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Alzheimer’s disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other
suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens
promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by
genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells,
and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal,
effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as
those to nerve growth factor and tau, also observed in Alzheimer’s disease, may well be antibodies to pathogens, due to homology
between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary
tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction,
whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and
human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence
and offer hope for a cure in this affliction.

1. Introduction

Hundreds of genes have been implicated in Alzheimer’s
disease, many of which can be grouped into discrete sig-
nalling networks and pathways relevant to the various sub-
pathologies, risk factors, and biochemistry of Alzheimer’s
disease. Many of the environmental risk factors associated
with Alzheimer’s disease, including infectious agents (herpes
simplex, chlamydia pneumonia, and Borrelia burgdorferi) as
well as Vitamin A deficiency, hypercholesterolaemia, hyper-
homocysteinaemia or folate deficiency, oestrogen depletion,
cerebral nerve growth factor (NGF) deprivation, diabetes,
cerebral hypoperfusion (leading to hypoxia and hypogly-
caemia) or are able to promote cerebral beta-amyloid deposi-
tion (in the absence of any particular gene variant) in animal
models [1]. KEGG pathway and other analyses of the multi-
ple genes implicated in Alzheimer’s disease have shown that

subsets of susceptibility genes can be grouped into networks
that are relevant to each of these amyloidogenic pathways
(e.g., bacterial and viral entry pathways [1, 2], choles-
terol/lipoprotein function [3, 4], growth factor signalling
[5], folate and homocysteine pathways [6], insulin signalling
[7], and steroid or Vitamin A metabolism [8, 9]). A large
number of genes are also related to the immune network [10]
(see http://www.polygenicpathways.co.uk/alzkegg.htm and a
recent review for further details [1]). These gene subsets are
thus related to multiple external factors that are each able
to promote beta-amyloid deposition, suggesting that certain
genes are related to the causes of Alzheimer’s disease, (agents
able to provoke beta-amyloid deposition) rather than (and as
well as) to the underlying pathology of the disease itself.

Several studies have implicated the herpes simplex virus
in the aetiology of Alzheimer’s disease [11–13]. Viral DNA
is found in amyloid plaques [14], which are also heavily
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enriched in proteins used by the virus during its life cycle,
as well as in proteins related to the immune network [15],
and Immunoglobulin IgM, but not IgG seropositivity for
herpes simplex is predictive of the subsequent development
of Alzheimer’s disease [16]. IgM seropositivity is indicative
of viral reactivation which again can be induced by several
of the risk factors relevant to Alzheimer’s disease and its
underlying genetic pathways (e.g., NGF deprivation, 17-beta
oestradiol, hypoxia, or fever and interleukin 6 activation,
with the latter being common and general consequences of
infection [1]).

Along with herpes simplex, a number of other pathogens
have been implicated in Alzheimer’s disease and its associated
pathologies. The viral, bacterial, spirochete, and fungal
pathogens implicated in dementia or Alzheimer’s disease are
referenced at (http://www.polygenicpathways.co.uk/alzen-
vrisk.htm) and include HHV-6, Chlamydia pneumoniae, Hel-
icobacter pylori, periodontal pathogens involved in gum dis-
ease [17], Borrelia burgdorferi, and Cryptococcus neoformans.
HIV-1 is also able to provoke dementia with Alzheimer’s
disease pathology [18]. Of these, H. pylori eradication has
been reported to improve performance and increase lifespan
in Alzheimer’s disease patients [19], while two case reports
indicated virtually complete recovery from long-term (3
years) misdiagnosed dementia/Alzheimer’s disease following
antifungal treatment for C. neoformans infection [20, 21].
Many of these pathogens including herpes simplex, HHV-
6, C. Pneumoniae, H. pylori and the periodontal pathogen,
P. Gingivalis, have also been implicated in atherosclerosis
[22–25], while C. neoformans infection in rabbits induces an
increase in neutrophil superoxide production, plasma lipid
peroxidation, and an increase in inflammatory cells, fore-
runners of atherosclerosis [26]. Atherosclerosis of the carotid
arteries, or of the circle of Willis and leptomeningeal arteries,
is a significant predictor of risk in dementia or Alzheimer’s
disease and correlates with Alzheimer’s disease pathology
[27, 28]. Cerebral hypoperfusion (hypoglycaemia, hypoxia,
ischaemia, or carotid occlusion) or other factors linked to
atherosclerosis (e.g., high cholesterol or homocysteine levels)
are also able, per se, to induce cerebral beta-amyloid deposi-
tion in animal models (see above).

Genomewide association studies (GWAS) have now
identified a subset of genes which, along with APOE4 [29],
contribute a high proportion of genetic risk. These in-
clude clusterin (CLU), phosphatidylinositol-binding clathrin
assembly protein (PICALM) and complement receptor 1
(CR1) as well as the ATP cassette transporter ABCA7, Bridg-
ing integrator BIN1, a CD2-associated protein (CD2AP),
CD33, ephrin A1 (EPHA1), and a membrane-spanning 4-
domains, subfamily A (MS4A) cluster recently honed down
to MS4A2, although other genes within this cluster may also
be relevant [30, 31].

As discussed below, the major Alzheimer’s disease genes
implicated by the recent GWAS data, as well as APP and gam-
ma secretase, and previous GWAS results are majoritarily
involved in pathogen entry and defence, particularly in rela-
tion to herpes simplex, but also to other relevant pathogens,
and in the immune network. This suggests that genes,
pathogens, and the immune system act together to cause

Alzheimer’s disease, and that a focus on pathogen detection
and elimination should be a priority in the ageing at risk
population.

2. Methods

The genes identified in a number of recent genomewide
association studies are available at the GWAS repository at
the National Human Genome Research Institute http://www
.genome.gov/gwastudies/ [32] and, along with pre-GWAS
genes and environmental risk factors, at http://www.polygen-
icpathways.co.uk/alzenvrisk.htm. The genes returned from
very large sample sets (N > 10, 000) include ABCA7, APOE,
BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A2, MS4A4A,
MS4A4E, MS4A6A, and PICALM whose pro perties in re-
lation to diverse pathogens were identified by literature su-
rvey. While it is recognised that such genes, particularly
APOE, ABCA7, CR1, and clusterin, which are involved in
lipoprotein function and/or amyloid processing (see below),
may exert effects on other relevant branches of Alzheimer’s
disease pathophysiology, the focus of this paper is on path-
ogens and the immune system, which appear to be the com-
mon factors integrating this network. Throughout the text,
these and other genes implicated in Alzheimer’s disease from
the GWAS and pre-GWAS era are highlighted in bold and
appended to the various processes in which they are involved
(derived from a KEGG pathway analysis of these genes
http://www.polygenicpathways.co.uk/alzkegg.htm) Herpes
simplex binding proteins, and key interactors, currently
numbering over 450, are stocked and referenced at http://
www.polygenicpathways.co.uk/herpeshost.html. KEGG pa-
thway analysis of this interactome is provided at http:www
.polygenicpathways.co.uk//HERPESKEGG.htm. Expression
data are provided in Figure 1 and are also hyperlinked to
the BioGPS webserver http://www.biogps.gnf.org/, which
provides general gene information and mRNA expression
profiles for most human genes, based on custom arrays from
79 human issues [33, 34]. Predicted B-cell epitopes
from human beta-amyloid (1–42), nerve growth factor
(NP 002497.2), or the microtubule protein, tau (NP
001116538.2) were identified using the BepiPred server
http://www.cbs.dtu.dk/services/BepiPred/ [35] and their seq-
uences compared with pathogen proteomes (Borrelia burg-
dorferi, C. neoformans, Helicobacter pylori, herpes viruses
HSV-1, HSV-2, HHV-6, and the cytomegalovirus (HHV-5))
using the NCBI BLAST server (Protein versus protein:
BlastP) [36].

3. Results

3.1. The Complement System (ABCA7, CR1, CLU, CD2AP,
and Beta-Amyloid) Figure 2. Complement receptor 1
(highly expressed in myeloid CD33+ cells (bone marrow)
http://www.biogps.org/#goto=genereport&id=1378/) is a re-
ceptor for herpes simplex, adenovirus 5, the influenza virus
and HIV-1, as well as for a number of other pathogens,
including P. gingivalis, C. neoformans, Streptococcus pneu-
moniae, Staphylococcus aureus, and the malaria parasite,

http://www.polygenicpathways.co.uk/alzenvrisk.htm
http://www.polygenicpathways.co.uk/alzenvrisk.htm
http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
http://www.polygenicpathways.co.uk/alzenvrisk.htm
http://www.polygenicpathways.co.uk/alzenvrisk.htm
http://www.polygenicpathways.co.uk/alzkegg.htm
http://www.polygenicpathways.co.uk/herpeshost.html.
http://www.polygenicpathways.co.uk/herpeshost.html
http://www.polygenicpathways.co.uk//HERPESKEGG.htm
http://www.polygenicpathways.co.uk//HERPESKEGG.htm
http://www.biogps.gnf.org/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.biogps.org/#goto=genereport&id=1378/
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: The mRNA distribution of the major genes derived from GWAS in Alzheimer’s disease, as well as that of APP and gamma-secretase
components. Data are from the BioGps website.
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Plasmodium falciparum [37–43] and is a general clearance
receptor for complement opsonised pathogens [44]. Clu-
sterin, predominantly expressed in brain, liver, and testis,
(http://www.biogps.org/#goto=genereport&id=1191/) is a
ligand for the lipoprotein receptor, megalin (LRP2) that is
involved in beta-amyloid clearance, and also a complement
inhibitor that prevents the formation of the membrane
attack complex, a channel that is inserted into pathogen
membranes, killing them by lysis [45]. This complex is
also seen in Alzheimer’s disease neurones [46, 47]. The
herpes simplex virus interacts with other members of the
complement cascade, by binding to the complement com-
ponent and CR1 ligand, C3 and its derivatives and to CD59,
a further inhibitor of the formation of the complement
membrane attack complex (see review) [48]. C. pneumoniae
interacts with this pathway by binding to properdin (CFP), a
protein that stabilises the complement C3 and C5 convertase
and contributes to the formation of the membrane attack
complex [49]. CD59 is also incorporated into chlamydial
inclusion bodies [50]. Complement component C3 binds to
melanins derived from C. neoformans [51] and cryptococcal
capsules bind to C3 and activate the alternative complement
pathway [52]. Complement component C3 also binds to the
bacterial surface of H. pylori, and the complement pathway

is involved in bactericidal effects against this pathogen
[53]. P. gingivalis also uses complement receptor 3 (an int-
egrin complex of integrin, alpha M/integrin, beta 2 (ITGAM/
ITGB2)) for entry [54], and herpes simplex glycoprotein C
also binds to this complex [55] as does C. neoformans [56],
while ITGB2 is involved in C. pneumoniae entry in human
coronary artery endothelial cells [57]. This macrophage com-
plement receptor, also known as MAC-1, generally mediates
the phagocytosis of pathogens coated with complement C3
derivatives [58]. T. C3 also binds to P. gingivalis although the
pathogen has devised an elegant escape strategy involving
digestion of complement components C3, C4, and C5 by
bacterial secreted proteases, known as gingipains [59].

The complement inhibitor CD59 is also a ligand for CD2,
and CD59 activation of this receptor, presumably involving
CD2AP, activates T cell receptor signalling resulting in the
secretion of interleukins (IL1A, IL2 and IL6) and granulocyte
macrophage colony stimulating factor (CSF2) [60, 61].

