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Abstract

Background: Enhancing the upward translocation of heavy metals such as Zn from root to shoot through genetic
engineering has potential for biofortification and phytoremediation. This study examined the contribution of the heavy
metal-transporting ATPase, AtHMA4, to the shoot ionomic profile of soil-grown plants, and investigated the importance of
the C-terminal domain in the functioning of this transporter.

Principal Findings: The Arabidopsis hma2 hma4 mutant has a stunted phenotype and a distinctive ionomic profile, with low
shoot levels of Zn, Cd, Co, K and Rb, and high shoot Cu. Expression of AtHMA4 (AtHMA4-FL) under the CaMV-35S promoter
partially rescued the stunted phenotype of hma2 hma4; rosette diameter returned to wild-type levels in the majority of lines
and bolts were also produced, although the average bolt height was not restored completely. AtHMA4-FL expression
rescued Co, K, Rb and Cu to wild-type levels, and partially returned Cd and Zn levels (83% and 28% of wild type
respectively). In contrast, expression of AtHMA4-trunc (without the C-terminal region) in hma2 hma4 only partially restored
the rosette diameter in two of five lines and bolt production was not rescued. There was no significant effect on the shoot
ionomic profile, apart from Cd, which was increased to 41% of wild-type levels. When the AtHMA4 C-terminal domain
(AtHMA4-C-term) was expressed in hma2 hma4 it had no marked effect. When expressed in yeast, AtHMA4-C-term and
AtHMA4-trunc conferred greater Cd and Zn tolerance than AtHMA4-FL.

Conclusion: The ionome of the hma2 hma4 mutant differs markedly from wt plants. The functional relevance of domains of
AtHMA4 in planta can be explored by complementing this mutant. AtHMA4-FL is more effective in restoring shoot metal
accumulation in this mutant than a C-terminally truncated version of the pump, indicating that the C-terminal domain is
important in the functioning of AtHMA4 in planta.
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Introduction

Zn is an essential element with diverse roles in biological

systems. It is increasingly recognized as being of the utmost

importance for human health and quality of life and is an essential

dietary element [1]. Zn deficiency in humans is widespread with

an estimated 30% of the world’s population at risk [2]. Extreme

cases of Zn deficiency result in impaired infant growth and

development [3] and there is now strong evidence that even mild

Zn deficiency contributes significantly to the many deaths annually

worldwide from malaria, diarrhoea, measles and pneumonia that

have been attributed to malnutrition [4]. Zn supplementation

improves child growth and decreases child mortality [5] and

dietary Zn supplementation reduces the prevalence of infectious

disease in populations at risk of Zn deficiency [6]. The ultimate

goal of modern agriculture is to produce nutritious and safe foods

in sufficient quantities and in a sustainable manner. Biofortifica-

tion is the process of increasing the natural content of bioavailable

nutrients in plants while the plant is still growing, as opposed to

post-harvest fortification. This allows the nutrient enrichment to

be cost-effective and targeted, particularly if performed using

genetic approaches. Producing Zn-enriched plant food products

by such methods would potentially generate major health benefits

[7]. Furthermore, plants yield less and have a lower nutritional

quality when grown in soils where Zn availability is low [8,9].

Therefore the development of Zn-efficient plants (plants that can

maintain growth and yields under low soil Zn) would have clear

benefits for agriculture [7].

To optimise crop improvements it is important to have a clear

understanding of Zn transport and homeostasis in plants. Several

key families of transporters have been shown to have a role in this

and are therefore potential targets for use in biofortification

strategies. The P1B-ATPase family plays an important role in

heavy metal transport in plants. There are eight P1B-ATPases in
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Arabidopsis thaliana and four of these have been shown to have some

role in Zn transport. AtHMA4 was the first member of the Zn/

Cd/Pb/Co subclass of plant P1B-ATPases to be functionally

characterized [10] and studies in yeast provided evidence that this

heavy metal ATPase can transport Zn and the toxic element Cd

[10,11]. This pump and the related P1B-ATPase, HMA2, are

essential for efficient translocation of Zn from roots to shoots in A.

thaliana [12,13] but they are also a route for Cd transport [10–15].

AtHMA4 has eight predicted transmembrane domains with a

cytoplasmic loop between transmembrane domains 4 and 5, and a

larger loop between transmembrane domains 6 and 7. It is also

predicted to possess a short cytoplasmic domain at the N-terminus

and a long cytoplasmic domain at the C-terminus (extending

approximately 470 amino acids after the end of the last predicted

transmembrane domain) that may play regulatory roles [11].

