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ABSTRACT Klebsiella pneumoniae are Gram-negative facultative anaerobes that are
found within host-associated commensal microbiomes, but they can also cause a
wide range of infections that are often difficult to treat. These infections are
caused by different pathotypes of K. pneumoniae, called either classical or hypervir-
ulent strains. These two groups are genetically distinct, inhabit nonoverlapping
geographies, and cause different types of harmful infections in humans. These dis-
tinct bacterial groups have also been found to interact differently with the host
immune system. Initial innate immune defenses against K. pneumoniae infection
include complement, macrophages, neutrophils, and monocytes; these defenses are
primary strategies employed by the host to clear infections. K. pneumoniae pathogenesis
depends upon the interactions between the microbe and each of these host defenses,
and it is becoming increasingly apparent that bacterial genetic diversity impacts the out-
comes of these interactions. Here, we highlight recent advances in our understanding of
K. pneumoniae pathogenesis, with a focus on how bacterial evolution and diversity
impact K. pneumoniae interactions with mammalian innate immune host defenses. We
also discuss outstanding questions regarding how K. pneumoniae can frustrate normal
immune responses, capitalize upon states of immunocompromise, and cause infections
with high mortality.
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K lebsiella spp. are Gram-negative, nonmotile, rod-shaped bacteria that can live in a
wide range of habitats (1). In humans, Klebsiella spp. can be found as commensals

of the gastrointestinal tract, mouth, and nasopharynx (2). The Klebsiella genus contains
over a dozen species, many of which cause opportunistic infections in humans (3). The
K. pneumoniae species complex, including K. pneumoniae, K. quasipneumoniae, K. varii-
cola, and K. africanensis, causes the highest burden of disease in humans (4, 5). Other
species of Klebsiella, such as K. oxytoca and K. michiganensis, have historically been
found less frequently during human infections (2); however, this appears to be chang-
ing (6, 7). Infections caused by K. pneumoniae include pneumonia, liver abscesses, bac-
teremia, soft tissue infections, urinary tract infections (UTIs), endophthalmitis, and men-
ingitis (8). The reasons why Klebsiella spp. cause more frequent infections compared to
other Gram-negative opportunistic pathogens are unclear. Possibilities include the bac-
teria’s ability to withstand starvation (9), naturally resist antibiotics (4, 10), outcompete
other bacteria (11), readily exchange DNA with other members of the human micro-
biome (12), and acquire mobile genetic elements encoding a wide range of antibiotic
resistance and virulence-enhancing genes (13).
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Despite being one of the world’s most common nosocomial pathogens (14), K.
pneumoniae display a population structure characterized by both abundant genetic di-
versity and the presence of a relatively small number of highly successful clonal
genetic lineages (15). In contrast to other nosocomial pathogens, the most problematic
K. pneumoniae clones (in terms of disease severity) are clearly divided into two pheno-
typically distinct groups that are characterized by either multidrug resistance or hyper-
virulence (16, 17). K. pneumoniae genomes usually contain 5,000 to 6,000 genes; how-
ever, the species pangenome, comprising both core genes (which are present in all
strains) and accessory genes (which are variably present), is estimated to be greater
than 100,000 different genes (4). Genetic lineages can be distinguished from one
another based on their accessory gene content, and many of these accessory genes
are present in only a small number of genomes. The abundant genetic diversity of K.
pneumoniae clearly impacts the biology of the organism and, by extension, its interac-
tions with mammalian hosts (18).

The most well-studied virulence factors in K. pneumoniae include the bacterial cap-
sular polysaccharide (CPS), lipopolysaccharide (LPS), fimbriae, outer membrane pro-
teins (OMPs), and iron-binding siderophores (8). Most K. pneumoniae strains produce a
robust CPS that confers resistance to both antimicrobial peptides as well as phagocyto-
sis by host immune cells (19, 20). Capsule composition and structure are highly variable
between different K. pneumoniae lineages, and this variability translates into different
levels of virulence. LPS, type 1 and type 3 fimbriae, and OMPs contribute to the bacte-
ria’s ability to resist phagocytosis, affect adhesion to biotic and abiotic surfaces, and al-
ter antibiotic permeability (18). Siderophores such as aerobactin, enterobactin, salmo-
chelin, and yersiniabactin are secreted by K. pneumoniae, tightly bind to extracellular
iron, and reenter the bacteria via specific import machinery (21). While siderophore
content and expression are variable between different K. pneumoniae genetic lineages,
it is clear that the ability to sequester iron contributes to the pathogenic potential of
this organism (8).

