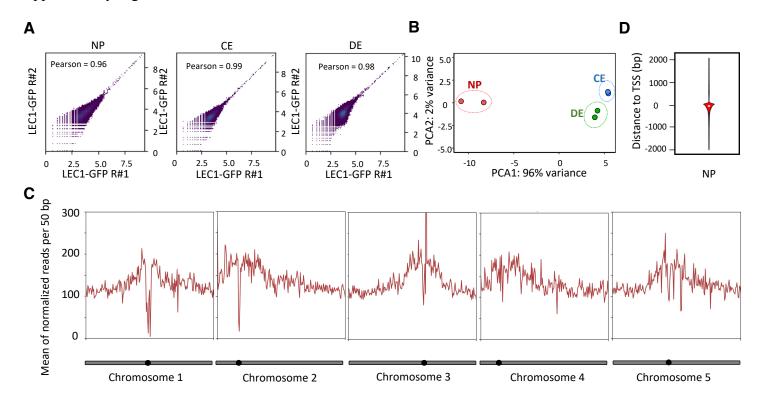
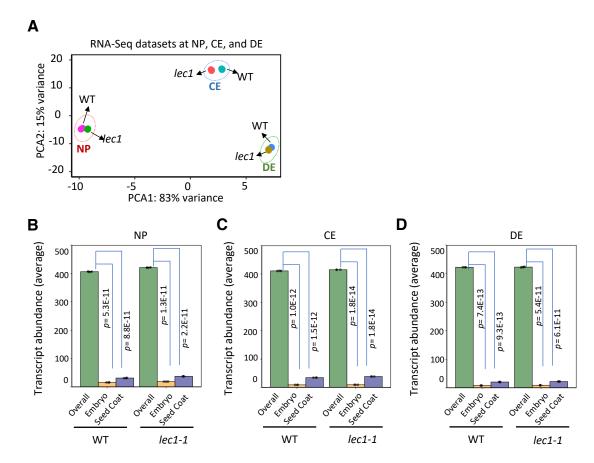
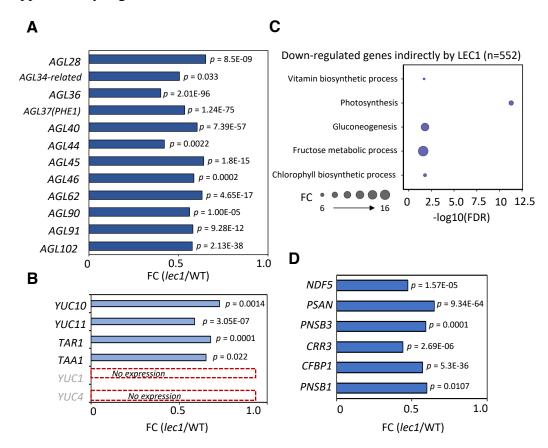
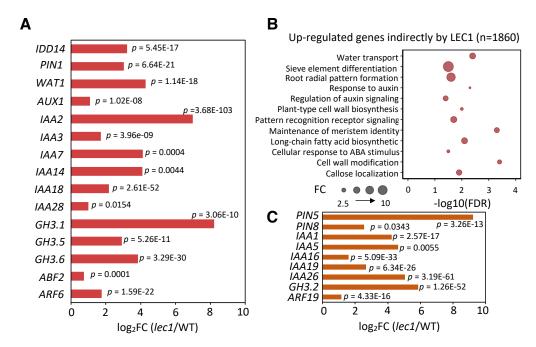


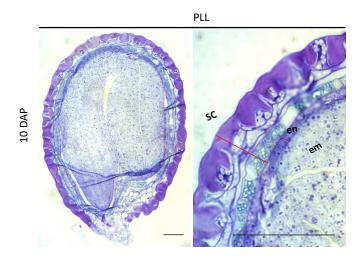
Tracking the genome-wide occupancy of Arabidopsis LEAFY COTYLEDON1 in endosperm development