Studies in yeast showed that a truncated version of AtHMA4,

Athma4D714–1172 (lacking the cytoplasmic C-terminal region)

conferred greater Zn tolerance than full-length AtHMA4 to the

Zn-sensitive mutant zrc1 cot1 when subjected to elevated Zn and

greater Cd tolerance to wt yeast [11]. The C-terminal region

expressed alone in yeast also conferred tolerance to Cd [16].

Previously it has been reported that over-expression of AtHMA4

in the Ws ecotype of Arabidopsis driven by the cauliflower mosaic

virus 35S promoter can enhance tolerance to high levels of Zn, Cd

and Co [13]. This correlated with an increase in Cd and Zn in the

leaves (root levels did not change significantly) [13]. Ectopic

expression of AtHMA4 in tobacco results in responses that differ

with external Zn or Cd concentrations, highlighting the impor-

tance of endogenous homeostatic interactions [17]. In the Zn

hyperaccumulator Arabidopsis halleri, Zn and Cd hypertolerance

depend on the AtHMA4 homologue, AhHMA4. In this species,

gene copy number triplication combined with enhanced expres-

sion of the three A. halleri HMA4 genes are thought to have been

important in the evolution of hypertolerance [18]. Expressing

AhHMA4 under the 35S promoter in Arabidopsis thaliana also

resulted in enhanced tolerance to elevated levels of Zn and Cd;

however shoot concentrations in these plants was unchanged or

reduced by around 35–45%, suggesting that in these plants Zn and

Cd tolerance was conferred by exclusion [18].

In Arabidopsis thaliana, HMA2 and HMA4 are expressed in the

vascular system and are important for the translocation of Zn and

Cd from roots to shoots [12–14]. Whereas neither the hma2 nor

the hma4 mutant has an easily visible growth phenotype, the hma2

hma4 double mutant is severely stunted (even in the Ws mutant

that retains a full-length version of HMA3), and this phenotype is

rescued by application of Zn [12]. Closer inspection reveals that

the hma4 mutant has slightly reduced seed and silique size [11].

Recently it was shown that AtHMA2 expressed under its own

promoter was able to rescue the Zn deficiency phenotype and Cd

transport defect of the hma2 hma4 mutant to levels observed in the

single hma4 mutant [15]. Deletion of the N-terminal 74 amino

acids of HMA2 abolished this ability [15] but deletion of the C-

terminal cytoplasmic domain had little effect on the rescue. C-

terminal truncated versions of AtHMA2 still rescued the Zn

deficiency stunted phenotype of the hma2 hma4 mutant, although

the version with the entire C-terminal region removed barely

rescued the sterility phenotype [15]. The cytoplasmic C-terminal

domains of HMA2 and HMA4 contain potential metal-binding

motifs including multiple interspersed Cys pairs and His residues

in various motifs. The C-terminal domain of HMA2 has been

shown to bind three Zn2+ ions with high affinity [19].

Ionomics is the study of an organism’s elemental composition

using high throughput technologies. In this study we analysed the

shoot ionome of the hma2 hma4 double mutant together with the

hma2 and hma4 single mutants. We tested the ability of full length

AtHMA4 and two partial versions of AtHMA4 expressed from the

35S promoter, to rescue the Zn deficiency phenotype of the

Arabidopsis hma2 hma4 double mutant, and to restore the defect in

the ability of this mutant to accumulate Cd in shoots. In particular,

the aim was to determine whether C-terminal truncation of

AtHMA4 had any effect on its function in Arabidopsis and to

determine whether the HMA4 versions had potential in future

biofortification strategies.

Results

Three different AtHMA4 constructs were investigated in this

study: full-length AtHMA4 (AtHMA4-FL); Athma4D714-1172 with

the C-terminal 459 amino acids of AtHMA4 removed (AtHMA4-

trunc); Athma4D1–699, comprising only the C-terminal 473 amino

acids of AtHMA4 (AtHMA4-C-term) (see Figure S1). In addition,

two point mutation constructs (D401A and C357G) were included

as transport null mutants for the yeast complementation analyses

(Figure S1).