The objective of this minireview is to discuss recent findings and unanswered ques-
tions regarding how K. pneumoniae interact with host innate immune defenses. To
identify the manuscripts cited in this minireview, we performed keyword searches in
the PubMed database and limited ourselves to discussing well-known and widely cited
historic studies, or recent findings published within the last 5 years. A few terms will be
utilized frequently throughout, and are explained in greater detail below. Hypervirulent K.
pneumoniae (hvKp) cause fulminant disease, while classical K. pneumoniae (cKp) are less
overtly pathogenic but can easily acquire multidrug resistance (MDR-Kp), including carba-
penem resistance (CR-Kp). Regardless of these broad groupings, K. pneumoniae have
evolved a vast array of different strategies that cause “chaotic” immune responses, allowing
the bacteria to evade the mammalian innate immune system. Two principle axes of this
immune evasion are resistance to complement-mediated killing and evasion of recognition
and targeted clearance by host immune cells. Below we summarize what is currently
known about how K. pneumoniae interact with the innate immune system, and how bacte-
rial genetic diversity affects the pace and ultimate outcomes of these interactions.

GLOBAL EPIDEMIOLOGY OF K. PNEUMONIAE INFECTION

Since the discovery of K. pneumoniae (initially known as Friedlander’s bacillus) in
the late 19th century, these bacteria have become global pathogens and have come
to pose a significant threat to human health (17, 22). Within the last few decades,
K. pneumoniae have been recognized as largely belonging to one of two distinct path-
otypes—hvKp and cKp (17, 23). HvKp, first described in east Asia in the late 1980s,
causes community-acquired invasive infections characterized by liver abscesses and
metastatic infections of the lung, eye, central nervous system, musculoskeletal system,
and urinary tract (24–27) (Fig. 1). While the term “hypervirulent” is frequently used by
clinicians and researchers to describe K. pneumoniae, there is no molecular diagnostic
nor microbiologic consensus for the definition of hypervirulence (28, 29). The
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classification of hvKp has emerged largely from clinical reports, leaving molecular diag-
nostic and microbiologic criteria for distinguishing between hvKp and cKp largely unes-
tablished (17, 25, 30–33). There are nonetheless distinct clinical, epidemiological, and
genetic differences between these two main pathotypes of K. pneumoniae.

In contrast to hvKp, cKp cause infections more frequently and commonly arise in
the hospital setting; cKp frequently cause hospital-acquired pneumonia, UTIs, and bac-
teremia in immunocompromised patients with comorbidities (8, 30) (Fig. 1). CKp have
extensively acquired mobile genetic elements that encode antimicrobial resistance
genes (34). Extended-spectrum beta-lactamase (ESBL) and carbapenemase-encoding K.
pneumoniae (together referred to as MDR-Kp) are globally disseminated and cause
infections that are often difficult to treat, placing MDR-Kp high on current lists of signif-
icant threats to public health by the CDC and the WHO (17, 35, 36). The multidrug re-
sistance of MDR-Kp and corresponding antimicrobial susceptibility of hvKp is an impor-
tant distinction between these two pathotypes.

Two dominant typing schemes exist for classifying different types of K. pneumoniae.
These include multilocus sequence typing (MLST), which is defined by the nucleotide
sequences of seven housekeeping genes (gapA, infB, mdh, pgi, phoE, rpoB, and tonB),
and determining the capsule type (K-typing) either by serotyping or sequencing of the
wzi gene (37, 38). Both MLST and K-typing are common classifications for K. pneumo-
niae isolates for epidemiological purposes (8, 37). Sequence types (STs) commonly
associated with MDR-Kp include ST11, ST258, and ST437, while STs commonly associ-
ated with hvKp include ST23, ST65, and ST86 (17, 23, 39). K-typing is frequently used to
classify hvKp, where bacteria belonging to the K1 and K2 types are prevalent and cause

FIG 1 Anatomical sites of documented K. pneumoniae (Kp) infection. Hypervirulent K. pneumoniae
infections (shown in red) are often community acquired and have been found to cause infections of
the central nervous system, eyes, liver, spleen, and soft tissue. Infections with classical K. pneumoniae,
which frequently evolve multidrug resistance, commonly arise in the hospital setting. Both classical
and hypervirulent K. pneumoniae (shown in purple) have been found to cause bacteremia,
pneumonia, surgical site infections, and urinary tract infections.
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invasive disease; however, not all K1 and K2 strains are hvKp (25, 26, 40). K1 and K2
serotype isolates often exhibit a hypermucoviscous phenotype, which can be defined
semiquantitatively by the appearance of colonies exhibiting a viscous “string” of .5
mm in length on an agar plate (41). While sequence typing and serotyping are useful
tools to track clonal isolates during outbreaks, they are not entirely accurate indicators
of hypervirulence, as other serotypes aside from K1 and K2 have also been identified
among hvKp isolates (30, 42, 43). Instead, it has been suggested that clinical diagnos-
tics and epidemiologic surveys should focus on the accessory genomes of clinical iso-
lates to more accurately identify and track hvKp (44).