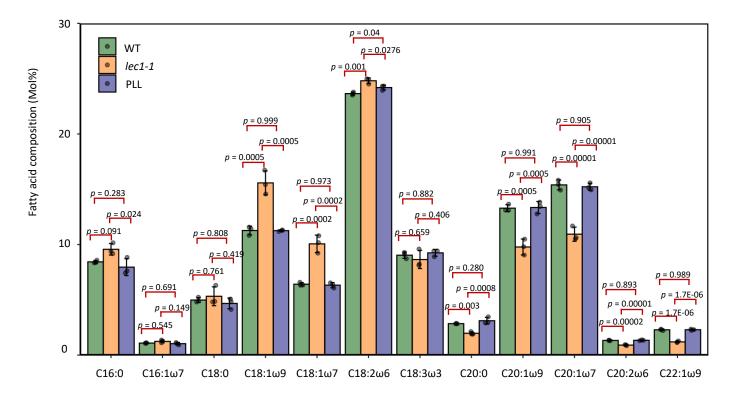

Jingpu Song, Xin Xie, Ioannis Mavraganis, Bianyun Yu, Wenyun Shen, Hui Yang, Daoquan Xiang, Yangdou Wei, Yuhai Cui & Jitao Zou

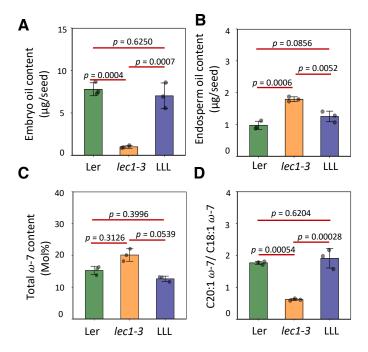

Supplementary Figure 1. Restoration of LEC1 expression in the PLL transgenic line. Relative expression of LEC1 in the WT and PLL seeds at 1, 5, and 7 DAPs. The CACS gene was used as an internal control. Values are mean \pm standard error of three biological replicates. p values were determined by conducting Student's t-test.


Supplementary Figure 2. Modification of INTACT system for cellular endosperm nuclei isolation. (A) Schematic diagrams showing the transgene structure of modified INTACT construct ZIM used for plant transformation. (B) Immunoblot (Uncropped gel images)showing the signals of mCherry (two bands, upper: biotinylated mCherry-WPP-BLRP lower band: non-biotinylated protein) and TurboID proteins in the developing seeds of the transgenic lines, PLL-PIM and PLL-ZIM. PLL seeds were used as negative control. Blot bands outlined in red boxes were shown in Fig. 1C. The images are representative of three independent replicates. NP, nuclei proliferation; CE, cellularization, DE, degeneration (C) Binding assay of beads-bound nuclei and free beads from PLL-ZIM developing seeds. Red arrows indicate beads-bound nuclei. Insets: magnified individual nuclei binding beads. Scale bar: 200 μm.

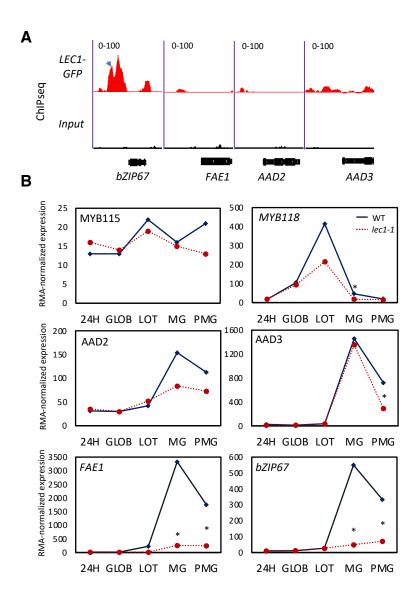

Supplementary Figure 3. The correlation analysis of the biological replicates of LEC1-GFP ChIP-Seq datasets. (A) Scatter plots showing high correlation between two biological replicates in ChIP-Seq at NP, CE, and DE, separately. (B) Principal component analysis (PCA) results indicates that the ChIP-Seq signal density profiles are separated by endosperm developmental stages. (C) Profile plots demonstrate that the distribution of LOGS in Arabidopsis chromosomes. Grey bars represent chromosome bodies and black dots indicate the centromeres. (D) Violine plots showing the distance of annotated ChIP-Seq peaks to the TSS at NP.


Supplementary Figure 4. Quality analysis of RNA-seq datasets. (A) Principal component analysis (PCA) results of RNA-Seq datasets indicates that the RNA-Seq signal density profiles are separated by endosperm developmental stages. (B-D) Average of gene transcripts of embryo- and seed coat-specific genes in the generated transcriptome profiles at NP, CE, and DE. The average transcript numbers of total genes (overall) at different genotypes and stages were included in the analysis. The list of embryo- and seed coat-specific genes were retrieved from previous published data (Pelletier, et al. 2017). Values are mean ± standard error of three biological replicates. *p* values were determined with one-way ANOVA followed by the post-hoc Tukey multiple comparison tests.