Tolerance conferred to yeast by AtHMA4 variants
AtHMA4-FL, AtHMA4-trunc and AtHMA4-C-term were expressed

in various yeast strains to determine their relative effectiveness in

conferring Zn and Cd tolerance. We also included either of two

transport null mutants: Athma4(D401A), mutated in the conserved

aspartate phosphorylated during the reaction cycle of all P-type

ATPases or Athma4(C357G), mutated in the conserved CPC

motif [11]. In these experiments, yeast were grown at pH 5–5.5 on

a minimal medium with galactose to induce expression. Consistent

with previous studies, full-length AtHMA4 confers Zn tolerance to

the Zn-sensitive zrc1 cot1 mutant yeast when grown under these

conditions (Figure 1A) and deletion of the C-terminal 459 amino

acids results in greater Zn tolerance [11]. No tolerance is observed

when the transport null Athma4(D401A) mutant is expressed

(Figure 1A). Here we show that expression of the 473 amino acid

C-terminus alone (AtHMA4-C-term) conferred greater Zn tolerance

to zrc1 cot1 yeast than AtHMA4-FL, although the tolerance was not

as great as that conferred by AtHMA4-trunc (Figure 1A). Also

demonstrated here are the relative abilities of the AtHMA4

variants in conferring Cd tolerance (Figure 1B and 1C). AtHMA4-

FL expressed in wild-type yeast, confers Cd tolerance while the

Athma4(C357G) mutant does not. AtHMA4-trunc conferred

greater Cd tolerance than AtHMA4-FL whereas AtHMA4-C-

term confers the greatest Cd tolerance (Figure 1B). In the ycf1

mutant, as shown previously expression of AtHMA4-FL confers Cd

tolerance [11,20] and in this study (Figure 1C) we show that the

truncated version confers greater tolerance. The difference

between the C-term and truncated versions is not as clear but

the AtHMA4-C-term appears slightly more tolerant at the highest

concentration tested.

Growth phenotype of the A. thaliana hma2 hma4 mutant
expressing versions of AtHMA4 under the 35S promoter

From expression studies in yeast we found that while AtHMA4-

FL confers tolerance to Zn and Cd, both the truncated form of the

ion pump (lacking the C-terminal region) and the C-terminal

region expressed alone conferred greater tolerance to these metals.

In order to assess the function of these three constructs in planta, we

expressed them in the A. thaliana hma2 hma4 double knockout

mutant [12] to observe their effect on the Zn deficiency

phenotype.

The hma2 hma4 double knockout mutant was transformed with

AtHMA4-FL, AtHMA4-trunc or AtHMA4-C-term expressed under

AtHMA4 C-Terminus
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control of the 35S promoter. We used RT-PCR to confirm

disruption of the endogenous genes, and expression of the

introduced constructs (Figure 2). One pair of primers was used

to amplify a region in the first half of the AtHMA4 cDNA (see

Figure S2 for primer positions). These primers do not amplify any

product from hma2 hma4 or hma2 hma4 vector control cDNA,

showing that full length AtHMA4 is not expressed in these plants.

They amplify a product of the predicted size from cDNA of the

hma2 hma4 double knockout transformed either with the 35S-

AtHMA4-FL or the 35S-AtHMA4-trunc construct (Figure 2A). This

shows that AtHMA4-FL or AtHMA4-trunc constructs are being

expressed in these hma2 hma4 transformants. A second pair of

primers was used to amplify AtHMA4 cDNA within the region

corresponding to the C-terminus of the protein. These primers

amplified a product of the predicted size from wt A. thaliana and

from the hma2 hma4 double knockout transformed with 35S-

AtHMA4-FL or 35S-AtHMA4-C-term (Figure 2B). A faint product

from this region was also detected in hma2 hma4 and hma2 hma4

transformed with the empty vector, indicating low expression of a

partial AtHMA4 transcript from this mutant (Figure 2B). The T-

DNA insertion in this gene occurs after the fourth transmembrane

domain, in the cytoplasmic ‘A’ domain (see Figures S1 and S2 for

insertion position). A partial transcript could be initiated

downstream of the insertion. This would not be predicted to have

any transport activity however it could mean that there are very

low levels of the C-terminal region expressed in these plants which

could have an effect on metal chelation. Overall the results show

that the constructs are being expressed in these lines, but expression

levels vary slightly between lines. AtHMA4 FL line 2 showed low

amplification levels for AtHMA4 but actin was also low in this

sample. If the level of actin is taken into account then this line has

similar expression levels to the other lines. AtHMA4-C-term line 3

also did not seem to show enhanced expression as the amplified

product was comparable to that seen in the hma2 hma4 mutant

(Figure 2B). In this case actin levels were only slightly lower.