ABCA7 plays a role in the complement-mediated activa-
tion of phagocytosis in macrophages. Complement compo-
nent C1q, which binds to IgM or IgG complexed antigens
(relevant to most pathogens), binds to macrophage calreti-
culin and LRP1 and C1q binding to macrophages markedly
increased the expression of both LRP1 and ABCA7, effects

http://www.biogps.org/#goto=genereport&id=1191/
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which enhance the phagocytic abilities of macrophages [62].
C1q also binds to complement receptor CR1, an effect
involved in the immune clearance of opsonised pathogens
[63]. C1q also binds to beta-amyloid and is involved in
amyloid-related complement activation [64].

3.2. Clathrin-Mediated Endocytosis (BIN1, CLU, CD2AP,
PICALM) Figure 3. Mammalian surface receptors are endo-
cytosed, via clathrin-dependent or independent processes
(KEGG: ADRB1, ADRB2, BIN1, CAV1, CD2AP, CLU,
DNM2, HLA-A, HSPA1B, LDLR, NTRK1, PICALM) and
either recycled or tagged for destruction by the ubiq-
uitin/proteasome system (KEGG: UBD, UBE2I UBQLN1,
UCHL1) or by lysosomes (KEGG: ABCA2, ARSA, ARSB,
CTSD, CTSS, NPC1, NPC2, LIPA). Early endosomes receive
traffic from the cell surface, which is transferred to late
endosomes for traffic to lysosomes. Late endosomes also
receive traffic from the trans-Golgi network used to syn-
thesise proteins and from phagocytic pathways (KEGG:
CTSS, DLD, DLST, DNM2, GAB2, HLA-A, HLA-DRB1,
MPO, NOS1, OLR1, PIK3R1, PSK1, TAP2, TLR2, TLR4).
Endosomal traffic moves along the microtubule (GSK3B,
MAPT, TTLL7) or actin/myosin (MYH8, MYH13) networks
via dynein/dynactin (DM2, DNMBP) or kinesin (KIF18B,
KIF20B, KNS2), related motors and Rho GTPases, and vac-
uolar sorting proteins (SORCS1, SORCS2, SORCS3, SORL1)
inter alia [65]. These processes are usurped by many viruses

and other pathogens to gain access to cells and to various
intracellular compartments, while the lysosomal or proteaso-
mal pathways may be used to destroy pathogen proteins [66].

Clathrin-mediated endocytosis is one of several processes
used by Helicobacter pylori, herpes simplex, and many other
viral, bacterial and fungal pathogens to gain entry to cells
[67–69].

PICALM, expressed primarily in myeloid and den-
dritic cells of the immune network http://www.biogps.org/
#goto=genereport&id=8301/, plays a key role in clathrin-
related endocytosis, binding to clathrin heavy chains (CLTC
and CLTCL1), and recruiting the clathrin and adaptor
protein 2 (AP-2) to the plasma membrane. The AP-2 com-
plex is a heterotetramer consisting of permutations of two
large adaptins (alpha (AP2A1, AP2A2)) or beta (AP2B1),
a medium adaptin (AP1M1, AP1M2), and a small adaptin
(sigma AP2S1). PICALM controls the endocytosis of the
cation-independent mannose-6-phosphate IGF2 receptor
(IGF2R) [70], one used by Herpes simplex for entry and cell-
to-cell transmission [71] and by C. pneumoniae for cellular
entry [57]. IGF2R is also a component of late endosomes
disrupted by the Helicobacter pylori VacA cytotoxin [72]. The
mannose-6-phosphate receptor binds to clusterin. PICALM
also binds to a nuclear exportin crm-1 (XPO1) used by the
herpes simplex virus during its life cycle [48].

Gamma-adaptins (GGA, GGA2, GGA3) bind to clathrins
and mannose-6-phosphate receptors and regulate protein

http://www.biogps.org/#goto=genereport&id=8301/
http://www.biogps.org/#goto=genereport&id=8301/


10 International Journal of Alzheimer’s Disease

traffic between the Golgi network and the lysosome and
the sorting of mannose-6-phosphate receptors (IGF2R and
M6PR) at the trans-Golgi network [73]. This network is also
related to important Alzheimer’s disease susceptibility genes
as the interactions culled from NCBI gene show that GGA1
binds to the sortilin-related receptor, SORL1, and the APP
cleaving beta-secretase BACE2, while GGA2 binds to the
beta-secretases BACE1 and BACE2, SORL1 and the prolyl-
isomerase PIN1.

CD2AP, primarily expressed in dendritic cells and B
lymphoblasts http://www.biogps.org/#goto=genereport&id=
23607/, is a scaffolding molecule that regulates the actin cy-
toskeleton and is primarily associated with the T-lymphocyte
marker protein CD2. CD2 stimulates T cell activation and
is involved in the creation of contacts between antigen
presenting cells and T cells (the immunological synapse),
effects mediated via CD2AP and clathrin [74]. CD2AP is also
involved in the entry of the helicobacter vacuolating toxin
VacA and connects the actin cytoskeleton to early endosomes
containing VacA [75]. CD2 is cleaved by gingipain proteases
from P. gingivalis [76].

CD2AP also binds to the actin-bonding protein, cor-
tactin (CTTN), a protein that is exploited by several bacteria
(Escherichia coli, Shigella, Neisseria, Rickettsia, Chlamydia,
Staphylococcus, Cryptosporidium, and Helicobacter pylori),
fungi (Candida Albicans), and viruses (Vaccinia) enabling
them to modify the actin cytoskeleton, which they use for
transport [77–79]. CD2AP has not been specifically associ-
ated with herpes simplex, although the actin cytoskeleton is
exploited by this and many other viruses [80].

CD2AP also associated with E-Cadherin, (CDH1) [81].
The ectodomain of E-cadherin is involved in bacterial
adherence to mammalian cells [82]. E-Cadherin binds to
the H. pylori toxin CagA [83] and is also cleaved by the
Helicobacter pylori protein HtRA allowing the pathogen
to invade the intracellular compartment [84]. CDH1 and
CDH5 expressions are increased by C. pneumoniae infection
of human brain microvascular endothelial cells, contributing
to vascular permeability changes and atherosclerosis [85].

Bridging integrator 1 (BIN1), also known as amphi-
physin 2, is primarily expressed in the pineal and skeletal
muscle, or otherwise ubiquitously http://www.biogps.org/
#goto=genereport&id=274/. It is also involved in the clath-
rin-mediated endocytosis machinery [86] and binds to dy-
namins that regulate the clathrin network [87] including
DNM1 and the herpes simplex binding partner DNM2
[88] and to clathrins and the alpha adaptins, AP2A1 and
AP2A2 [89]. BIN1 also participates in phagocytosis in
macrophages and is associated, but only transiently, with
early phagosomes; however, it is retained on vacuoles con-
taining Chlamydia pneumoniae, an effect that reduces the
ability of the macrophage system to kill the bacteria via
nitric oxide generation. Macrophages expressing a dominant
negative BIN1 internalise C. pneumoniae, but do not allow
their killing [90]. BIN1 also binds to a number of alpha
integrins (ITGA1, ITGA3, and ITGA6) [91]: integrins are
used for attachment by many viruses, bacteria, and fungi
and may serve as pattern recognition receptors regulating the
immune response [92]. Individual integrins bind to many

others, forming heteromeric complexes; for example, ITGA1
binds to ITGA3 or ITGA6, while ITGA3 binds to ITGB1 (a
receptor for the H. pylori protein CagA [93]), ITGB4, or
ITGB5, and ITGA6 binds to ITGB1 and ITGB4 (data from
NCBI gene).

3.3. The Immune Network (APOE, BIN1, CD2AP, CD33,
MS4A2) (Figure 4). CD33, mainly expressed in myeloid
cells, monocytes, and dendritic cells (http://www.biogps.org/
#goto=genereport&id=945/), is a member of the sialic acid
binding Immunoglobulin g-like lectin (SIGLEC) family.
CD33-related SIGLECs regulate adaptive immune responses
and are also important as macrophage pattern recogni-
tion receptors for sialylated pathogens, including enveloped
viruses [94]. CD33 binds to alpha2-3- or alpha2-6-linked
sialic acids (N-acetyl neuraminic acid) [95]. These particular
sialic acids are expressed on the surface envelope glyco-
proteins (B, D, and H) of the herpes simplex virion, and
these residues are required for viral entry into cells [96].
N-acetyl neuraminic acid is expressed by C. neoformans, is
involved in fungal adhesion to macrophages [97], and is also
a component of the cell wall of B. burgdorferi [98], while
Helicobacter pylori adhesins also bind to this particular form
of sialic acid [99, 100] as does P. gingivalis [101].

BIN1, as well as its relationship to the clathrin mediated
endocytosis machinery, also regulates the expression of
indoleamine 2,3-dioxygenase (IDO1), an enzyme that cat-
alyzes the first rate-limiting step in tryptophan metabolism
to N-formyl-kynurenine [102]. IDO1 upregulation is an
important defence mechanism against pathogenic bacteria,
many of which are unable to synthesise tryptophan. Their
survival is compromised by the diversion of tryptophan
metabolism to kynurenines [103]. This IDO1 response is also
deleterious to other pathogens and parasites, including T.
gondii, and to a number of viruses, including herpes simplex
and other herpes viruses [104]. IDO1 protein expression is
localised to plaques and tangles in the Alzheimer’s disease
brain. IDO1 activation can lead to the production of toxic
tryptophan derivatives such as 3-hydroxyanthranilic acid or
the N-methyl-D aspartate receptor agonist and excitatory
neurotoxin, quinolinic acid [105] (GRIN2B, GRIN3A).
Plasma tryptophan levels are also lower in the ageing pop-
ulation and in Alzheimer’s disease, a pattern accompanied
by immune activation, and by increased concentrations of
quinolinic acid [106, 107].

MS4A2, expressed mainly in the tonsils, lymph nodes,
B cells, and dendritic cells http://www.biogps.org/#goto=
genereport&id=931/, is a component of the immunoglobulin
E (IgE) receptor, which is involved in allergic responses in
which allergens bound to receptor bound IgE result in the
activation of allergic mediators such as histamine [108].
Mice immunised with inactivated herpes simplex develop
IgE-specific antibodies to the virus [109]. High levels of
IgE are also observed in man following recurrent herpes
simplex infection [110] and human IgE antibodies are also
known to interact with herpes family viruses including HSV-
1 and 2 and the Epstein-Barr and cytomegalovirus [111]
and also to C. pneumoniae, H. pylori, and B. burgdorferi
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[112–115]. IgE-related allergic responses are also involved in
C. neoformans infection [116]. Other members of this gene
cluster (including MS4A4A, MS4A4E, and MS4A6A) are
also structurally related to the immunoglobulin E receptor
and to CD20 (MS4A1) and also regulate B cell and T cell
proliferation and/or differentiation [117, 118].