Large-scale, whole-genome sequencing of K. pneumoniae in recent years has begun
to reveal differences between hvKp and cKp on a genomic level. It is clear the acces-
sory genomes of hvKp isolates are distinct from those of cKp, and that they contain
genes related to increased virulence. These include genes that confer hypermucovis-
cosity, siderophores such as salmochelin and aerobactin, peg344 (a putative trans-
porter), the genotoxin colibactin, and operons encoding tellurite- and silver-resistance
genes (17). While hypermucoviscosity is often attributed to increased capsule produc-
tion, recent studies have shown that several genes involved in capsule formation have
no effect on hypermucoviscosity, and vice versa, suggesting that hypermucoviscosity
and capsule production are likely interrelated but distinct phenotypes (45, 46). The
association of particular genotypes with the hypervirulence phenotype is clearly com-
plex, as no single genetic marker alone can predict hypervirulence. Rather, hyperviru-
lence phenotypes are likely the cumulative effect of different combinations of multiple
accessory genes that work together to increase bacterial virulence.

From a diagnostic standpoint, however, the question remains: are there any com-
monalities within the genomes of hvKp isolates that can be used to accurately predict
their hypervirulence phenotype? One study assessed the relationship between com-
monly associated genetic markers of hypervirulence and phenotypic analyses (includ-
ing the string test and siderophore production) with epidemiological data and experi-
mental virulence to determine a suite of biomarkers that could be used to identify
hvKp isolates (30). The findings of this study showed that peg-344, iroB (salmochelin
biosynthesis), iucA (aerobactin biosynthesis), and prmpA1 and prmpA2 (plasmid-borne
regulators of mucoid phenotype), as well as the quantification of siderophore produc-
tion, were accurately correlated with epidemiologic data and prediction of mortality in
a murine model of sepsis compared to bacterial capsule type or the string test (30).
The global application of these parameters has often led to the successful identifica-
tion of hvKp (41, 47, 48). While there are clear limitations with this approach, further
refinement of this genotype/phenotype approach could lead to more accurate and sys-
tematic identification of hvKp worldwide, as well as the identification of novel effectors
of antibiotic resistance and hypervirulence phenotypes.

CONVERGENCE OF hvKp AND MDR-Kp INTO HYPERVIRULENT BACTERIA THAT ARE
HIGHLY RESISTANT TO ANTIBIOTICS

The emergence and possible dissemination of K. pneumoniae isolates that possess
both multidrug resistance and hypervirulence (MDR-hvKp) is a major concern. This
concern is warranted, as there are already reported cases of MDR-hvKp from numerous
countries, and these convergent events cause life-threatening infections that are diffi-
cult, if not impossible, to treat (49) (Fig. 2). Previous studies have thoroughly reviewed
reports of convergent MDR-hvKp isolates from 2009 through early 2020, including
genetic factors identified in the convergent isolates (50, 51). Since these studies were
published, there have recently been additional reports of convergence in Asia, North
America, Europe, and South America (52–61). Convergence occurs most frequently
when mobile genetic elements carrying multiple antibiotic resistance genes (such as
those encoding ESBLs and carbapenemases) are acquired by hvKp, or when virulence
genes (like rmpA and siderophores), are acquired by MDR-Kp. The most alarming find-
ing was the recent observation of mosaic plasmids that harbored both antimicrobial
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resistance and virulence genes in isolates obtained from patients in Norway, the
United Kingdom, China, and Germany (56, 60–62), as these mosaic plasmids could act
as a “one stop shop” for the simultaneous transmission of both hypervirulence and
antimicrobial resistance phenotypes into cKp strains.

While the detrimental health impacts of convergent MDR-hvKp are high, the lack of
a clear diagnostic approach may be one possible reason for the relatively small number
of cases reported to date (50, 51). Another possibility is the presence of genetic barriers
to the stable maintenance of convergent plasmids, including the fitness costs of gene
acquisition (63). Furthermore, the acquisition of antibiotic-resistance genes and/or
mutations can be detrimental to the virulence capabilities of pathogens in general (63,
64). This seems to be a plausible reason for the relatively sparse number of reports of
infection caused by MDR-hvKp strains. It is conceivable that these isolates may be less
fit than isolates that are solely MDR-Kp or hvKp, and thus they do not persist in the
environment or colonize patients as readily. However, there is a general lack of knowl-
edge about the fitness effects of transmission of resistance plasmids into hvKp isolates
or virulence plasmids into MDR-Kp. By studying this process in greater depth, the
actual threat of convergence can be better assessed.

Since convergent cases of MDR-hvKp include both hvKp that acquired resistance
genes and MDR-Kp that acquired hypervirulence genes, this begs the question of
whether a highly successful convergent strain or lineage would be more likely to occur
in strains that are initially MDR-Kp or hvKp. One recent study compared the evolution-
ary dynamics of over 2,200 K. pneumoniae genomes from public databases (13). The
authors found that MDR clones had greater pangenome diversity due to recombina-
tion events that led to the frequent acquisition and loss of mobile genetic elements
compared with hypervirulent strains. In other words, MDR-Kp clones appear to more
readily acquire virulence genes than do hvKp isolates. One possible reason for this
might be that overproduction of CPS among many hvKp strains interferes with DNA
uptake and inhibits the transfer of mobile genetic elements carrying resistance or viru-
lence genes (13). This is supported by a study showing that a mutation in a capsule
biosynthesis gene led to the evolution of hypervirulence in an MDR-Kp strain (65).