Under the soil and growth conditions used in this study neither

the hma2-4 nor hma4-2 single mutants showed any distinct

vegetative growth phenotype, however the hma2-4 hma4-2 double

mutant was significantly stunted compared to wild-type (Figure 3).

This mutant occasionally produced a bolt over the time frame of

these experiments (45 days) but it was always very short. In

contrast, at this stage wild type plants had bolted and produced

flowers, siliques and seeds (Figure 3). After 60 days growth on soil,

a small proportion of hma2 hma4 mutants had produced several

small bolts and some flowers, but siliques were not produced and

thus no seed could be obtained. This was similar to the phenotype

already reported for hma2 hma4 in the Ws background [12] except

that we did not observe that the plants in our study were chlorotic

under our soil conditions as has been observed previously.

Figure 1. Direct comparison of Zn and Cd tolerance conferred
by AtHMA4 and truncated versions in yeast. AtHMA4-FL, AtHMA4-
trunc and AtHMA4-C-term were expressed in zrc1 cot1 yeast mutant (A),
wt yeast (BY4741) (B) or ycf1 mutant (C). Growth of yeast expressing
these AtHMA4 versions were compared to vector (p426)-transformed
controls and to either of two transport null mutants: Athma4(D401A) or
AtHMA4(C357G). Plates contained SC minus uracil with 2% (w/v)
galactose pH 5-5.5 and varying concentrations of Cd as CdSO4 or Zn as
ZnSO4.
doi:10.1371/journal.pone.0013388.g001

Figure 2. Arabidopsis hma2 hma4 plants are expressing
AtHMA4-FL, AtHMA4-trunc or AtHMA4-C-term. Semi-quantitative
RT-PCR shows expression of AtHMA4 versions in 5 independent
transformant lines for each construct in the Arabidopsis hma2 hma4
mutant. A, RT-PCR for lines expressing AtHMA4 FL (plants 1–5) or
AtHMA4-trunc (plants 1–5) using primers that detect a region before the
C-terminus.. B, RT-PCR for lines expressing AtHMA4 FL (plants 1–5) or
AtHMA4-C-term (plants 1–5) using primers that detect a region within
the C-terminus. Wild type plant (wt) and hma2 hma4 mutant are shown
as well as hma2 hma4 mutant expressing vector alone (hma2 hma4 V).
Actin was used as a control.
doi:10.1371/journal.pone.0013388.g002

AtHMA4 C-Terminus
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AtHMA4 expressed from the 35S promoter rescued the stunted

growth phenotype of the hma2 hma4 mutant (Figures 4 and 5). The

rosette diameters and bolt heights are shown for 5 independent

lines (Figure 4, HMA4-FL). The extent of rescue varied but in all

cases transformant rosette sizes and bolt heights were significantly

greater than the average value for the hma2 hma4 mutant.

AtHMA4-trunc expressed from the 35S promoter gave some rescue

of the hma2 hma4 mutant but the rescue was far less than for lines

expressing AtHMA4-FL (Figures 4 and 5). In two of the five lines

the rosette diameter was significantly greater than the average for

the hma2 hma4 mutant but the AtHMA4-trunc transformants did not

restore the phenotype fully and few bolts were produced in any of

these lines. Expression of AtHMA4-C-term did not have any clearly

observable effect on growth of the hma2 hma4 mutant; the rosette

diameters were generally similar to the hma2 hma4 mutant and,

similarly, bolts were rarely produced (Figures 4 and 5). Siliques were

produced in the AtHMA4-FL-expressing lines only and silique and

seed measurements were taken in two of the lines. Silique length and

also seed number per silique were both slightly but significantly

smaller than wt in both AtHMA4-FL lines (Figure S3).

Effect of expressing AtHMA4 versions under the 35S
promoter on the ionome of the Arabidopsis hma2 hma4
mutant

The shoot ion content of the hma2 hma4 mutant grown on soil

was compared with the wt ionome (Figure 6). The results are

presented for each element as a percentage of wt values. As

reported previously the mutant is markedly deficient in shoot Zn

[12] and Cd [14]. However, considering those elements that differ

significantly by more or less than 30% of the wt level, there are

also other notable differences: Co is markedly reduced; Rb and K

are also reduced to a lesser extent, while Cu is markedly higher.