EPHA1 is an ephrin receptor, primarily expressed in
the liver and otherwise ubiquitously (http://www.biogps.org/
#goto=genereport&id=2041/). Only three protein/protein
interactions for EPHA1 are reported in the NCBI gene inter-
action section, including its ligand EFNA1, the anaplastic
lymphoma receptor tyrosine kinase (ALK), and a SMAD-
specific E3 ubiquitin protein ligase 2 (SMURF2). EFNA1
is one of several proteins identified as being important
in the entry of C. pneumoniae into human coronary ar-
tery endothelial cells [57]. SMURF2 is known to bind to
the VP22 tegument protein of herpes simplex [119] and
plays a role in clathrin-mediated endocytosis and the sub-
sequent ubiquitin-related proteasomal degradation of TGF
beta receptors, to which it binds [120]. Clusterin is a
ligand for TGF beta receptors (TGFBR1/TGFBR2) [121].
TGF beta signalling exerts immunosuppressive effects and
inhibits host immunosurveillance and the recruitment of
immunocompetent cells by chemokines [122]. ALK is
ubiquitously expressed (http://www.biogps.org/#goto=gene-
report&id=238/). It plays a role in neural development,
and its expression decreases with age [123]. ALK is best

characterised via its relationship with lymphomas, caused
by ALK gene fusion with any of several other housekeeping
genes [124]. Its key involvement in lymphoma suggests a role
in the immune network although the function of the normal
ALK protein is poorly understood.

3.4. Lipoprotein Related (APOE, ABCA7, CLU) (Figures 2 and
5). ABCA7 is an ATP-binding cassette transporter, predom-
inantly localised in the pineal gland and cells of the immune
network (T cells, natural killer cells, and dendritic cells
http://www.biogps.org/#goto=genereport&id=10347/). The
lipoproteins APOA1 and APOE are substrates for ABCA7,
and in cultured HEK-293 cells, plasma membrane-situated
ABCA7 increases the efflux of phosphatidylcholine and
sphingomyelin efflux to APOA1 and APOE, with no effect on
cholesterol efflux [125]. However, cholesterol efflux to lipid-
laden APOE, but not to lipid free APOE, is increased by
ABCA7 expression in HEK-293 cells [126]. Sphingomyelin
is enriched in extracellular herpes simplex viral membranes:
this sphingomyelin, together with phosphatidylserine, is
collected by the viral envelope during viral passage from
the nuclear membrane to the exocytosis pathway [127].
Herpes viral infection leads to an increased incorporation
of phosphate into membrane sphingomyelin of the host
[128]. Inhibition of sphingomyelinase has also been shown
to markedly reduce herpes simplex viral reproduction [129]

http://www.biogps.org/#goto=genereport&id=2041/
http://www.biogps.org/#goto=genereport&id=2041/
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and also inhibits the antifungal effects of neutrophils against
C. neoformans infection. Sphingomyelin is a receptor for
the Helicobacter toxin VacA [130] and is also incorporated
into inclusion bodies in C. pneumoniae-infected cells [131].
Phosphatidylcholine plays an important role in the fusion
of herpes simplex glycoproteins B and H with the host cell
lipid membrane, a process used in viral entry [132]. Phos-
phatidylcholine is also able to trigger capsular enlargement
in C. neoformans infection [133].

ABCA7 expression increases the extracellular surface
deposition of ceramide (derived from sphingomyelin) [134].
Ceramide, a potent activator of apoptosis, as well as its down-
stream target, caspase 3 (CASP3) are both able to reactivate
the herpes simplex virus from latency [135]. Ceramide is also
incorporated into C. pneumoniae inclusions, an effect that
may play a role in the antiapoptotic effects of this bacterium
[136]. APOA1 exerts antiviral effects against herpes simplex
and inhibits viral entry into cells as well as viral-induced
cell fusion and intercellular spread [137]. In macrophages,
ABCA7 is expressed intracellularly and does not participate
in cholesterol or phospholipid efflux, instead playing a role
in the phagocytosis of apoptotic cells, an important general
defence mechanism against invading pathogens [62, 138].

3.4.1. Apolipoprotein E. Possession of the APOE4 allele facil-
itates the entry and transmission of herpes simplex in mice
models [139]. In man, APOE is also involved in hepatitis
C, HIV-1, and herpes simplex infectivity [140–143], and
APOE4 facilitates the binding of C. pneumoniae elementary
bodies to host cells [144].

APOE mRNA is primarily expressed in the liver,
adipocytes; kidney and brain, with very low expression in the
peripheral immune network (http://www.biogps.org/#goto=
genereport&id=348/) but nevertheless plays an important
role in the immune system. For example, the presence of the
APOE4 allele is associated with an enhanced macrophage
inflammatory response, and cytokine responses to the
intracerebral injection of lipopolysaccharide are increased
in APOE4 transgenic mice, which also exhibit increased
microglial activation. The anti-inflammatory effects of 17-
beta-oeastradiol on microglia are also reduced in such
animals [145, 146]. C-reactive protein (CRP) levels are also
decreased in APOE4 carriers [145–147]. CRP is an acute
phase protein that binds to phosphocholine on dead or
dying cells and on bacteria, subsequently activating the
complement pathway [148]. Resistance to infection (Klebsiel-
la pneumoniae) or endotoxaemia is also decreased in APOE
knockout mice [149].

In addition, atherosclerosis is induced or worsened by
infection with a number of relevant pathogens (Cytome-
galovirus, herpes simplex, Helicobacter pylori, influenza, C.
pneumoniae or P. gingivalis) in APOE knockout mice [150–
156]. Helicobacter pylori is able to promote atherosclerosis
in heterozygous APOE (+/−) LDLR (+/−) mice, which
is associated with an immune response to the bacterial heat
shock protein hsp60 [157].

3.5. Other GWAS Genes (Figure 4). Prior to the very large
GWAS collaboration, several other genes had been identified
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in smaller genomewide studies (APOC1, CELF2, DISC1,
FAM113B, GAB2, MTHFD1L, PAX2, PCDH11X, PVRL2
RFC3, SASH1, TOMM40, TTLL7, and ZNF224). PVRL2 is
a receptor for herpes simplex (HSV-1 and HSV-2) [158],
and the mitochondrial translocator, TOMM40, a receptor
for certain chlamydial species [159]. The replication factor
RFC3 is part of a complex necessary for human DNA
polymerase activity, a process exploited by many viruses
including herpes simplex, whose virion component ICP34.5
binds to proliferating cell nuclear antigen (PCNA), an RFC3
binding partner and also a cofactor for DNA polymerase
[160]. ZNF224 is a transcriptional repressor binding to the
protein arginine methyltransferase, PRMT5 [161]. Protein
arginine methylation is important in viral infection and
replication, as well as in cytokine signalling, and a related
arginine methyltransferase, PRMT1, regulates herpes sim-
plex replication via methylation of the ICP27 viral gene
[162].

DISC1 is a component of the microtubule-associated
dynein motor complex used in viral traffic [163]; TTLL7
(tubulin tyrosine ligase-like family, member 7) also regulates
tubulin phosphorylation [164] and can again be related
to viral traffic along the microtubule network (see below).
CELF2 (also known as CUGBP2) is a member of the
APOBEC1 cytidine deaminase mRNA editing complex that
also controls herpes simplex viral replication [165]. GAB2

http://www.biogps.org/#goto=genereport&id=348/
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is a member of the GRB2-associated binding protein family
which act as adapter hubs transmitting signalling via cy-
tokine and growth factor receptors, and T- and B-cell
antigen receptors (definition from NCBI gene), while PAX2
inhibits the expression of the antimicrobial peptide beta
defensin (DEFB1) [166], a gene associated with HSV-1
and cytomegalovirus seropositivity in children with acute
lymphoblastic leukaemia [167], as well as with H. pylori or
chlamydial infections [168, 169], also endowed with anti-
microbial activity against C. neoformans and other pathogens
[170]. MTHD1L (methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 1-like) is involved in the mitochondrial
synthesis of tetrahydrofolate which in turn is important in
the de novo synthesis of purines and thymidylate and in
the regeneration of methionine from homocysteine (defini-
tion from NCBI gene). Many pathogens, including herpes
simplex, express thymidylate kinases, which are important
for viral replication and a target for acyclovir [171]. Hyper-
homocysteinaemia correlates with C. pneumoniae IgG im-
munoreactivity in carotid artery atherosclerosis [172] and
is also associated with H. pylori infection in the context
of atherosclerosis [173]. The apolipoprotein APOC1 is a
component of high-density lipoprotein: herpes simplex is
present in all lipoprotein blood fractions in blood (VLDL,
LDL and HDL) and the lipid component of these lipopro-
teins binds to viral glycoprotein B [174] (c.f. APOA1,
APOA4, APOA5, APOC1, APOC2, APOC3, APOC4, APOD,
and APOE). No immediately apparent pathogen-relevant
interactions were found for FAM113B (expressed exclusively
in T cells, dendritic cells, and natural killer cells http://
www.biogps.org/#goto=genereport&id=91523/), PCDH11X
(which is ubiquitously expressed http://www.biogps.org/
#goto=genereport&id=27328/), or SASH1 (primarily exp-
ressed in the brain and lung although also in other tissues,
including the immune network http://www.biogps.org/#go-
to=genereport&id=23328/) although the pathogen/immune
theme is clearly carried through, particularly in relation to
herpes simplex, in this second rank of Alzheimer’s disease
susceptibility genes.

3.6. Beta Amyloid Processing (Figure 2). APOE, clusterin,
and complement receptor 1 play key roles in beta amy-
loid clearance as do two further herpes simplex binding
proteins APOA1, and alpha-2 macroglobulin (A2M). This
is primarily mediated via lipoprotein receptors. A2M, or
APOE-bound Aβ, is cleared by the lipoprotein receptor
LRP1, while LRP2 (megalin) clears clusterin-bound Aβ.
LRP8 is a receptor for both APOE and clusterin. APOA1
is also involved in beta-amyloid clearance via its transporter
ABCA1. The role of ABCA7 has not been examined,
although APOA1 is also a ligand for this transporter (see
above). The Varicella Zoster and herpes simplex glycoprotein
E binding protein, insulin-degrading enzyme, are also
involved in beta-amyloid degradation, as is caspase-3 which
is activated by the herpes simplex viral US3 kinase. The
HSV-1 binding protein, complement C3 is also a ligand for
LRP1 and LRP8, both of which play a role in C3 cellular
uptake. Beta amyloid in the bloodstream is processed by its
binding to complement C3, which subsequently binds to

complement receptor 1 on erythrocytes. The effects above
are referenced in a recent review [48].

Clathrin-dependent endocytosis is also involved in the
internalisation and recycling of neuronal APP, a procedure
necessary for the subsequent cleavage of APP and the
generation of beta-amyloid [175, 176], and in the neuronal
[177], but not the microglial uptake of both soluble and
aggregated beta-amyloids, the latter representing an impor-
tant rout of disposal [178]. However, while knockdown of the
clathrin assembly protein AP180 in a neuronal cell line does
reduce beta-amyloid generation, PICALM knockdown does
not [179]. The accumulation of beta-amyloid in the brain
interstitial space, related to the prior endocytosis of APP,
is clathrin dependent [180]. Clathrin-mediated endocytosis
is relevant to many receptors, including members of the
lipoprotein family (LRP1, LRP2, LRP8, LDLR, VLDLR)
[181], all of which are involved in beta-amyloid clearance,
as well as in cholesterol and lipoprotein physiology [182].

ABCA7 plays a role in beta-amyloid secretion, which is
increased in Chinese hamster ovary cells expressing APP and
ABCA7. This was related to an effect on APP intracellular
retention, rather than on secretase-mediated proteolysis of
APP [126].