FIG 2 Global reports of infections with multidrug-resistant and hypervirulent K. pneumoniae (MDR-hvKp). Countries where convergent MDR-hvKp infections
have been reported are shaded blue, and the number of reports from each country is indicated with purple squares. Reports represented are current as of
January 2021.
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These findings are troubling, as MDR-Kp strains are already endemic in many health
care settings, and the widespread emergence of MDR-hvKp in these locations poses a
significant public health threat. Altogether, convergent MDR-hvKp appear to be a
looming threat to human health. While current attention focuses on characterizing the
genetics and molecular basis of convergence, more robust surveillance will be key to
accurately identify and monitor convergent strains on a global scale.

COMPLEMENT EVASION AND SERUM RESISTANCE IN hvKp VERSUS MDR-Kp

The complement system is an evolutionarily ancient component of the vertebrate
innate immune system that is crucial for defending the host against pathogens, includ-
ing K. pneumoniae. This system comprises more than 20 proteins present in vascular
spaces and tissue microenvironments that coordinate with one another to quickly clear
invading pathogens. The complement system supports host defenses against these
invaders via two main mechanisms: (i) assembly of the membrane attack complex
(MAC), consisting of C5b-C9 proteins, which can directly lyse the bacterial membrane,
and (ii) opsonization of the bacterial cell surface to facilitate phagocytosis by immune
cells (Fig. 3). There are three well-described pathways that can initiate the proteolytic
cascade of the complement system: the classical, lectin, and alternative pathways. All
three pathways converge on the formation of C3 convertases, which coordinate the
opsonization and subsequent elimination of the pathogen. C3b in particular enables
opsonization of bacteria by binding to amino or hydroxyl groups on the pathogen sur-
face, and initiates MAC assembly via cleavage of C5 (Fig. 3).

The classical complement pathway is initiated when the pattern-recognition com-
ponent of the C1 complex, called C1q, binds to antigen-antibody complexes. The lectin
pathway is activated when host ficolin, collectin, or mannose-binding lectins (MBLs)
recognize and bind to bacterial cell wall sugar motifs, such as D-mannose, which are
readily found on K. pneumoniae. Lectin pathway recognition activates mannan-binding
lectin serine proteases (MASPs) to initiate the complement cascade (66, 67).
Conversely, the alternative pathway proteolytic cascade is constitutively active at very

FIG 3 Complement evasion and serum resistance in K. pneumoniae. Differences between complement pathway activation and
bacterial killing are depicted for K. pneumoniae with normal capsule (left) versus bacteria with modified capsule (right). Under normal
conditions and with K. pneumoniae strains possessing a normal capsule (such as cKP and certain CR-Kp), the lectin, alternative, and
classical complement pathways are able to recognize K. pneumoniae and recruit the C3 convertase, which leads to opsonization and
phagocytic killing by macrophages and recruitment of the membrane attack complex (MAC). In contrast, some K. pneumoniae strains
display a modified capsule (right); these include KPPR1, some hvKp isolates, and hypercapsulated CR-Kp isolates. The modified
capsule in these strains is characterized by excess polysaccharide and changes in polysaccharide content and structure. These
changes to the capsule cause resistance to complement-mediated killing through impaired recognition and binding of C3 convertase
and MAC.
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low levels, but pathway activation is amplified upon contact with “non-self” surfaces,
such as bacterial membranes, through the C3 feedback loop (68). The alternative path-
way is also notable for its role in amplifying the activity of both the classical and lectin
pathways (68).

Both hvKp and MDR-Kp contain several factors that can activate different comple-
ment pathways, including LPS and O-antigen, OMPs, and CPS (69). LPS is able to acti-
vate the alternative pathway, and can also activate the classical pathway when lacking
the O-antigen (70). OMPs such as OmpK36 interact with C1q of the classical pathway in
an antibody-independent manner (69). CPS, which contains repeating units of D-man-
nose or L-rhamnose, is capable of activating the lectin pathway by direct interaction
with MBLs (8, 69). Complement activation results in the formation of C3 convertase
and subsequent cleavage of C3 to yield C3b, which can then opsonize the bacteria and
initiate MAC assembly through formation of C5 convertases.

One of the primary mechanisms by which K. pneumoniae resist the host’s comple-
ment defense is through modification of the CPS. Several strains, including the classical
lab strain KPPR1 (a derivative of the hypervirulent reference research strain of the K2
serotype, ATCC 43816) and other hvKp isolates, produce thick CPS that can inhibit
MAC-induced lysis (69). One possible reason for this is that the CPS physically prevents
the MAC C9 pore from breaching the bacterial membrane (69) (Fig. 3). Additionally,
thick CPS may limit the recognition of other complement-activating surface molecules
such as LPS, O-antigens, OMPs, and lectin-activating polysaccharide motifs (8, 69).
Alternately, hvKp isolates can modify the composition of their CPS through variation of
polysaccharide motifs, and can thereby bypass recognition by the lectin pathway (8,
69). The importance of the CPS to hvKp complement resistance and virulence is evi-
dent, and it continues to be a subject of frequent study in humans as well as in vitro.

