OTUs with fungal community Shannon diversity. Bar plot

shows Pearson correlation coefficient for fungal OTUs that significantly increase (blue) and

decrease (red) with fungal community Shannon diversity index.

(TIF)

S2 Fig. Associations between bacterial OTUs. Coloured squares on the heat map indicate sig-

nificant Pearson correlations (false discovery rate (FDR) < 0.05) between bacterial OTUs. Blue

shades indicate positive and red shades indicate negative correlation.

(TIF)

S3 Fig. Associations between fungal OTUs. Coloured squares on the heat map indicate sig-

nificant Pearson correlations (false discovery rate (FDR) < 0.05) between fungal OTUs. Blue

shades indicate positive and red shades indicate negative correlation.

(TIF)

S4 Fig. Associations between bacterial and fungal OTUs. Coloured squares on the heat map

indicate significant Pearson correlations (false discovery rate (FDR) < 0.05) between bacterial

and fungal OTUs. Blue shades indicate positive and red shades indicate negative correlation.

(TIF)

S1 Table. Bacterial OTUs statistics and taxonomy. Table with all bacterial OTUs, percent of

samples they appear in, percent of total number of obtained reads they include and their

respective taxonomical classification (phylum and the highest taxonomical level to which they

reliably classify). Numbers in the parenthesis in the taxonomy column indicate the percent of

identity between OTU representative read and the best match in the RDP training set (v.9) ref-

erence base. Members of core community are highlighted with grey.

(XLSX)

S2 Table. Fungal OTUs statistics and taxonomy. Table with all fungal OTUs, percent of sam-

ples they appear in, percent of total number of obtained reads they include and their respective

taxonomical classification (phylum and the highest taxonomical level to which they reliably

classify). Numbers in the parenthesis in the taxonomy column indicate the percent of identity

between OTU representative read and best match in the UNITE reference base. Members of

core community are highlighted with grey.

(XLSX)
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S1 Appendix. Fungal sequence data files for seven samples not available on the Metage-

nomics RAST (MG-RAST) database server (http://metagenomics.anl.gov/) under the proj-

ect access number mgp85661 (https://www.mg-rast.org/linkin.cgi?project=mgp85661) and

the table with metadata for all samples.

(ZIP)
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