Gamma-secretase cleaves APP, and other gamma-se-
cretase substrates also play key roles in APP processing
(ADAM10) [183], lipid and cholesterol function (LRP1,
LDLR, VLDLR), and other processes relevant to Alzheimer’s
disease, for example, NOTCH signalling [184].

No other immediately apparent relationships with beta-
amyloid could be found by literature survey for CD2AP,
CD33, and EPHA1 or for MS4A-related proteins, although
such are not precluded.

3.6.1. The Microtubule Network and Tau Phosphorylation.
Many pathogens, including herpes simplex, helicobacter,
chlamydiae, P. gingivalis, and C. neoformans [185–188], use
the microtubule network that serves as a useful railway track
between various cellular compartments, and may hijack
dynein and kinesin motors for this purpose (see http://www
.polygenicpathways.co.uk/herpeshost.html for herpes sim-
plex). Tau (MAPT) stabilises microtubules by interacting
with tubulins and promoting microtubule assembly [189].
When tau is phosphorylated, by any of several kinases,
microtubules become disorganised. Tau hyperphosphoryla-
tion and neurofibrillary tangles are among the core patholo-
gies of Alzheimer’s disease [190] and can be promoted by
herpes simplex infection [191]. In relation to viral/human
protein homology, herpes simplex proteins are homologous
to a number of kinases known to phosphorylate tau (GSK3A,
GSK3B, MAPK1, and CAMK2B) suggesting that tau phos-
phorylation could be a direct result of a viral kinase [192].

3.6.2. APP and Gamma Secretase. APP plays a key role in the
herpes simplex life cycle and is involved in its intracellular
transport [193], an effect likely related to the ability of both
APP and the herpes simplex protein, US11, to bind to the
APP and kinesin binding protein APPBP2 (also known as
pat1) [194, 195].
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The AntiMicrobial Effects of Beta-Amyloid. Beta-amyloid
is an antimicrobial peptide with broad spectrum activity
against a variety of yeasts and bacteria, effects that were
attenuated by anti-Aβ antibodies [196], Beta-amyloid also
has antiviral effects and, like acyclovir, attenuates the stim-
ulatory effects of herpes simplex on miRNA-146a levels
in neuronal cells [197]. Beta-amyloid also activates innate
immune responses via the activation of pattern recognition
receptors, such as Toll receptors (TLR2, TLR4), which are
also involved in beta-amyloid clearance [198, 199]. The
antimicrobial, antiviral, and immunostimulant properties
of beta amyloid are, however, likely to be abrogated by
the presence of beta-amyloid autoantibodies in the sera of
the ageing population and in Alzheimer’s disease [200].
As immunogenic regions of beta-amyloid are homologous
to similar regions within proteins expressed by all of the
principal pathogens discussed in this paper, such antibodies
are likely to be derived from antibodies raised to numerous
pathogens (see below).

Gamma Secretase: Localisation to Dendritic Cells and Cleavage
of Pathogen Receptors. Gamma secretase is constituted of
four components: the presenilins (PSEN1 or PSEN2), anteri-
or pharynx-defective-1 (APH1A), the Presenilin enhancer-2
(PSENEN), and nicastrin (NCSTN) [201]. While all comp-
onents are expressed in cerebral tissue, the major focus of
distribution is within cells of the immune network; dendritic
cells, myeloid cells, and monocytes for PSEN1 http://www
.biogps.org/#goto=genereport&id=5663/; dendritic cells and
natural killer cells for PSENEN http://www.biogps.org/#go-
to=genereport&id=55851/, dendritic cells and myeloid cells
for nicastrin http://www.biogps.org/#goto=genereport&id=
23385/ and B cells, dendritic cells, natural killer cells, and
myeloid cells for APH1A. The substrate, APP, is the only
gene in this set that appears to be preferentially distributed
in brain compartments, but, as with gamma-secretase
components, it is also highly expressed in dendritic cells
of the immune system (http://www.biogps.org/#goto=gene-
report&id=351/). The primary function of such cells is to
process antigens and present them to B cells and T cells.
They scout for and recognise pathogens via the agency of
numerous pattern recognition receptors, for example, Toll
receptors (TLR2, TLR4), or viral DNA sensors, expressed on
their surface [202, 203].

As well as cleaving APP, gamma secretase is involved
in the proteolysis of at least three herpes simplex receptors,
nectin 1 alpha (PVRL1) [204], and syndecans (SDC1, SDC2)
[205]. SDC1 is also a receptor for HIV-1, Hepatitis E, and
the human papillomavirus [206–209], while SDC3, also a
gamma secretase substrate, is an HIV-1 and papillomavirus
receptor [210, 211].

Several other gamma secretase substrates (reviewed
by Lleó and Saura [201]) also function as viral/pathogen
receptors, including ADAM10, a receptor for the cytotoxin
Staphylococcus aureus alpha-haemolysin [212], CD44, an
entry receptor for C. neoformans [213], CD46, a receptor for
adenoviruses, measles virus, human herpes virus 6 (HHV-
6), Streptococci, and Neisseria [214]: CD46 is also cleaved

by a protease secreted by P. gingivalis [215]. Desmoglein-2
is an adenovirus receptor [216], while rhinovirus receptors
include the lipoprotein receptors LRP1, LDLR, and VLDLR
[217, 218]. LDLR is also a hepatitis C receptor [219].
NOTCH1 and NOTCH4 are activated by the Epstein-Barr
virus [220, 221], while ERBB4 is a receptor for vaccinia
and other pox viruses [222]. The low affinity nerve growth
factor (NGFR) is a rabies virus receptor, [223], Ephrin B2,
(EFNB2) a Nipah virus and Hendra virus receptor [224] and
sialophorin (SPN), a receptor for the influenza A, and both
human and simian immunodeficiency viruses [225, 226] and
for the C. neoformans virulence factor, galactoxylomannan
[227]. Fractalkine (CX3CL1) binds to the cytomegalovirus
chemokine receptor, US28 [228], while the chemokine
CXCL16 is a scavenger receptor for phosphatidylserine and
oxidized low density lipoprotein [229]: phosphatidylserine
is the major lipid membrane component in most bacteria
[230]. Dystroglycan is a receptor for the Lymphocytic cho-
riomeningitis and Lassa fever viruses [231, 232] and also for
mycobacterium leprae (the Leprosy pathogen) [233].

The antimicrobial and immunostimulant effects of beta-
amyloid, the cleavage of a number of pathogen receptors
by gamma secretase, and the concentration of both APP
and gamma-secretase components in dendritic cells suggest
that a major function of this key group, implicated in both
familial and late onset Alzheimer’s disease, is dedicated to
pathogen defence, and that increased beta-amyloid genera-
tion is primarily a defence mechanism to rid the body (and
brain) of invading pathogens: This scenario is supported by
the ability of herpes simplex, C. pneumoniae, and B. burgdor-
feri to increase beta-amyloid deposition [234–236]. One
might expect many other pathogens to increase beta-amyloid
deposition, and that, as has been noted in atherosclerosis,
(a component of Alzheimer’s disease pathology), the final
extent of risk may depend upon the overall pathogen burden,
rather than upon any specific pathogen [237].

3.6.3. Autoantibodies Derived from Pathogens as Contributory
Causative Agents.. Viruses and bacteria express proteins con-
taining short contiguous amino acid stretches (pentapeptides
or more, or longer gapped consensi) that are identical to
those in human proteins: these pathogen/human consensi
number in millions and concern all human proteins [238–
241].

Autoantibodies, which are observed in many, if not most
human diseases, are often regarded as an epiphenomenon
of little consequence. However, they can traverse the blood
brain barrier [242] (which is compromised in Alzheimer’s
disease [243]) and are also able to enter cells, essentially by
hitching a ride on viruses, via high affinity IgG receptors (Fc
gamma receptors) (FCER1G) in the case of the rhinovirus,
or the SARS coronavirus, or via the tripartite motif protein,
TRIM21, in the case of adenoviruses, where they are able
to activate an intracellular immune attack. It would appear
that the cellular entry of antibody laden viruses is diverted
from their usually preferred receptors towards those used
by antibodies [244–246]. This may be relevant to the MS4A
family. Fc gamma receptors are localised in microglia and
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astrocytes in the brain and their expression is upregulated by
blood brain barrier disruption [247], while TRIM21 appears
to be exclusively localised in peripheral immunocompetent
cells (http://www.biogps.org/#goto=genereport&id=6737/).

This ability places autoantibodies in a rather more
sinister context, as their targeting of extracellular and intra-
cellular human proteins would be expected to effect protein
knockdown, a strictly immunopharmacological effect, as
well as immune attack.

In multiple sclerosis, schizophrenia, and cystic fibrosis,
as well as in Alzheimer’s disease, numerous autoantigens
targeted by the autoantibodies reported in these conditions,
contain peptide sequences identical to those in the pathogens
also implicated in the disease. Such regions of homology are
focalised within epitope regions of the human autoantigen
[192, 248–250]. In Parkinson’s disease, antibodies to the
Epstein-Barr virus, which has been implicated in posten-
cephalitic adult and juvenile Parkinsonism, are also known
to cross-react with synuclein, a key protein involved in neu-
rodegeneration in this disorder [251–253]. In addition, 22
autoantigens reported in HIV-1/AIDS contain HIV-1/human
matching sequences [254], supporting the contention that
autoantibodies are in many cases antibodies initially raised
to pathogens, which because of this homology, then target
their human homologues. It has been argued that slightly
dissimilar, rather than exact matches, are the more malignant
in terms of autoimmunity, being less likely to be regarded as
self, while the antibodies would retain low affinity for human
counterparts [254, 255].

Autoantibody production would also be sustained, even
after pathogen elimination, by continued encounter of
the human homologue. The production of autoantibodies
must be dependent upon the extent of pathogen/human
matching, and thus by genes which determine human
protein sequences. These pathogen/human matches are also
highly and significantly enriched in the products of sus-
ceptibility genes implicated in Alzheimer’s disease, multiple
sclerosis, and schizophrenia [192, 248, 250]. Many genes
related to Alzheimer’s disease, including those described
above, are involved in the immune network [10, 256], and
the propensity for developing autoantibodies to particular
proteins is also genetically determined and inherited [257].
Thus, despite the fact that all human proteins likely possess
pathogen homologues, whether or not autoantibodies will
be produced will depend on the extent of human/pathogen
matching (determined by human genes and the strain of
pathogen encountered), on whether the pathogen protein is
deemed as self or nonself (a factor determined soon after
birth) and on other genetic factors related to the immune
network, and autoimmunity. Somatic hypermutation, that
drives the creation of multiple antibodies and which selects
against those reacting to self, is disrupted in autoimmune
disorders [258]. These links suggest an interplay, applicable
to many diseases, where susceptibility gene products, risk
promoting pathogens and autoimmunity can all be related
via protein sequence homology.

It has also been noted that autoantigens have a tendency
to relate to proteins known to bind to dermatan sulphate,
a component of dead cells [259] and a constituent of

glycosaminoglycan receptors for many bacteria and viruses
[260].