Clinical studies have demonstrated the importance of CPS synthesis genes in the
emergence of invasive K. pneumoniae infections that are prominent in Asia (25).
Clinical isolates from these infections often display a hypermucoviscous phenotype, as
well as resistance to normal human serum. Notably, hvKp isolates frequently carry the
CPS biosynthetic gene mucoviscosity-associated gene A (magA; also known as wzy), as
well as the regulator of mucoid phenotype A (rmpA) gene. Both of these genes have
been shown to contribute to the bacteria’s ability to form thick capsules and cause
invasive disease (25, 71). Genetic assays in laboratory settings have identified addi-
tional genes from both the core and accessory genomes that contribute to CPS-medi-
ated complement resistance by hvKp (25, 67, 72, 73). For example, the transcription
antiterminator rfaH is a core gene that was identified in a genome-wide screen as a
prominent gene that contributes to K. pneumoniae fitness during lung infection (72).
RfaH promotes the transcription of operons associated with virulence, such as CPS and
LPS, and deletion of rfaH has been shown in multiple studies to impair the fitness of
several hvKp strains (67, 72). Others have also shown that deletion of hrtA, a gene
encoding a serine protease important for CPS formation, can lead to decreased CPS
production, increased complement C3 binding, increased serum killing, and decreased
virulence in mouse models of infection (69, 73). Numerous accessory genes that are
not present in all K. pneumoniae strains, but that contribute to complement resistance
in the strains that carry them, have also been identified (67). Overall, these studies sug-
gest that hvKp have several mechanisms at their disposal to modulate CPS content
and structure and thereby evade complement-mediated killing.

Beyond hvKp strains, there is growing concern about MDR-Kp, including CR-Kp (74,
75). Compared to hvKp, MDR-Kp isolates have been historically considered to be more
sensitive to complement-mediated killing in human serum (76–78), and to be more
readily bound by the MAC protein complex (67, 76). However, CPS synthesis is still
thought to be essential for MDR-Kp fitness. For example, genetic variation at the CPS
gene island has been fundamental in the evolution of the well-known carbapenem re-
sistance-associated lineage called ST258. Within the ST258 lineage, two genetically dis-
tinct clades appear to have evolved through variation in the CPS locus (75).
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Furthermore, functional genomics studies have demonstrated that CR-Kp are suscepti-
ble to subtle genetic changes in CPS synthesis. For example, deletion of rfaH decreased
capsule uronic acid production, increased complement C3b and MAC protein complex
binding, and increased serum killing in a reference CR-Kp isolate called RH-201207 (67).
The importance of the CPS in MDR-Kp fitness is further bolstered by a recent report
that 64% of CR-Kp clinical isolates were able to persist in human serum, though they
did not demonstrate the rapid growth that is typical of hvKp strains (78, 79). A more
complete understanding of the role of CPS production and modulation in MDR-Kp is
necessary to advance therapeutic strategies to limit the significant mortality associated
with MDR-Kp infection in humans.

CR-Kp infections are associated with mortality rates ranging from 48 to 65% in sev-
eral clinical series (80–82). Yet, MDR-Kp are relatively avirulent in immunocompetent
mouse models of bloodstream infection, especially compared to hvKP strains (65, 75,
83). Among the potential reasons that could explain this discrepancy, there are two
which may be beneficial to discuss for the purposes of focusing additional attention in
the area. First, it seems plausible that CR-Kp may establish protected reservoirs in the
human host that prevent eradication and allow for the accumulation of mutations that
enhance virulence and, ultimately, increase morbidity and mortality. This hypothesis is sup-
ported by the enrichment of hypercapsulated isolates (encoding wzc mutations) found in
bloodstream infections and low-capsule isolates (encoding wbaP mutations) found in the
urinary tract (65). Interestingly, in this study, low-capsule strains demonstrated improved
biofilm formation and increased invasion of bladder epithelial cells, suggesting possible fit-
ness advantages for low-capsule mutants in the urinary tract (65). Furthermore, a small
number of urinary CR-Kp isolates were found to be both hypercapsulated and more viru-
lent in mouse models of infection. These hypercapsulated CR-Kp likely evolved from low-
capsule strains that were initially present in the urinary tract, suggesting that persistence
of low-capsule CR-Kp in “protected” tissue compartments can provide time for mutations
to arise that confer a more virulent, hypercapsule phenotype.

A second possible reason for the discrepancy between CR-Kp virulence in different
infection settings is variation in host complement defenses, which can affect the ability
to clear bacteria from sites of infection. Differences in the host complement system
likely increase susceptibility to K. pneumoniae infection in general, and more specifi-
cally to CR-Kp. This hypothesis is supported by the finding that both acquired and
inherited complement deficiencies increase susceptibility to bacterial infections, espe-
cially those caused by encapsulated pathogens (84). Furthermore, mice that were defi-
cient for C3 showed increased splenic dissemination following acute intrapulmonary
infection with either the hypervirulent KPPR1 strain or a CR-Kp isolate (85). Deficiencies
in the host complement system are particularly relevant in the intensive care unit set-
ting, where K. pneumoniae infections are common and critically ill patients often ex-
hibit acquired deficiencies in alternative complement pathway function (86). It was
recently shown that decreased alternative pathway activity was associated with lower
survival, more bloodstream infections, and impaired in vitro serum killing of CR-Kp in
critically ill patients (85). Future research is clearly needed to elucidate the complex
interplay between K. pneumoniae and the host complement system, including at the
biophysical interface of the bacterial cell surface (87). In addition, wild-type cKp should
be analyzed for their complement evasion strategies, as doing so might provide further
clues to their widespread success. Such studies will likely lead to new strategies and
therapies to counter the rising global health threat of K. pneumoniae infection (88).