There were also smaller but significant differences in a number of

other elements. The ionomic profile for the single hma2 and hma4

knockout mutants measured in this study and also those available

in the Purdue Ionomics database (www.ionomicshub.org) is shown

in Figure S4. Consistent with previous reports, Zn is reduced in the

shoots of the hma4 mutants but not to the extent observed in the

hma2 hma4 double mutant. Cd and Co were not always

significantly different from wt although they were always lower.

Interestingly the three HMA4 TDNA insertion lines that are

predicted to contain insertions in the promoter region had ionomic

profiles that were comparable with the lines with the TDNA

insertion after the start codon (Figure S4A). There was little

difference in the ionomic profiles of the hma2 mutants compared to

wt (Figure S4B).

The shoot ion content of several of the lines expressing AtHMA4

constructs was measured to determine whether the lines showing a

rescue of growth also showed a restoration of ion content to wt

levels. Results for all elements measured in these lines shown as a

percentage of wt are given in Figure S5. For those elements which

did show a marked difference when comparing wt and the hma2

hma4 mutant, the levels measured are shown in Figure 7. The

results are displayed for the hma2 hma4 mutant, hma2 and hma4

Figure 3. Comparison of wt and mutant plants grown on soil.
Plants were grown for 42 days on soil under identical conditions in a
controlled-environment growth room (22uC 16 h light, 20uC 8 h dark
cycle). Arabidopsis thaliana (Columbia) wt, hma2-4 (SALK_034393),
hma4-2 (SALK_050924) and the double hma2-4 hma4-2 mutant are
shown.
doi:10.1371/journal.pone.0013388.g003

Figure 4. Rosette and bolt heights of lines expressing AtHMA4-
FL, AtHMA4-trunc or AtHMA4-C-term. Growth of AtHMA4-expressing
hma2 hma4 plants (AtHMA4-FL, AtHMA4-trunc, AtHMA4-C-term)
compared to untransformed hma2 hma4 controls. Wild-type (wt) and
hma2 and hma4 mutants are also shown. Plants were grown on soil
under identical conditions in controlled-environment growth room
(22uC 16 h light, 20uC 8 h dark cycle).Top, Rosette diameter and
bottom, bolt height (42 days). Values are means +/2 S.E. from at least
24 plants). Student’s t-test was used to determine significance levels. a
= significantly larger than hma2 hma4 (P,0.05), b = line significantly
smaller than hma2 hma4 (P,0.05), c = line significantly smaller than wt
(P,0.05).
doi:10.1371/journal.pone.0013388.g004

AtHMA4 C-Terminus
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single mutants and several lines expressing AtHMA4 FL or

AtHMA4-trunc which had shown a rescue to some extent of the

growth phenotype. Two lines expressing AtHMA4-C-term were also

included in this analysis for comparison. AtHMA4-FL expressed

from the 35S promoter showed a partial restoration of the Zn

content to approximately 30% of wt levels; Cd contents were

restored to approximately 80% of wt levels. Co was fully restored

to wt levels, and Cu was reduced to wt levels. For the AtHMA4-

trunc transformants, Cd levels were significantly elevated compared

to the hma2 hma4 background mutant, but Zn, Co and Cu levels

did not differ significantly from hma2 hma4 levels (Figure 7). Cd and

Cu levels did not differ significantly between the AtHMA4-C-term

transformants and the background mutant; however Co levels

were significantly lower in the AtHMA4-C-term transformants

(Figure 7). For one of the two AtHMA4-C-term transformants, Zn

levels were no different from the background mutant, but in the

other they were slightly but significantly lower. In both of the

AtHMA4-C-term transformant lines, Cd levels were higher than in

the background mutant, but the differences were not significant

(Figure 7).