3.6.4. Sequence Comparisons: Beta-Amyloid, NGF, and Tau
versus Pathogen Proteins. All three of these proteins are
autoantigens in Alzheimer’s disease and were chosen for
analysis because of the ability of their antibodies to promote
features of Alzheimer’s disease, in vivo. In mice, immuni-
sation with neuronal tau produces neurofibrillary tangle-
like structures, axonal damage, and gliosis, as in Alzheimer’s
disease [261]. In addition, in transgenic mice, initially
expressing NGF antibodies only in lymphocytes, NGF anti-
bodies subsequently enter the brain provoking extensive
cortical degeneration, cholinergic neuronal loss, tau hyper-
phosphorylation, and beta-amyloid deposition [262]. Beta-
amyloid autoantibodies are also able to promote meningoen-
cephalitis, both in laboratory models and in clinical trials
[263, 264]. Beta-amyloid plaques contain numerous inflam-
matory proteins, and even without meningoencephalitis,
these are commonly found within the walls of meningeal and
medium-sized cortical arteries in Alzheimer’s disease [265].

Almost the entire length of the tau protein (638/776
amino acids = 82.2%) was predicted as immunogenic (B cell
epitope), as defined by the server set cutoff index of 0.35. For
the analysis in Table 1, only regions of the tau protein with
an immunogenicity index >2.5 were examined for homology.
For other proteins (NGF and beta-amyloid), the analysis
concerned immunogenic regions above the cutoff value of
0.35.

All pathogens express proteins with homology to each
autoantigen, specifically within predicted B-cell epitope
regions of the human autoantigen (Table 1), suggesting that
antibodies raised to any could be responsible for targeting
these human proteins, under the appropriate circumstances.
Perversely, the successful elimination of the pathogen via
antibody production could set in motion the very autoim-
mune responses that may be crucial to the development
of Alzheimer’s disease, a Pyrrhic victory, which would also
be promulgated by any further encounter with these very
common pathogens, or by structurally related proteins from
other pathogens, as well as by continual encounter of the
human autoantigen homologue (see Section 3.6.5).

As well as autoantibodies to these three proteins, a num-
ber of autoantibodies targeting highly relevant proteins have
been reported in Alzheimer’s disease. These have functional
effects on their target proteins and include antibodies that
block the activity of ATP synthase, induce apoptosis, and
increase the cellular uptake of high density lipoprotein [266,
267], antibodies to cholinergic neurones that cause immu-
nalysis of brain synaptosomes [268], antibrain antibodies
that enhance intraneuronal beta-amyloid deposition [269] as
well as antibodies to the nicotinic receptor CHRNA7, that
displace its ligand alpha-bungarotoxin [270]: autoantibodies
to the receptor for advanced glycation products (AGER)
[271], to the antimicrobial peptide S100B, have also been
reported [272].

3.6.5. Population Genetics: Susceptibility Genes Related to the
Cause of the Disease, rather than to the Disease Itself. Using

http://www.biogps.org/#goto=genereport&id=6737/
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Table 1: Viral, bacterial, and fungal protein homology with beta-amyloid (top), NGF (middle), or tau (bottom); Predicted B cell epitope
segments were compared with Borrelia burgdorferi, C. neoformans, C. pneumoniae, H. pylori, P. gingivalis and herpes viruses (HSV1, HHV6,
and cytomegalovirus) proteomes by BLAST analysis. The B cell antigenicity indices are shown, and those above the server set threshold of
0.35 are in italics. The first column shows the amino acid number within the peptide or protein sequence, and the second shows the amino
acid pertaining to that position. The alignments with pathogen proteins are shown. Spaces represent nonidentical amino acids and + signs
amino acids with similar physicochemical properties. Only highly antigenic regions of pentapeptides or more were processed. The VGGVV
sequence, antibodies to which label beta-amyloid in brain tissue, despite relatively low antigenicity, has already been reported to be identical
to proteins expressed by 69 viruses including HSV-1, HSV-2, and HHV6.

(a)

Position B-Amy Amino acid B-cell index Alignments

1 D 0.41
C. neoformans +AE HDSG+ Borrelia burgdorferi DAE F H+SG EV H. pylori DA FRH
HSV-1 +AE RH HHV-6 D FR DS P. gingivalis +AEFR C. pneumoniae DA EFRHD and
+AEFR +SG

2 A 0.35
C. neoformans AEFR D GY+V H. pylori AEF D S YE and AE+RH+ Borrelia
burgdorferi AEF H+ Cytomagalovirus AEFR HD HSV-1 AE R SG HHV-6 AE+ HD P.
gingivalis A+F H+S and AEFR C. pneumoniae AEF DSG

3 E 0.62
H. pylori EFRHD HHV-6 EF DSG Borrelia Burgdorferi EFR DS C. neoformans EF R
DS YE P. gingivalis E R DSGY V C. pneumoniae EF SGYEV

4 F 0.73
C. neoformans FRHDS Borrelia burgdorferi +RH SGY++ and F H+SG H. pylori F HD
EV Cytomegalovirus FR SGY P. gingivalis +RHDS C. Pneumonia F H+SGY

5 R 0.85
C. neoformans R D GYEV H. pylori RHDS Y V and R SGYE Borrelia burgdorferi RH+
GY Cytomegalovirus RHD YE and RHDSG HSV-1 RH SG HHV-6 RHDS P. gingivalis
R+DS Y+

6 H 0.57
C. neoformans HDSGY H. pylori H. pylori +DSGY and HD G EV and HD EV Borrelia
burgdorferi H+SG Y+V HSV-1 HDSG P. gingivalis HDSG C. pneumoniae ++SGY+V

7 D 0.69
C. neoformans DSGY+V H. pylori +SG+EV HSV-1 DSGY P. gingivalis DSG+EV C.
pneumoniae DSGY V

8 S 0.38 P. gingivalis SGYEV H. pylori SGYE C. neoformans SGY++ C. pneumoniae SG+EV

9 G 0.63
H. pylori GYEVH Borrelia burgdorferi GYE V KL+ C. neoformans GYE LV and GY++
+ LV P. gingivalis GYEV C. pneumoniae GYEV and GY HH

10 Y 0.56
H. pylori YE HH and YE+ HQ and Y++H Q and YE HHQ Cytomegalovirus YEVH
Borrelia Burgdorferi YE+ KL C. neoformans YE + QK FC P. gingivalis Y++H H+K C.
pneumoniae Y+V +Q LV

11 E 0.58
H. pylori EV +QK Cytomegalovirus EV HQ L Borrelia Burgdorferi EV +KL C.
neoformans EV Q LV P. gingivalis EV KLV C. pneumoniae EV QKLV

12 V 0.35
H. pylori. +H QK Cytomegalovirus V HQ LV HHV-6 VH QK+V Borrelia Burgdorferi
VH KL C. neoformans +HH LV P. gingivalis VH + LV C. pneumoniae V HQKL

13 H −0.17 H. pylori and C. pneumoniae HHQK Cytomegalovirus HH KL P. gingivalis HH KL

14 H −0.66 Borreli Burgdorferi HQKL+ C. pneumoniae and HSV-1 HQKL P. gingivalis +QKLV

15 Q −1.03 C. neoformans and P. gingivalis and C. pneumoniae QKLV

16 K −1.47
H. pylori: Cryptococcus neoformans Borrelia burgdorferi Chlamydophila pneumoniae
KLVFF Human herpesvirus 1 KLVF

17 L −1.34 Human herpesvirus 5: Human herpesvirus 6 LVFF

18 V −1.20

19 F −0.93

20 F −0.98

21 A −0.82

22 E −0.31

23 D 0.23

24 V 0.81
Borrelia burgdorferi Cryptococcus neoformans Porphyromonas gingivalis VGSNK
Cytomegalovirus +GSNK Helicobacter pylori Chlamydophila pneumoniae VGSN

25 G 1.24 H. pylori Chlamydophila pneumoniae GSNK

26 S 1.22

27 N 0.90

28 K 0.36
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(a) Continued.

Position B-Amy Amino acid B-cell index Alignments

29 G 0.30

30 A −0.24

31 I −0.58

32 I −1.00

33 G −1.14

34 L −1.19

35 M −1.23

36 V −1.16 69 viruses/phages VGGVV

37 G −0.97

38 G −1.02

39 V −0.63

40 V −0.45

41 I −0.80

42 A −1.06

(b)

NGF position Amino acid B-cell index Alignment

18 A 0.59 C. neoformans AEPHS

19 E 1.16 P. gingivalis EPHSES—NVP Cytomegalovirus EPHS+S

20 P 1.32 C. neoformans P+S NVPAG and PHSES and P SESNV

21 H 1.78 Borrelia burgdorferi HSESN C. neoformans HSES VP and HSESN P H +P+

22 S 1.64
C. neoformans S+S VPAG T P Borrelia burgdorferi burgdorferi C. neoformans
Chlamydophila pneumoniae P. gingivalis SESNV P. gingivalis S+SNVP C. pneumoniae
SESNV A

23 E 1.68 C. neoformans ESNVP and ESNV AG

24 S 1.51 C. neoformans SNVPA

25 N 1.61
C. neoformans Cytomegalovirus P. gingivalis NVPAG C. neoformans NV TIPQA P.
gingivalis +VPAG HT

26 V 1.45
C. neoformans P. gingivalis VPAGH C. neoformans VP AGHT C. neoformans VPAG TI
and V AGHT+

27 P 1.36 C. neoformans HSV-1 PAGHT C. neoformans PAGHT P C. neoformans PAG TIP

28 A 1.04
C. neoformans H. pylori AGHTI C. neoformans AG H IPQA and AGHT PQ and
AGHT+P and AG TIP HSV-1 HSV-2 AGH PQ and AGHT QA

29 G 1.00 C. neoformans GHTI Q and GHT PQ and G TIPQ

30 H 0.93 C. pneumoniae HTI QA C. neoformans HT PQA and HTIP A

31 T 1.05 C. neoformans P. gingivalis TIPQA

32 I 0.95

33 P 0.64

34 Q 0.41

35 A 0.46

51 A 0.38
C. neoformans AR SAPA and AR APAA and A SAPAA and ARSA AA and ARSAP A
and ARS PAA and AR—SAPAA

52 R 0.54 HSV-1 RSAPAA Borrelia burgdorferi burgdorferri RSA AA

53 S 0.91 C. neoformans C. pneumoniae Cytomegalovirus HSV-1 HSV-2 P. gingivalis SAPAA

54 A 0.89

55 P 0.72

56 A 0.69

57 A 0.53

64 A 0.46 C. neoformans AG TRNI and AGQT RN and AGQTR P. gingivalis AGQTR

65 G 0.59 C. neoformans + RNITV and GQTRN
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(b) Continued.

NGF position Amino acid B-cell index Alignment

66 Q 0.42 P. gingivalis Borrelia burgdorferi QTRNI Cytomegalovirus QTRN—IT

67 T 0.43 C. neoformans P. gingivalis TRNIT

68 R 0.49 C. neoformans RNIT DP and RNITV

69 N 0.76 C. neoformans C. pneumoniae H. pylori NITVD

70 I 0.66

71 T 0.56

90 S 0.40
C. neoformans STQPPR and STQPP AA and STQPP EA C. pneumoniae STQ PRE C.
pneumoniae Cytomegalovirus STQPP HSV-1 STQ PR

91 T 0.63 C. neoformans TQP REA and TQPPR

92 Q 1.06 C. neoformans QPPRE

93 P 1.49 C. neoformans PP REAA C Neoformans P. gingivalis PPREA

94 P 1.91 C. neoformans HSV-2 H. pylori PREAA

95 R 2.13

C. neoformans P. gingivalis REAAD and REAA TQ and RE ADT C. neoformans
REAA DT and R AADT and R+AADT and READD HSV-1 REAA T Borrelia
burgdorferi burgdorferi Cytomagalovirus RE ADT Cytomagalovirus REAA TQ P.
gingivalis REA +TQ