K. PNEUMONIAE INTERACTIONSWITH HOST INNATE IMMUNE CELLS

The complement system is not the only hostile immune element that K. pneumo-
niae need to overcome during an infection. Indeed, successful colonization of host
organs by K. pneumoniae involves numerous interactions between the bacteria and dif-
ferent phagocytic cells, such as macrophages, neutrophils, and monocytes, which all
share the primary goal of killing invading pathogens. K. pneumoniae possess several
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strategies to evade the antimicrobial activity of these cells, although the degree of suc-
cess of immune evasion varies between KPPR1, hvKp, and CR-Kp strains. In this section,
we focus on recent findings that highlight some of the major differences in how differ-
ent K. pneumoniae strains interact with phagocytes from mice and humans in vitro, as
well as in vivo in rodent models of infection.

A prime example of the different pathogenic potential of different K. pneumoniae
strains is the mortality associated with CR-Kp versus KPPR1 infection in mice. Whereas
intraperitoneal and intratracheal infections with CR-Kp cause a sublethal infection,
KPPR1 is rapidly lethal with equal inoculum (83, 89). Moreover, the 50% lethal dose
(LD50) after intratracheal or intranasal infections ranges from 103 to 104 CFU for KPPR1,
and from 106 to 108 CFU for CR-Kp (83, 89–91). The variation of LD50 values observed
between KPPR1 and CR-Kp in rodent models of infection may, in part, be explained by
differences in how these bacteria interact with and evade phagocytic cells (Fig. 4).

Macrophages are the initial phagocytes that encounter K. pneumoniae at mucosal
sites, such as the lung (92, 93). They sense and activate mediators that drive appropriate
immune responses, and typically eliminate K. pneumoniae following engulfment (Fig. 4). In
this context, the evasion of the initial macrophage response, either by circumventing mac-
rophage sensing and phagocytosis, or through resistance to intracellular killing, is essential
for successful infection. In vitro studies have shown that murine and human macrophages
can more efficiently phagocytose CR-Kp compared to KPPR1 (83, 94). Following engulf-
ment, KPPR1 has also been reported to survive intracellularly within macrophages for
hours, presumably by impairing phagosome maturation and phago-lysosome fusion
through activation of the PI3K-Akt-Rab14 axis (94). How ingested KPPR1 manipulate the
PI3K-Akt pathway and prevent phagosome maturation, and whether phagocytosed CR-Kp
can survive within macrophages or are rapidly eliminated, remain unknown.

Alveolar macrophages play an important role in protecting the host against K. pneu-
moniae infection in the lung, as macrophage depletion during KPPR1-induced pneumonia
in mice leads to increased mortality, increased lung bacterial burden, increased proinflam-
matory cytokine production, and excessive recruitment of neutrophils to the lung (95).
Given that KPPR1 is poorly phagocytosed by macrophages, this finding suggests that the
role of macrophages during KPPR1 infection is not restricted to phagocytosis and micro-
bial killing, but also relates to their ability to exert regulatory functions to prevent an exag-
gerated immune response. However, it is also worth noting that macrophage depletion
following CR-Kp pneumonia did not significantly affect host immune responses and mor-
tality (90), suggesting that the initial signaling of alveolar macrophages required to drive a
proper immune response can be compensated by other lung resident cells (such as lung
epithelial cells), in the context of a less virulent K. pneumoniae infection (95).

Following infection in the lung, macrophages also function to limit extrapulmonary
proliferation at tissue sites such as the liver and spleen. It was recently shown that
severe KPPR1 infection heightens erythrophagocytosis by macrophages (a conserved
innate immune response triggered by Toll-like receptor stimulation) and leads to sup-
pression of interferon signaling through heme-mediated STAT1 dysregulation (96). As
a consequence, macrophages were observed to acquire an immunosuppressive phe-
notype, which leads to an impaired ability of mice to control K. pneumoniae replication,
exaggerated systemic inflammatory responses, and increased host mortality (96). This
study highlights the importance of macrophages in controlling K. pneumoniae replica-
tion, and in regulating the inflammatory response at different tissue sites.