Supplementary Figure 5. Gene expression analysis of LEC1 directly and indirectly down-regulated targets in endosperm at NP. (A) Gene expression of LEC1-occupied down-regulated AGLs in the *lec1* endosperm at NP. (B) Gene expression levels of endosperm-specific genes involved in auxin biosynthesis. (C) GO analysis results elucidating the over-represented biological process (highlighted in navy blue colour) enriched among the non-LEC1-occupied down-regulated genes in *lec1* endosperm at NP. (D) Gene expression levels of down-regulated genes in photosynthesis.


Supplementary Figure 6. Gene expression analysis of LEC1 directly and indirectly up-regulated targets in endosperm at NP. (A) Gene expression of LEC1-occupied up-regulated genes involved in auxin transportation and signaling in the *lec1* endosperm at NP. (B) GO analysis results elucidating the over-represented biological process (highlighted in red colour) enriched among the non-LEC1-occupied up-regulated genes in *lec1* endosperm at NP. (C) Gene expression of non-LEC1-occupied up-regulated genes involved in auxin response and signaling in the *lec1* endosperm at NP.


Supplementary Figure 7. Semi-thin section of PLL seed at 10 DAP. 10 DAP seeds collected from PLL plants were fixed and embedded for semi-thin section. SC, seed coat; en, endosperm; em, embryo; scale bars: $50 \mu m$.


Supplementary Figure 8. Fatty acid composition analysis of endosperm dissected from mature seeds. Fatty acid composition profiles in endosperms isolated from WT, lec1-1, and PLL. Three independent replicates were conducted to calculate the means of values in each figure. Values are mean \pm standard error of three biological replicates. p values were determined with one-way ANOVA followed by the post-hoc Tukey multiple comparison tests. For each replicate, endosperm tissue dissected from 15 seeds were pooled together for GC analysis.

Supplementary Figure 9. Lack of LEC1 alters endosperm fatty acid composition in Ler. (A-D) Bargraphs showing the total oil content per seed in the embryo (A) and in the endosperm (B). (C) Total cis- ω -7 content accumulated in the endosperms of Ler (WT), *lec1-3*, and PLL seeds. (D) Statistic analysis of the ratios of C20:1 ω -7 versus C18:1 ω -7 in the endosperms of Ler, *lec1-3*, and LLL seeds. (A-D) Three independent replicates were conducted to calculate the means of values in each figure. For each replicate, 15 seeds of each genotype were dissected to separate embryo and endosperm tissues. Values are mean \pm standard error of three biological replicates. p values were determined with one-way ANOVA followed by the post-hoc Tukey multiple comparison tests.

Supplementary Figure 10. Fatty acid composition profiles of endosperm dissected from mature WT and fae1-1 seeds. Three independent replicates were conducted to calculate the means of values in each figure. Values are mean \pm standard error of three biological replicates. For each replicate, endosperm tissue dissected from 15 seeds were pooled together for GC analysis. p values were determined by conducting Student's t-test.

Supplementary Figure 11. LEC1 regulates genes responsible for cis-ω-7 fatty acid accumulation and elongation. (A) IGV views of ChIP-Seq signals indicate LEC1-occupied sites (pointed by arrowhead) on the promoter region of bZIP67, not on that of either FAE1, or AAD2, or AAD3. (B) Line graphs showing the transcription levels of MYB115, MYB118, AAD2, AAD3, FAE1, and bZIP67 in WT and lec1-1 seeds at different seed developmental stages (data collected from public resource). 24H, 24 hr after pollination; GLOB, globular stage; LOT, liner stage; MG, mature green; PMG, post mature green.

Supplementary Table 1. ChIP-Seq reads, mapping rates and peak calling information

Sample name	No. of sequenced reads	% of mapped reads	No. of called ChIP-seq peaks	ChIP-seq peaks present in both replicates and averaged ratio (IDR < 0.05)
NP-PLL-PIM-GFP-ChIP R#1	33,715,832	88.06	14,806	
NP-PLL-PIM-GFP-ChIP R#2	37,750,795	91.33	16,431	8,517
NP-PLL-PIM-input	28,905,178	96.74	/	
CE-PLL-ZIM-GFP-ChIP R#1	19,115,452	79.76	6,611	
CE-PLL-ZIM-GFP-ChIP R#2	18,998,609	79.74	6,643	1,721
CE-PLL-ZIM-input	24,979,345	97.65	/	
DE-PLL-ZIM-GFP-ChIP R#1	36,528,043	88.12	7,118	
DE-PLL-ZIM-GFP-ChIP R#2	29,412,997	83.15	4,112	1,724
DE-PLL-ZIM-input	34,291,183	98.01	/	