96 E 2.13
P. gingivalis EAADTQ and EA TQDLD C. neoformans EAADT+ and EAAD QD and
EAAD Q and EAA TQ

97 A 1.92

Borrelia burgdorferi burgdorferi C. neoformans AA TQD Borrelia burgdorferi
burgdorferi P. gingivalis AAD QD HSV-2 AADT D HHV-6 AAD +DL C.
neoformans AADT D and AA TQD and A DTQD and A TQDL and AADTQ and
AADT+ D+D P. gingivalis ADTQ L H. pylori AADTQ

98 A 1.9
Borrelia burgdorferi ADT DLD C. neoformans AD QDLD and AD QDL P. gingivalis
ADT DL and AD QDL H. pylori +TQDLD

99 D 1.39 C. neoformans DT DLD and D QDLD C. pneumoniae DTQDL

100 T 1.25 C. neoformans H. pylori P. gingivalis TQDLD

101 Q 0.66
Borrelia burgdorferi burgdorferi C. neoformans H. pylori P. gingivalis QDLDF H.
pylori QD DFEV

102 D 0.73
Borrelia burgdorferi burgdorferi C. neoformans H. pylori DLDFE C. neoformans
DLD EVG and DLDF VG

103 L 0.54
C. neoformans LD EVGG and LDFE GG and LDFEV and LDF VGG H. pylori LDF
EVGG HSV-1 HSV-2 L+ EVGG

104 D 0.45 Borrelia burgdorferi burgdorferi DFEVG C. neoformans DF VGGA and D EVGGA

105 F 0.42 C. neoformans FEVGG Cytomegalovirus FE GGAA

106 E 0.49
C. neoformans EVGGAA and EVGGA P and EVGGA and EV GAAP and E+GGAAP
H. pylori EVGGA Borrelia burgdorferi burgdorferi E+GG A PF+

107 V 0.39
P. gingivalis VGGAAP and VGGAA C. neoformans VGGAA PF and VGGAA NR and
VGGAA and VG GAAP C. pneumoniae VGGA AP H. pylori VG GAAP and VGG
APF and VGGAA P. gingivalis VGGAA

108 G 0.74 C. neoformans C. pneumoniae HSV-2 GGAAP

109 G 0.44 C. neoformans GA APFN T and GAAPF

110 A 0.95 C. pneumoniae AAPFN Borrelia burgdorferi AAP+NR HSV-1 AAP RT

111 A 0.83
C. neoformans APFN T RS C. neoformans H. pylori APFN TH C. pneumoniae AP N
RT R RSSS

112 P 0.99 C. neoformans PFNRT and PF RTH Borrelia burgdorferi burgdorferi PF NRT

113 F 0.84 C. neoformans FNRT SKR

114 N 0.75 C. neoformans NR RSKRS S and NRT R RSSS Cytomegalovirus N T RSKRS

115 R 0.63 C. neoformans RT R SKRS and RTHRS Borrelia burgdorferi burgdorferi RTHRS

116 T 0.63 C. neoformans THRS RS and THRSK

117 H 0.64 C. neoformans HRS RSS and HRSKR C. Pneumonie HRSKR
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(b) Continued.

NGF position Amino acid B-cell index Alignment

118 R 0.94
C. neoformans RSKRSS and RS RSSS and RS KRSS and RS KRSS and RSK SSS and
RSKRS S P. gingivalis RSKR S and RSKRS Borrelia burgdorferi burgdorferi RSKRS

119 S 0.88 C. neoformans SKRSSS and SKRSS C. pneumoniae H. pylori HSV-1 HSV-2 SKRSS

120 K 1.12 C. neoformans Cytomegalovirus HHV-6 H. pylori KRSSS

121 R 1.13

122 S 1.12

123 S 0.83

124 S 0.50

144 G 0.52 C. neoformans GDKTTA and GDKTT

145 D 0.54
H. pylori DK TATDI Borrelia burgdorferi burgdorferi C. neoformans C. pneumoniae
H. pylori DKTTA HSV-1 +KTT TD

146 K 0.84 CF. Pneumoniae KTTAT+ C. neoformans H. pylori KTTAT

147 T 1.27 C. neoformans HSV-1 TTATDI C. neoformans P. gingivalis TTATD

148 T 1.22
C. neoformans TATDIK Borrelia burgdorferi burgdorferi C. neoformans C.
pneumoniae H. pylori TATDI

149 A 1.21 C. neoformans HHV-6 HHV-6B P. gingivalis ATDIK

150 T 1.08

151 D 1.01

152 I 0.97

153 K 0.61

179 C 0.87 C. neoformans CR PNPV C. pneumoniae CRDPN P+ S RGI

180 R 1.40
C. pneumoniae RDPNPV Borrelia burgdorferi burgdorferi RD NP VDS C.
neoformans RDP PVDS and RDPNP+ and RDPNP HHV-6 HHV-6B RDPNP
HSV-1 HSV-2 RDPN V

181 D 1.36
Borrelia burgdorferi burgdorferi D NPVD and DPN VD C. neoformans DPNPV
and DP PVD and DP PVDS and DPN VDS C. pneumoniae DPN VD HSV-1 DPNP
S HSV-2 +P PVDS

182 P 1.69
C. neoformans PN VDSG and PNP DSG and PNPVD P. gingivalis PNPV+S and P
PVDS

183 N 1.72 H. pylori NPVD G

184 P 1.85
C. neoformans PV DSGCR and P PVDS RG and PVDSG Cytomagalovirus P DSG
RGI P. gingivalis PV DSGC

185 V 1.74 HSV-2 VDSG RG HSV-1 +DSG RG C. neoformans VDSG R

186 D 1.51 C. neoformans DSGC GI and DSG RG

187 S 1.28 Borrelia burgdorferi burgdorferi C. neoformans SGCRG and SG RGI and S CRGI

188 G 0.79 C. neoformans GC IDSKH W and GCRG D P. gingivalis GCRGI and GCRG+

189 C 0.79 P. gingivalis CRGID C. neoformans C GIDS

190 R 0.85
C. neoformans R IDSK and RGIDS and RGID K H. pylori RGIDS HSV-1 HSV-2
RG+DS H. pylori RG DSK Borrelia burgdorferi burgdorferi RGID K

191 G 0.65
C. neoformans GIDS HW and GIDSK and GIDS H Borrelia burgdorferi burgdorferi
H. pylori P. gingivalis GIDSK P. gingivalis GID KH and G DSKH H. pylori GI SKH

192 I 0.60 Borrelia burgdorferi burgdorferi IDSKH C. neoformans P. gingivalis IDSK W

193 D 0.3 C. neoformans DSKH W Borrelia burgdorferi burgdorferi DSK WN

194 S 0.40 C. neoformans SKHW+

195 K 0.44

197 W 0.41

212 T 0.33 C. neoformans TMDGKQ and TMDGK

213 M 0.31 P. gingivalis MDGKQ

214 D 0.39 C. neoformans DGKQAA and DGKQA C. pneumoniae DGK AA
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(b) Continued.

NGF position Amino acid B-cell index Alignment

215 G 0.48 C. neoformans GKQAA

216 K 0.53

217 Q 0.45

(c)

Tau position Amino acid B-cell index Alignment

53 E 2.516

C. neoformans (GSK3)EDGSEEP S and E+G EEPG and +DGS+EP S and ED GSEE
GS and EDGS++ GS and EDGSE and +D EEPG and EDG S PGS Cytomagalovirus
EDG EEP and +DG EE and ED GSEE P. gingivalis EDGSEE and E+G SEEP and
EDGS EE HHV-6 HHV-6B EDGS EE C. pneumoniae E GSEE Borrelia burgdorferi E
GSEE HHV-6 E GSEE

54 D 2.568

C. neoformans DGSEEP and DGS+EPG and DGSEE G P. gingivalis DGS EPGS and
DGSEE and DGS EP and DGSE EP and DGSE P Cytomegalovirus DGS EP and DG
EE G C. pneumoniae DGSE GS and +G EE GS Borrelia burgdorferi DGSE+ P.
gingivalis +GSEE

55 G 2.621
C. neoformans GSEEP and G EEPG and G +EPGS and GS EEPG and GSEE G
Cytomegalovirus GS+EP S P. gingivalis GS EPG H. pylori GSEE G C. pneumoniae
GSEE GS

56 S 2.732
C. neoformans SEEPG and SEE GS and S EPGS and SEEP S C. pneumoniae SEEPG
and SEE GS and SE PGS P. gingivalis SEE GS and S EPGS

57 E 2.774
C. neoformans EEPGS and +EPGS and EEPG E and EE GSE C. pneumoniae EEPGS
HSV-1 HSV-2 EEPG

58 E 2.678 HHV-6 HHV-6B EPGSE C. neoformans EPGSE and EPGS+ P. gingivalis EPGS+

59 P 2.564

60 G 2.544

61 S 2.556

62 E 2.287

171 S 2.315
Borrelia burgdorferi SG GPED C. neoformans SG GPEDT and SGT PE and SGTGP
and SG GPE and SGTG E and SG GP+ P. gingivalis SGTG E C. pneumoniae SGTG
PE Cytomegalovirus SGTGP+

172 G 2.54
C. neoformans GT PED and GTG ED and GTGPE and G GPED and GTGP D and G
EDTE HSV-1 GTGPE and GTGP D and GTGP+D HSV-2 GTGP D and G GPED C.
pneumoniae GTGPE H. pylori GTGP D

173 T 2.731
HHV-6 TGPEDT and TG PEDT C. neoformans TG PEDT and TG EDT and T
PEDT and TGPED C. pneumoniae TGPED H. pylori TG EDT Borrelia burgdorferi
TGPE T+

174 G 2.709
C. neoformans GPEDT and GPED TE and GP DTE and GPED E HHV-6 HHV-6B
TG PEDT

175 P 2.807 C. neoformans H. pylori P. gingivalis PEDTE

176 E 2.7

177 D 2.563

178 T 2.397

179 E 2.225

228 S 2.396

HSV-1 SP DSPP and SPQ SP C. neoformans SPQDS and S QDSP and SP DSPP and
SP DSPP and SPQD PP and PQ DSPPS and SPQ PPSK and SPQ SP and SP DSP
and SPQ SP Cytomegalovirus SP DSPP P. gingivalis SP DSP Borrelia burgdorferi
SP++SPP and SP D PSK

229 P 2.744
C. neoformans PQ SPPS and P DSPPS and PQDSP and P+DSPP and PQ S PPSK
and PQ SPP and PQD PP and P DSPP P. gingivalis PQDS P HSV-2 P DSPP HHV-6
PQ+ PP and PQ PP K Borrelia burgdorferi PQ+ P SK

230 Q 2.763
C. neoformans QDSPP and ++ PPSK and QDS PS and Q SPPS P. gingivalis QD PPS
C. pneumoniae QDS PS

231 D 2.929
C. neoformans DSP PSK and DSPPS and DSP SK and D PPSK and +SPPS P.
gingivalis DSP SK

232 S 2.882 C. neoformans SPPSK
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(c) Continued.

Tau position Amino acid B-cell index Alignment

233 P 2.75

234 P 2.794

235 S 2.68

242 D 2.387
C. neoformans DGRPP C. pneumoniae DG PPQ HSV-1 DG PPQ HSV-2 DGRPP
and DG PP+ Cytomegalovirus DG R PQ and DG PP and +GRPP Borrelia
burgdorferi DG PP