In addition to the role of macrophages, the rapid recruitment of neutrophils and
monocytes is critical for effective control of K. pneumoniae through phagocytic killing
(89, 90) (Fig. 4). Multiple reports have described the ability of hvKp isolates to evade
neutrophil responses in vitro (97, 98). One of these studies also described a lower abil-
ity of human neutrophils to phagocytose serotype K1 and K2 hvKp isolates compared
to cKp isolates with non-K1 or K2 serotypes and nonmucoid capsules (97). The other
study confirmed these findings, and also showed that the evasion of neutrophil phago-
cytosis by K1 and K2 serotype hvKp isolates led to increased bacterial survival
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compared with nonmucoid cKp with non-K1 or K2 serotypes that lacked hyperviru-
lence genes such as rmpA and aerobactin (98). This study also showed that hvKp failed
to inhibit the release of neutrophil extracellular traps (NETs), which are networks of
extracellular fibers composed of eukaryotic chromatin and other proteins extruded by
dying neutrophils in response to pathogens (98). The study concluded that, among K1
and K2 hvKp isolates, the evasion of neutrophil-mediated killing is predominantly
achieved by escaping phagocytosis, rather than the inhibition of the extracellular NET
response. HvKp often produce excess CPS and display a hypermucoviscous phenotype
(8), and it has been reported that a K1 isogenic noncapsular mutant was unable to

FIG 4 K. pneumoniae interactions with host innate immune cells. Each panel depicts our current understanding of how different
K. pneumoniae strains interact with host innate immune cells, based largely on in vitro and animal infection studies. Differences
between a widely used laboratory strain (KPPR1), hypervirulent clinical isolates (hvKp), and carbapenem-resistant isolates (CR-Kp)
are shown. Black arrows show induction or activation, while red T-bars show inhibition. Question marks indicate interactions
that remain to be fully elucidated. The depictions of proinflammatory and anti-inflammatory monocytes show how these cells
have been observed to respond to K. pneumoniae in the lungs of mice during pneumonia. In the case of anti-inflammatory
monocytes, K. pneumoniae infection promotes the expansion of these cells, which can either temper the inflammatory response
and minimize lung injury at early time points during CR-Kp infection, or mediate the efferocytosis of apoptotic neutrophils and
injury resolution at later time points during KPPR1 infection. In both cases, these anti-inflammatory effects are mediated by IL-
10.
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escape neutrophil phagocytosis, suggesting that the evasion of neutrophil phagocyto-
sis by hvKP is mediated, at least in part, by CPS (97).

While resistance to neutrophil phagocytosis has been observed among hvKp in
vitro, the KPPR1 laboratory strain, as well as CR-Kp, show variability in their susceptibil-
ity to neutrophil-mediated killing. In vitro, murine neutrophils rapidly killed KPPR1 after
2 h of infection (90), and neutrophil depletion in a mouse pneumonia model impaired
bacterial clearance and host survival, indicating that neutrophils are prominent in the
immune response against KPPR1 (89). Data generated from in vivo experiments using a
mouse pneumonia model have suggested that during CR-Kp infection, neutrophils are
relegated to a secondary role in host defense. Indeed, the rapid recruitment of neutro-
phils during the first 48 h of infection did not necessarily correlate with a decrease in
lung bacterial burden, which was detectable even at 7 to 10 days postinfection (90,
91). Although neutrophil depletion has been shown to have variable effects on lung
CR-Kp burden, no significant effect on host survival was observed after neutrophil
depletion (89, 90). In vitro studies using both murine and human neutrophils have
allowed us to better understand, on a cellular level, the interaction between CR-Kp and
neutrophils. For instance, one of the first in vitro studies that analyzed phagocytic kill-
ing by neutrophils showed that a major mechanism by which CR-Kp has adapted to
evade neutrophil-mediated killing is through evasion of phagocytosis (99). A later in
vitro study using a distinct CR-Kp isolate demonstrated that phagocytosed CR-Kp can
disrupt phagosome acidification and survive intracellularly for at least 2 h in murine
neutrophils (100). Finally, a recent study showed that a single CR-Kp isolate impaired
granule mobilization and inhibited NET release by neutrophils (a process called
NETosis) (101); however, the mechanism underlying this phenomenon is still to be
described. Taken together, these studies suggest that CR-Kp possess several adapta-
tions that allow them to evade neutrophil killing. These adaptations have likely helped
relegate neutrophils to a secondary role in combatting CR-Kp in vivo in the lungs.