Figure 5. Representative plants of lines expressing AtHMA4-FL, AtHMA4-trunc or AtHMA4-C-term. Plants were grown on soil for 42 days
under identical conditions in a controlled-environment growth room (22uC 16 h light, 20uC 8 h dark cycle).
doi:10.1371/journal.pone.0013388.g005

Figure 6. Ionomic profile of hma2 hma4 mutant. Elemental levels in the shoot of the hma2 hma4 mutant. Values are the mean +/2 S.E of 4
replicate experiments, expressed as % of values for wt (dashed line indicates wt level at 100%). Student’s t-test was used to determine significance
levels (P,0.05).
doi:10.1371/journal.pone.0013388.g006

AtHMA4 C-Terminus
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Discussion

In devising strategies for improving the Zn content of crops we

may consider ectopically expressing transporters known to be

involved in transferring Zn to the shoot. It may also be possible to

modify these transporters in order to achieve more efficient

transfer. The importance of AtHMA4 in transport of Zn to the

shoot has previously been shown in Arabidopsis [12], and highly

homologous proteins are central to Zn accumulation in the

hyperaccumulators A. halleri [18] and Thlaspi caerulescens [16,21].

This study has investigated AtHMA4 in more detail and tested

different versions of this pump both in yeast and in plants to learn

more about their potential in biofortification or phytoremediation

strategies.

AtHMA4-trunc and AtHMA4 C-term are more effective
than AtHMA4 FL in conferring Zn and Cd tolerance to
yeast

Heterologous expression in yeast with growth analysis at pH 5–

5.5 shows that the full length AtHMA4, the truncated variant, or

the cytoplasmic C-terminus alone all result in Zn and Cd

tolerance, although the levels of yeast growth differ. For Cd, the

relative levels of tolerance conferred by these AtHMA4 constructs

to wt yeast was AtHMA4-C-term . AtHMA4-trunc . AtHMA4-FL.

In yeast, the vacuolar ABC transporter YCF1 transports

glutathione-conjugated Cd for detoxification [22]. However all

three AtHMA4 constructs enhanced Cd tolerance in the ycf1

mutant, indicating that YCF1 protein is not required for

detoxification mediated by these AtHMA4 variants. There was a

slight difference in the order of Zn tolerance conferred on Zn-

sensitive zrc1 cot1 yeast: AtHMA4-trunc . AtHMA4-C-term .

AtHMA4-FL. The truncated form of the pump retains the

transmembrane domains that catalyse transmembrane metal

transport and so is also likely to catalyse efflux in the same

manner as AtHMA4-FL, and confer tolerance to metals in this

way. The fact that it is more effective than the full-length version

suggests that deletion of the C-terminus results in a more efficient

pump in conferring Zn and Cd tolerance to yeast. This could be

because removal of the C-terminus increases the transport rate of

AtHMA4, or it could result in a different localisation for the

AtHMA4-trunc protein compared to the AtHMA4-FL, which

could be sufficient to alter the tolerance conferred without any

change in transport rate. Recently it was shown that deletion of the

C-terminus from AtHMA4 had no apparent effect on enzyme

turnover but this resulted in more efficient Zn or Cd pumping; it

was suggested that slipping may account for this as has been

observed for certain other P-type ATPases [23].The AtHMA4-C-

terminal region does not include any catalytic or predicted

transmembrane domains, so we postulate that when expressed

alone it may act as a metal-binding peptide to mediate Cd and Zn

detoxification conferring metal tolerance. Consistent with this, the

C-terminal region has been shown in vitro to bind both Zn and Cd

[23]. The 473 amino acid C-terminal region has 45 Cys residues,

including 13 CC motifs. Cys residues feature in Cd tolerance

proteins such a phytochelatins [24], metallothioneins [25] and

AtPCR proteins [26]. Therefore when expressed in unicellular

organisms AtHMA4-C-term could have potential biotechnological

application in bioremediation strategies.

The ionome of the hma2 hma4 mutant is markedly
different to wt plants

Ionomics helps us understand the relationship between different

elements and the responses of the plant to environmental

conditions at various stages of growth and development [27]. It

Figure 7. Metal levels in selected lines expressing AtHMA4-FL,
AtHMA4-trunc or AtHMA4-C-term. Shoot levels of Zn, Cd, Cu, Co and K
are compared in selected lines for hma2 hma4 plant lines expressing
either AtHMA4-FL, AtHMA4-trunc or AtHMA4-C-term. Untransformed
hma2 hma4 controls plants are shown together with wild-type (wt) and
hma2 and hma4 mutants. Values are the mean +/2 S.E. determined
from 12 plants. Student’s t-test was used to determine significance
levels. * significantly greater than hma2 hma4 control; # significantly
lower than hma2 hma4 control (P,0.05).
doi:10.1371/journal.pone.0013388.g007

AtHMA4 C-Terminus
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is also useful in understanding effects of genetic modification. Our

goal was to determine whether the truncated version of AtHMA4

was also more efficient in planta; in particular, whether it could be

more effective than the FL version in allowing Zn accumulation in

the shoot. We used the hma2 hma4 mutant which is defective in Zn

and Cd root to shoot translocation [12,14] in order to analyse the

AtHMA4 variants. In particular we were interested in how these

mutants and transgenic lines would perform in the more natural

soil environment, rather than growing on plates or in hydroponics.