243 G 2.49 C. neoformans GRPPQ

244 R 2.56

245 P 2.42

246 P 2.164

247 Q 2.004

331 P 2.259
C. neoformans PGEG PE and P EGPEA and PGEGP and PGEG EA and P EGPEA
and PGEG E Cytomegalovirus PGEGP EA and PG GPE C. pneumoniae PGE PEA
and PGEGP H. pylori PG GPE HSV-1 HHV-6 PG GP A

332 G 2.681
C. neoformans GEGPE and GEG EA and GE PEA and G GPEA and GEGP A and
GEG EA and G+GPEA C. pneumoniae GE PEA P. gingivalis GEGPE and GEG EA

333 E 2.715 C. neoformans P. gingivalis EGPEA HSV-2 +GPEA

334 G 2.634

335 P 2.592

336 E 2.463

337 A 2.405

414 H 1.819
HSV-1 HSV-2 HPTPG C. neoformans HPT GSS and HP PGSS and HPTP SS and
HP P SS C. pneumoniae HP PGS and +PT SS

415 P 2.274 Cytomegalovirus P PGSS and PTPG SS C. pneumoniae PT GSS and PTPG SS

416 T 2.503

417 P 2.717

418 G 2.469

419 S 2.054

420 S 1.76

493 P 2.43

HSV-1 P APKTP and P APKTP and PPAP PP and PPA PP HSV-2 PPAP TPP
Cytomegalovirus P APKT and PPAP PP and PP P PPS and PP KTPP and PP A
TPPS and PPA TPP C. neoformans PPAP TPPS and PPAP KTP S and PP PKTP and
PP PKTP and PPAPKT and PPAP KT P. gingivalis PPAPK P C. pneumoniae PPAPK
and PP PKT and PP AP PP and PP TPP Borrelia burgdorferi PAP T PS and PPA
KTP and PP P TPP

494 P 2.77
HSV-1 PAP KTP and PA KTPP HSV-2 PAPK PP HHV-6 PAP PPS C. neoformans
PAPKTP S and PAPK PP P. gingivalis PAPKT C. pneumoniae PAP TP and PAPK P

495 A 2.94 C. neoformans AP PPS P. gingivalis A KTPPS HHV-6 APKTP

496 P 2.89 C. neoformans PKTPPS and PKTP PS and PK TPPS P. gingivalis PKT PS

497 K 2.95 C. neoformans KTPPS

498 T 2.98

499 P 2.69

500 P 2.51

501 S 2.343

502 S 2.123

a classical example from the field of population genetics and
Darwinism, the light coloured genes of the peppered moth
favour its selective predation by many different birds when
it alights on dark trees covered with soot pollution, while
darker melanised forms are selectively targeted on lighter
coloured trees [273]. The coloration susceptibility genes,

or the variety of tree (risk factors), do not kill the moth
but allow several causes to do so. The causes can hide in
plain sight, as epidemiological studies, as applied to human
diseases, could conclude that the birds are not killing the
moths, as they are always present, on both sets of trees,
in both genetic conditions, whether the moths are alive or



22 International Journal of Alzheimer’s Disease

dead (c.f. the ubiquitous C. neoformans and many other
common pathogens). Many of the pathogens implicated in
Alzheimer’s disease (herpes simplex, Borrelia burgdorferi and
C. pneumoniae), and several other risk factors (cholesterol,
homocysteine, diabetes, or vitamin A or nerve growth
factor deficiency) are able to promote cerebral beta-amyloid
deposition in animal models, without the aid of any gene
variant. Subsets of susceptibility genes can be related to
each of these amyloidogenic pathways [1]. In the case of
genomewide association studies, the genes returned, as well
as APP, beta amyloid, and gamma secretase, seem intimately
concerned with pathogen life cycles and defence and the
immune network. This suggests that the diverse microbial
risk factors as well as other dietary and environmental factors
implicated in Alzheimer’s disease are in fact causative agents,
whose deleterious effects are conditioned by susceptibility
genes. As the environmental risk factors are amenable to
therapy, while the susceptibility gene products have so far
proved largely resistant, this suggests numerous ways with
which to tackle the problem of Alzheimer’s disease.

Herpes Simplex Reactivation. Alzheimer’s disease plaques
and tangles are highly enriched in human proteins used
the herpes simplex during its life cycle, as well as in
many immune-related proteins, suggesting that immune
attack on a reactivated virus, diverted to neurones, which
contain the complement membrane attack complex, may be
ultimately responsible for the extensive neuronal destruction
seen in Alzheimer’s disease [15]. The herpes simplex virus
establishes latency in neurones, existing as a dormant form
where only the latency transcript is expressed. A number
of factors again related to susceptibility genes and environ-
mental risk factors in Alzheimer’s disease can be related
to herpes simplex latency and reactivation. The cerebral
herpes simplex viral load is decreased in APOE knockout
mice, while the viral load is much increased in APOE4
transgenic mice, compared to APOE3 mice, suggesting that
APOE4 favours the establishment of a greater number of
latent viruses in cerebral tissue [274]. In neuroblastoma
cells, this latent form may even exert beneficial effects,
blocking apoptosis and promoting neurite extension via
AKT1 upregulation [275]. However, this latent form can be
reactivated by NGF deprivation [276], and NGF promotes
viral latency via the TrkA receptor NTRK1 [277], the
expression of which is reduced in the Alzheimer’s disease
brain [278]. (Relevant pathways and genes: neurotrophin
signalling (GSK3B, NTRK1, NTRK2, PIK3R1, and SOS2).
Vitamin A supplementation in rats increases the cerebral
levels of both NGF and BDNF [279], while oestrogen
deficiency lowers cerebral NGF levels, an effect reversed by
17-beta oestradiol [280], which is, however, also able to
reactivate the virus, via oestrogen receptor alpha (ESR1)
[281]. High levels of total oestradiol have been reported as
a risk factor for Alzheimer’s disease in both women and
men [282, 283]. Vitamin A related gens include APOE4,
the isoform least able to transport the vitamin A precursor
retinyl palmitate, A2M ABCA1 ALB ALDH2 APOA1 CHD4
CLU CYP46A1 ESR1 GSTM1 GSTP1 HSPG2 KLF5 LIPA

LPL LRAT LRP2 LRPAP1 MEF2A NPAS2 NR1H2 PARP1
PIN1 POU2F1 PPARA PPARG RXRA THRA TTR UBQLN1
VDR and many others controlled by retinoid receptor
element (reviewed in [126]).

The virus can also be reactivated by heat [284], IL6
[285], or TNF [286]. IL6 plasma and CSF levels have been
reported to be increased in Alzheimer’s disease and the
secretion of IL6 from monocytes is increased [287–289]. IL6
plasma levels are raised by infection with C. pneumoniae
[290] or Helicobacter pylori [291], and IL6 production in
monocytes is stimulated by C. neoformans [292]. Stress-
activated corticosterone is also able to reactivate the virus
[293] (pathway = steroid hormone biosynthesis: COMT,
CYP19A1, HSD11B1). Cortisol levels are increased in the
ageing population and in Alzheimer’s disease [294, 295].
A number of related stressors including adrenaline [296],
or downstream effectors such as cyclic AMP, protein kinase
A, or C activation [297] are also able to reactivate the
virus. Herpes simplex reactivation is blocked by beta-
receptor antagonism (ADRB1) [296, 298]. Glucocorticoids
and prostaglandins are also able to reactivate the virus
[299]: cyclooxygenase inhibitors (PTGS2), celecoxib and
indomethacin block viral reactivation and nonsteroidal anti-
inflammatory use has been associated with a lower incidence
of Alzheimer’s disease. Lysophosphatidic acid is also able to
reactivate the virus [300] (LPAR5). Hypoxia also increases
the replication of herpes simplex [301]: transient cerebral
ischaemia also lowers NGF levels [302], and these effects
are relevant to the cerebral hypoperfusion seen in ageing
and in Alzheimer’s disease [303]. Vitamin A and the retinoic
acid isomers all-trans-, 9-cis-, and 13-cis-Retinoic Acid are
all able to reduce viral replication [304]. Low Vitamin A
levels are a problem in the ageing population and even in
successfully ageing persons can be observed in 50% of the
population over the age of 80–85 [305]. Low vitamin A levels
are also a risk factor for Alzheimer’s disease [306]. Mice
deficient in the nitric oxide synthase NOS2 are also more
susceptible to herpes virus infection, and reactivation occurs
is stimulated by caspase 3 activation (CASP3) [135].

Thus, fever or cytokine release induced by diverse
infections might be expected to reactivate herpes simplex as
would several of the conditions associated with Alzheimer’s
disease (cerebral hypoperfusion, low cerebral NGF levels,
vitamin A deficiency, or high oestradiol levels).

3.6.6. The Microbiome in Alzheimer’s Disease. These path-
ogens form a very small proportion of an extensive human
microbiome comprising of trillions of bacteria, viruses, and
other pathogens, whose influence on diseases is increasingly
recognised [307]. Individual species may exert benevolent
or malevolent effects which may well be dictated by the
very extensive sequence homology between human and
pathogen proteins which enables pathogens to intercalate
with numerous important signalling networks, via compe-
tition with their human counterparts [239, 241, 248, 250,
254]. These networks are implicated in diseases, and their
efficiency, as well as pathogen/host homology, is dictated
by susceptibility genes. This host/pathogen matching covers
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the entire human proteome and is represented by millions
of short consensi of pentapeptides or more, not counting
the longer gapped consensi. Clearly, powerful algorithms are
needed to trawl human and pathogen proteomes and to link
these homologies to susceptibility genes and to epitopes and
autoantigens.

The principles discussed here may apply to many other,
if not most, human diseases.

Protective Agents in Alzheimer’s Disease. Statins [308], fish
consumption [309], omega-3 polyunsaturated fatty acids
[310], the Mediterranean diet [311], nonsteroidal anti-
inflammatories [312], or the generally healthy life-style of
nuns living in convents [313] have all been associated with
a reduced incidence or severity of Alzheimer’s disease, while
homocysteine lowering B vitamins and folate have been
shown to slow the rate of brain atrophy in cognitively
impaired elderly patients [314]. A rather pessimistic study
[315] recently stated that no firm conclusions could be drawn
on the association of any modifiable factors with risk of
Alzheimer’s disease. While this may be a justifiable statistical
conclusion from meta-analysis, this is not to reckon with
the diversity of the underlying genomic platform of each
individual or with the profusion of diverse interacting risk
and protective factors (epistasis, gene/environment, and
environment/environment interactions).