Other studies have found that the secondary role of neutrophils during CR-Kp infec-
tion is compensated for by monocytes, which are also rapidly recruited to the lungs
during CR-Kp infection (89, 90). Monocytes are heterogeneous cells capable of display-
ing proinflammatory or immuno-regulatory phenotypes, depending on the nature of
the microenvironment at the site of infection (102). Inflammatory CCR21 monocytes
are important cells in protecting the host during lung infection with both KPPR1 and
CR-Kp, as their depletion was shown to lead to an impaired ability to clear K. pneumo-
niae from the lungs and resulted in elevated host mortality (89). During lung infection
with CR-Kp, recruited inflammatory monocytes have been shown to induce interleukin
17 (IL-17) production by type 3 innate lymphocytes, which enhances the phagocytic
and microbicidal activity of monocytes, thereby promoting efficient CR-Kp killing (103)
(Fig. 4). On the other hand, anti-inflammatory monocytes, which are also referred to as
monocytic myeloid-derived suppressor cells (M-MDSCs) (90, 91, 104), play a major role
during K. pneumoniae lung infection, although their precise function seems to vary
between CR-Kp versus KPPR1 infections (90, 91, 104) (Fig. 4). During CR-Kp infection in
mice, M-MDSCs recruited to the lungs early during infection (i.e., within the first 24 h)
promoted efficient bacterial clearance, protected the lung against tissue damage, and
improved host survival through a mechanism involving IL-10 production (91). While
excess IL-10 production early during infection may be detrimental during KPPR1 pneu-
monia in mice, cells that resembled M-MDSCs, or MDSC-like cells, were recruited to the
lungs later during infection (i.e., 72 h), and appeared to play a beneficial role by media-
ting the clearance of apoptotic neutrophils by efferocytosis (104). The autocrine pro-
duction of IL-10 by these MDSC-like cells increased neutrophil efferocytosis, which was
critical to promoting lung recovery (104).

As MDSC-like cells are the main effectors that produce IL-10 during K. pneumoniae
infection (91, 104, 105), KPPR1 appears to have also acquired the ability to subvert host
responses by impairing the ability of MDSC-like cells to produce IL-10. During severe
lung infection in mice, KPPR1 was observed to cause extensive immunopathology by
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impairing inflammation resolution through a mechanism involving SUMOylation (105).
Specifically, KPPR1 pneumonia induced host cell death and the release of oxidized car-
diolipin, a mitochondrial-derived phospholipid that is elevated in the lungs of humans
and mice with severe bacterial pneumonia (105, 106). Extracellular oxidized cardiolipin
induced accumulation of the metabolite cyclic phosphatidic acid (cPA, a potent antagonist
of PPAR-g), in MDSC-like cells and led to suppression of IL-10 production. This mechanism
occurred through cPA-mediated SUMOylation of PPAR-g, which prevented IL-10 transcrip-
tion and tipped the cytokine balance toward persistent lung inflammation (105).

Overall, these studies highlight the heterogeneity in how KPPR1, hvKp, and CR-Kp
interact with phagocytic cells and how they have evolved distinct ways to subvert host
microbicidal responses. It is clear, however, that the outcomes of these interactions
determine the tempo and ultimate result of host-pathogen interactions during K. pneu-
moniae infection. The bacterial factors involved in these interactions include CPS and
LPS, among other structures largely present at the bacterial cell surface (107). Whereas
in vitro studies analyzing the interactions between different hvKp isolates with neutro-
phils in particular show a common evasion strategy based on phagocytosis evasion,
available data regarding CR-Kp show heterogeneous evasion strategies, including both
phagocytosis evasion and prolonged intracellular survival. Large-scale studies using
multiple and genetically diverse clinical isolates of cKp, MDR-Kp, and CR-Kp are needed
to elucidate the common and unique strategies used by these different pathotypes to
evade the innate immune system. Expanding our understanding of how K. pneumoniae
genetic diversity impacts immune evasion would be the first step toward the develop-
ment of new therapeutic strategies against these bacteria.

In conclusion, as highlighted in this review, there are many different factors that
determine whether K. pneumoniae can successfully establish an infection and survive
the selective pressures imposed by the host immune system. Two mechanisms that
dominate this survival are the modification of bacterial cell surface structures and the
acquisition of genes encoding new functionalities, such as hypervirulence and multi-
drug resistance. Whereas we might have once believed that these functionalities were
carried by distinct genetic lineages, we now recognize they are highly plastic and can
be readily gained or lost. While our current understanding of the genetic differences
between K. pneumoniae isolates can explain some of the differences observed in innate
immune tolerance and resistance, many questions remain unexplored.

Above all, there is a pressing need to focus on the dynamics and outcomes of bacte-
rial-host interactions during K. pneumoniae infection in humans. Animal models and in
vitro approaches have provided important evidence that the acquisition of hypervirulence
and antimicrobial resistance by K. pneumoniae is linked to successful evasion of innate
immune effectors. However, the successful adaptation of K. pneumoniae to these innate
effectors, coupled with the fast-approaching “postantibiotic” era, necessitate a fuller under-
standing of how K. pneumoniae genotypes, antibiotic resistance, and hypervirulence medi-
ate bacterial interactions with the human immune system. Some of the most important
outstanding questions include the following. (i) Is convergence of MDR and hvKp indeed a
true threat or a genetic anomaly? (ii) What are the collateral effects of complement resist-
ance on bacterial growth and survival at sites of colonization, rather than sites of infection?
(iii) How do cKp compare phenotypically and genotypically to the much more frequently
studied hvKp and MDR-Kp subtypes? Further analysis of K. pneumoniae isolate genomes
can potentially answer some of these questions, and will almost certainly uncover novel
attributes yet to be described in this organism. Answering these questions will very likely
facilitate the development of more accurate diagnostics tools and new therapeutic strat-
egies targeted at the elimination of this dangerous pathogen.
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