The hma2 hma4 double knockout mutant accumulates Zn in the

pericycle and endodermal cells of the root, and the mutant is

stunted unless grown with additional Zn supplementation [12,28].

Our analysis of the hma2 hma4 shoot ionome confirms that Zn and

Cd levels are extremely low compared to wt, and additionally

shows there are lower levels of Co, K and Rb. The hma2 hma4

mutant also shows significantly higher Cu levels in the shoots.

Shoots of the single hma4 knockouts are also slightly lower in Co,

although their K and Cu contents are normal. There is substantial

evidence that HMA4 transports Zn and Cd, so it is not unexpected

that these metals are decreased in the hma2 hma4 double mutant.

HMA4 may also transport Co [13,20], and its absence could result

in the decrease in Co observed in both the single hma4 mutant and

the double knockout. There is no evidence that AtHMA4 can

transport Cu but under Zn deficiency many other transporters (eg

ZIPs 2, 4 5 and 9 and also COPT2) are up-regulated, and some of

these can transport Cu as well as Zn [29]. So the observed increase

in shoot Cu may be due to a Zn deficiency response whereby such

Zn transporters are up-regulated, resulting in Cu uptake. It is

interesting that elevated Cu is only seen in the hma2 hma4 mutant,

which has Zn levels around 10% of that observed in wt plants, but

not in the single hma4 mutants that have Zn levels around 40% of

wt plants. This suggests that there could be a threshold level of Zn

below which transporters are induced that lead to the accumu-

lation of Cu in the shoots. K and Rb are also decreased in the hma2

hma4 mutant. There is no evidence for K transport by HMA2 or

HMA4, so the decreased K levels observed in the hma2 hma4

knockouts are more likely to be an indirect result of the absence of

these transporters, although we do not know what this pathway

involves. Rb has no known biological function but has a similar

ionic radius to K and can be used as a K analogue. It seems likely

that the observed decrease in Rb is directly related to the decrease

in K.

Significant restoration of the wt phenotype in hma2
hma4 plants expressing 35Sp-AtHMA4

In most of the lines with AtHMA4-FL expressed under the 35S

promoter the small rosette phenotype of hma2 hma4 double

knockout plants was fully restored to the size observed for wt plants

or the hma2 and hma4 single mutants. Flowering bolts were also

produced in the AtHMA4-FL transformants and all lines had a

significantly greater mean bolt height than the hma2 hma4 mutant.

In three of the five lines the mean height was similar to that

observed for the hma2 single mutant, but it was still significantly

less than wt plants indicating that it was not a complete rescue in

all plants. Siliques and seed were also produced in the AtHMA4-

FL-expressing lines but both silique length and also seed number

per siligue were slightly but significantly smaller than wt (Figure

S3). It should be noted that expression of AtHMA4-FL only

restored the shoot Zn content to around 30% of the level observed

in wt plants. This Zn content is similar to the levels seen in the

hma4 mutant, which appears similar to wt in most growth

parameters. Thus less than half the normal shoot Zn content is

required for typical growth. In contrast Co and Cu levels were

restored to wild-type levels in these lines. The smaller silique size

and lower seed number per silique of the AtHMA4 FL-

transformants compared to wild-type is likely to be a consequence

of the reduced Zn levels in the shoot and hence lower levels

reaching the silique. However it could be that HMA4 plays a more

direct role in the siliques themselves and expression under the 35S

promoter is not as effective here as under the native promoter.