Supplementary Table 2. RNA-Seq reads and mapping information

Sample name	Total reads	Uniquely mapped reads	Mapping ratio
NP-WT-R#1	29036288	20394012	70.24%
NP-WT-R#2	32215289	23066317	71.60%
NP-WT-R#3	28918349	20756300	71.78%
NP-lec1-R#1	33679743	24047481	71.40%
NP-lec1-R#2	25888684	18764604	72.48%
NP-lec1-R#3	27424942	19557993	71.31%
CE-WT-R#1	24434385	18718255	76.61%
CE-WT-R#2	26387863	20379305	77.23%
CE-WT-R#3	22297316	18322235	74.10%
CE-lec1-R#1	22235249	17138789	77.08%
CE-lec1-R#2	23013113	17813006	77.40%
CE-lec1-R#3	28961587	22424085	77.43%
DE-WT-R#1	29856278	23206002	77.73%
DE-WT-R#2	23832611	18569483	77.92%
DE-WT-R#3	29368224	22808009	77.66%
DE- <i>lec1</i> -R#1	24966484	19264921	77.16%
DE-lec1-R#2	19839904	15119354	76.21%
DE-lec1-R#3	26577683	20331626	76.50%

Supplementary Table 3. Primers used for this study

Experiment	Primer ID	Sequence	
pPHE1::mCherry-NLS	PAC1-pPHE1-F	CTTAATTAAACTGTTGATCCGGTGAATATCC	
	AVRII-pPHE1-R	TCACCTAGGATCTCTTATCTTTTTCTTTTGTGTATTTTG	
	Pac1-AvrII-mcherry-F	CTTAATTAACCTAGGATGGTGAGCAAGGGCGAGG	
	Asc1-NLS-mcherry-R	TGGCGCGCCTCAGTCCAACTTGACCCTCTTGGCAGCAGGCTTGTACAGCTCGTCCATGCC	
	Pme1-TurboID	GGGTTTAAACTATGATCTCAAATACATTGATACATATC	
	Asc1-TurBOID-Nos	TTGGCGCGCGAATTCTCATGTTTGACAGC	
INTACT component	Pac1-AvrII-RAN-F	CTTAATTAACCTAGGATGGATCATTCAGCGAAAAC	
construction	Spe1-NOS-R	CCACTAGTGAATTCTCATGTTTGACAGC	
	Pac1-mCherry-F	CTTAATTAAATGGTGAGCAAGGGCGAGG	
	AvrII-mCherry-R	TTCCTAGGCTTGTACAGCTCGTCCATGCC	
promoter pPHE1 for PIM	BP-pPHE1-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTACTGTTGATCCGGTGAATATCC	
	BP-pPHE1-R	GGGGACCACTTTGTACAAGAAAGCTGGGTCATCTCTTATCTTTTTCTTTTGTGTATTTTG	
promoter pZOU for ZIM	BP-pZOU-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTACCACCCTATACTTATTAGACAG	
promoter pzoo for zilvi	BP-pZOU-R	GGGGACCACTTTGTACAAGAAAGCTGGGTCATTGAATTGAATGCTCATTTTACC	
ChIP-qPCR	FIE-CHIPqPCR-F	TGATTGATACGATCGAAGTTT	
	FIE-CHIPqPCR-R	ACGTGATACCATTTAAATCCA	
	YUC10-CHIPqPCR-F	GTTTTGTCGGAAATAAAACA	
	YUC10-CHIPqPCR-R	TGGAAAATGATCCATAGTTG	
	VIM1-CHIPqPCR-F	ATTCGGGATTAAAATTGTTC	
	VIM1-CHIPqPCR-R	TTGCAAATCGATATAAACCA	
	VIM2-CHIPqPCR-F	ATTGCCGATTAACTAACACG	
	VIM2-CHIPqPCR-R	TTGCTACCAAAATTTCAATG	
	AGL61-CHIPqPCR-F	TTTGATTTGCAACCTCTTTT	
	AGL61-CHIPqPCR-R	GGTTTTGTCTTTAATTTTGTGG	
	BZIP62-CHIPqPCR-F	GAGAGAGCGACACGTGTAAT	
	BZIP62-CHIPqPCR-R	TGCTGACTTGGTAACAAAAA	
RT-qPCR	CACS-qF	ACTCAGGAAGGTGTACGGTCA	
	CACS-qR	TGCATTTGGAACAGGTTTGT	
	LEC1-qF	CGATCGTGGTTCTGCACTTA	
	LEC1-qR	ATTCATCTTGACCCGACGAC	