As with the risk factors, protective agents can be linked
to genetic and pathological pathways involved in cholesterol
and lipid function (statins, fish, and diet, e.g., ABCA1,
ABCA2, ABCA7, ABCG1, ACADS, ALDH2, APP, APOA1,
APOA4, APOA5, APOC1-4, APOE, CH25H, CYP46A1,
DHCR24, FDPS, HMGCR, HMGCS2, HSD11B1, LIPC,
LRP1, LRP2, LRP8, LDLR, LIPA, LPL, OLR1, PPARA,
PPARG, PTPLA, VLDLR, NPC1, NPC2, SOAT1, SREBF1),
homocysteine, methionine, and folate metabolism (folate
and vitamins, e.g., BLMH, CBS, COMT, NAT2, MTHFD1L,
MTHFR,MTR, MTRR, PON1, PON2, PON3, VDR) and
inflammatory pathways (NSAID’S e.g., C4A, C4B, CD2AP,
CD33, CFH, CCL2, CCL3, CCR2, CSF1, CLU, CR1, FAS,
GSK3B, IL1A, IL1B, IL6, IL8, IL10, IL18, PLAU, SERPINA1,
SERPINE1, SERPINF2, PTGS2, TGFB1, TNF). As with the
risk factors, the success of such protective agents is likely
to be determined by genes and other confounding factors.
In this genomic era, affordable whole genome sequencing
will soon be achieved, ushering in an age of more effective
treatments tailored to individual genetic profiles. Alzheimer’s
disease is clearly multifactorial with many related genetic
and environmental risk factors, several underlying patholo-
gies, and several available protective strategies. A recent
study has also shown that many other seemingly benign
factors (eyesight, hearing, denture wearing, stomach, kidney,
bladder or bowel problems, coughs, and colds) as well
as high blood pressure and diabetes, constituting a frailty
index, combine to markedly increase both the incidence
and severity of Alzheimer’s disease [316]. A further study,
identifying physical inactivity, depression, smoking, mid-life
hypertension or obesity, low education, and diabetes as key
risk factors, has estimated that ∼50% of Alzheimer’s disease
cases may be preventable [317].

Elimination of the risk factors, including the regular
detection and elimination of pathogens in the elderly,
adherence to sensible dietary and vitamin supplement rec-
ommendations, and the genetically tailored use of certain
drug regimens are together likely to be able to markedly
reduce the incidence of Alzheimer’s disease. Using phage
display, it is now possible to express peptide fragments of
the entire human proteome in a phage library, and to use
this to trap autoantibodies in blood or other bodily fluid
samples. The antigen expressed by the labelled phage can
be identified by high throughput sequencing [318]. Such
technology is likely to be extremely useful in characterising
biomarkers and pathological immune processes as well as
potential pathogen/human cross-reactivity.

Proteome-wide characterisation of the autoantibodies
relevant to Alzheimer’s disease (a move from GWAS to
PWAS) would also be very informative as selective autoan-
tibody removal via affinity dialysis might well be expected to
influence the severity and progression of Alzheimer’s disease.

Since the submission of this paper, Miklossy has reported
a highly significant association between spirochete infection
and Alzheimer’s disease. As well as B. burgdorferi, several
periodontal pathogen treponemas species were detected in
brain samples and the pathological features of Alzheimer’s
disease were reproduced by infection in vitro [319]. In
addition, two groups have reported a very extensive reper-
toire of autoantigens in Alzheimer’s disease, which can be
characterised with a high degree of accuracy by a definitive
immunosignature [320, 321]. The principles outlined above
could thus be tested by analysis of pathogen/autoantigen
cross-reactivity.

References

[1] C. J. Carter, “The fox and the rabbits, environmental
variables and population genetics. 1: replication problems
in association studies and the untapped power of GWAS. 2:
vitamin A deficiency, herpes simplex reactivation and other
causes of Alzheimer’s disease,” ISRN Neurology, vol. 2011,
Article ID 394678, 29 pages, 2011.

[2] C. J. Carter, “Interactions between the products of the Herpes
simplex genome and Alzheimer’s disease susceptibility genes:
relevance to pathological-signalling cascades,” Neurochem-
istry International, vol. 52, no. 6, pp. 920–934, 2008.

[3] C. J. Carter, “Convergence of genes implicated in Alzheimer’s
disease on the cerebral cholesterol shuttle: APP, cholesterol,
lipoproteins, and atherosclerosis,” Neurochemistry Interna-
tional, vol. 50, no. 1, pp. 12–38, 2007.

[4] A. Papassotiropoulos, M. A. Wollmer, M. Tsolaki et al., “A
cluster of cholesterol-related genes confers susceptibility for
Alzheimer’s disease,” Journal of Clinical Psychiatry, vol. 66,
no. 7, pp. 940–947, 2005.

[5] R. Menon and C. Farina, “Shared molecular and functional
frameworks among five complex human disorders: a com-
parative study on interactomes linked to susceptibility genes,”
PLoS ONE, vol. 6, no. 4, Article ID e18660, 2011.

[6] A. C. Naj, G. W. Beecham, E. R. Martin et al., “Dementia
revealed: novel chromosome 6 locus for Late-onset alzheimer
disease provides genetic evidence for Folate-pathway abnor-
malities,” PLoS Genetics, vol. 6, no. 9, Article ID e1001130,
2010.



24 International Journal of Alzheimer’s Disease

[7] D. Liolitsa, J. Powell, and S. Lovestone, “Genetic variability
in the insulin signalling pathway may contribute to the
risk of late onset Alzheimer’s disease,” Journal of Neurology
Neurosurgery and Psychiatry, vol. 73, no. 3, pp. 261–266,
2002.

[8] A. B. Goodman and A. B. Pardee, “Evidence for defective
retinoid transport and function in late onset Alzheimer’s
disease,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 100, no. 5, pp. 2901–2905,
2003.

[9] V. Tseveleki, R. Rubio, S. S. Vamvakas et al., “Comparative
gene expression analysis in mouse models for multiple sclero-
sis, Alzheimer’s disease and stroke for identifying commonly
regulated and disease-specific gene changes,” Genomics, vol.
96, no. 2, pp. 82–91, 2010.

[10] J. C. Lambert, B. Grenier-Boley, V. Chouraki et al., “Implica-
tion of the immune system in Alzheimer’s disease: evidence
from genome-wide pathway analysis,” Journal of Alzheimer’s
Disease, vol. 20, no. 4, pp. 1107–1118, 2010.

[11] J. M. Hill, Y. Zhao, C. Clement, D. M. Neumann, and W.
J. Lukiw, “HSV-1 infection of human brain cells induces
miRNA-146a and Alzheimer-type inflammatory signaling,”
NeuroReport, vol. 20, no. 16, pp. 1500–1505, 2009.

[12] R. F. Itzhaki and M. A. Wozniak, “Herpes simplex virus
type 1 in Alzheimer’s disease: the enemy within,” Journal of
Alzheimer’s Disease, vol. 13, no. 4, pp. 393–405, 2008.

[13] R. B. Pyles, “The association of herpes simplex virus and
Alzheimer’s disease: a potential synthesis of genetic and
environmental factors,” Herpes, vol. 8, no. 3, pp. 64–68, 2001.

[14] M. A. Wozniak, A. P. Mee, and R. F. Itzhaki, “Herpes simplex
virus type 1 DNA is located within Alzheimer’s disease
amyloid plaques,” Journal of Pathology, vol. 217, no. 1, pp.
131–138, 2009.

[15] C. J. Carter, “Alzheimer’s disease plaques and tangles: ceme-
teries of a Pyrrhic victory of the immune defence network
against herpes simplex infection at the expense of com-
plement and inflammation-mediated neuronal destruction,”
Neurochemistry International, vol. 58, no. 3, pp. 301–320,
2011.

[16] L. Letenneur, K. Pérès, H. Fleury et al., “Seropositivity to
Herpes Simplex Virus antibodies and risk of Alzheimer’s
disease: a population-based cohort study,” PLoS ONE, vol. 3,
no. 11, Article ID e3637, 2008.

[17] A. R. Kamer, R. G. Craig, A. P. Dasanayake, M. Brys, L.
Glodzik-Sobanska, and M. J. de Leon, “Inflammation and
Alzheimer’s disease: possible role of periodontal diseases,”
Alzheimer’s and Dementia, vol. 4, no. 4, pp. 242–250, 2008.

[18] M. M. Esiri, S. C. Biddolph, and C. S. Morris, “Prevalence
of Alzheimer plaques in AIDS,” Journal of Neurology Neuro-
surgery and Psychiatry, vol. 65, no. 1, pp. 29–33, 1998.

[19] J. Kountouras, M. Boziki, E. Gavalas et al., “Five-year survival
after Helicobacter pylori eradication in Alzheimer disease
patients,” Cognitive and Behavioral Neurology, vol. 23, no. 3,
pp. 199–204, 2010.

[20] T. A. Ala, R. C. Doss, and C. J. Sullivan, “Reversible de-
mentia: a case of cryptococcal meningitis masquerading as
Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 6, no.
5, pp. 503–508, 2004.

[21] M. Hoffmann, J. Muniz, E. Carroll, and J. de Villasante,
“Cryptococcal meningitis misdiagnosed as alzheimer’s dis-
ease: complete neurological and cognitive recovery with
treatment,” Journal of Alzheimer’s Disease, vol. 16, no. 3, pp.
517–520, 2009.

[22] I. Kaklikkaya, N. Kaklikkaya, I. Birincioglu, K. Buruk, and
N. Turan, “Detection of human herpesvirus 6 DNA but
not human herpesvirus 7 or 8 DNA in atherosclerotic and
nonatherosclerotic vascular tissues,” Heart Surgery Forum,
vol. 13, no. 5, pp. E345–E349, 2010.

[23] G. C. Makris, M. C. Makris, V. V. Wilmot, G. Geroulakos,
and M. E. Falagas, “The role of infection in carotid plaque
pathogenesis and stability: the clinical evidence,” Current
Vascular Pharmacology, vol. 8, no. 6, pp. 861–872, 2010.

[24] A. Nazmi, A. V. Diez-Roux, N. S. Jenny, M. Y. Tsai, M. Szklo,
and A. E. Aiello, “The influence of persistent pathogens on
circulating levels of inflammatory markers: a cross-sectional
analysis from the Multi-Ethnic Study of Atherosclerosis,”
BMC Public Health, vol. 10, article 706, 2010.

[25] A. Taniguchi, F. Nishimura, Y. Murayama et al., “Por-
phyromonas gingivalis infection is associated with carotid
atherosclerosis in non-obese Japanese type 2 diabetic
patients,” Metabolism, vol. 52, no. 2, pp. 142–145, 2003.

[26] C. J. Hall, L. Bouhafs, U. Dizcfalusy, and K. Sandstedt, “Cryp-
tococcus neoformans causes lipid peroxidation; therefore it is
a potential inducer of atherogenesis,” Mycologia, vol. 102, no.
3, pp. 546–551, 2010.

[27] A. E. Roher, C. Esh, A. Rahman, T. A. Kokjohn, and T.
G. Beach, “Atherosclerosis of cerebral arteries in Alzheimer
disease,” Stroke, vol. 35, no. 11, pp. 2623–2627, 2004.

[28] M. van Oijen, F. J. de Jong, J. C. Witteman, A. Hofman, P. J.
Koudstaal, and M. M. B. Breteler, “Atherosclerosis and risk
for dementia,” Annals of Neurology, vol. 61, no. 5, pp. 403–
410, 2007.

[29] E. H. Corder, A. M. Saunders, W. J. Strittmatter et al.,
“Gene dose of apolipoprotein E type 4 allele and the risk of
Alzheimer’s disease in late onset families,” Science, vol. 261,
no. 5123, pp. 921–923, 1993.

[30] C. Antúnez, M. Boada, A. González-Pérez et al., “The mem-
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