The reason why Zn content is only restored to levels seen in the

hma4 mutant and not to wt levels is not known. It is possibly due to

mis-expression of HMA4 due to its expression under the 35S

promoter. This may result in less efficient translocation of Zn to

the shoot. It would be interesting in the future to see if similar

responses in growth and Zn content are seen in hydroponically

grown plants and in that case root measurements could be

included to determine whether root accumulation differs in

transformants and wt. Certainly when AtHMA4-FL was expressed

in wt Arabidopsis (Col ecotype) there was no change in root Zn

but increased shoot Zn under hydroponic growth conditions,

indicating increased root to shoot translocation (13). However

when expressed in tobacco, Zn concentrations were either

unaltered in roots (0.5, 10 mM Zn supply) or reduced (100,

200 mM Zn supply) while maintaining or increasing (only at

10 mM Zn supply) shoot content, indicating that root to shoot

translocation of Zn was greater in tobacco expressing 35S-

AtHMA4-FL than in wt (17).

Functional significance of C-terminal region of AtHMA4
The C-terminus of AtHMA4 would not be predicted to function

as a metal transporter and so when expressed in hma2 hma4 we

would predict that it would not be directly involved in

translocation of Zn or Cd to or from the shoot. However as it

confers metal tolerance on yeast it may function as a metal-binding

peptide, and could influence metal levels when expressed in plants.

We tested whether expression of AtHMA4-C-term had any effect on

the ionomic profile. No marked effect was observed in most

elements although in one line the Zn content was slightly lower

and in both lines the Co concentration was slightly lower. There

was also a trend towards increased Cd in these lines although this

was not significant. Generally no significant difference in the

growth of the C-terminal-expressing hma2 hma4 lines compared to

the hma2 hma4 mutant was observed. It should be noted that

expression of the C-terminus of AtHMA4 in wt tobacco exposed to

0.5 or 5 mM Zn or 0.25 mM Cd resulted in Zn or Cd accumulation

in roots and shoots [17] indicating that this may have future

biotechnological application.

In contrast to the results obtained for AtHMA4-FL, AtHMA4-

trunc expressed under the 35S promoter was not very effective in

restoring the phenotype of the hma2 hma4 mutants and in restoring

the shoot Zn content of this mutant. Similarly Co and Cu levels

were no different from the hma2 hma4 mutant, but AtHMA4-trunc

expression did seem to increase shoot Cd content, although this

was still significantly lower than wild-type levels. These results

suggest that in terms of developing strategies for Zn biofortifica-

tion, the truncated version of AtHMA4 would not be as effective as

the FL version. This is consistent with results obtained expressing

AtHMA4-trunc in tobacco [17]. The possibility exists that

AtHMA4-trunc is more effective than AtHMA4 FL in the roots

and could function in metal exclusion when expressed under the

35S-promoter. This may explain the lower accumulation of Zn

and Cd in the shoot. Alternatively it could influence root

sequestration of these metals with less transfer to shoots. In future

it would be interesting to determine the effect on the root ionome

in mutants expressing these constructs and also determine the

cellular localisation pattern.
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Our results suggest that the C-terminus of AtHMA4 does have

an important role in planta and its removal from AtHMA4 FL does

have consequences for the functioning of AtHMA4. This is in

contrast to what has been observed for AtHMA2 where C-

terminally truncating this pump had little effect; the truncated

version of this pump rescued the Zn deficiency stunted phenotype

of the hma2 hma4 mutant as well as the full-length version [15].

The sterility phenotype was however not rescued in the AtHMA2

version with the entire C-terminus deleted. The reason for the

differences observed in the ability of C-terminally truncated

versions of AtHMA2 and AtHMA4 in rescuing the hma2 hma4

mutant is not clear. AtHMA2 and its C-terminally-truncated

version were expressed under their native promoter whereas in this

study all constructs were expressed under the 35S promoter and

we cannot exclude this as a possible reason for the difference. The

C-termini of AtHMA2 and AtHMA4 do vary in size and

composition with AtHMA2 having a much shorter C-terminal

domain (260aa compared with 470aa after the last predicted

transmembrane domain). Cys and His residues have been

identified as metal-binding residues in the C-terminus of

AtHMA2, binding three Zn2+ ions with high affinity (Kd

,16 nM). Three His and a Cys coordinate the one Zn ion, while

His residues alone co-ordinate the other 2 ions [19]. Although

deleting the C-terminal region of AtHMA2 had little effect on its

ability to restore the Zn-deficiency phenotype of hma2 hma4,

deletion of its C-terminal region has been shown to half the

activity of the pump without significantly altering Zn2+ or Cd2+

K1/2 for ATPase activation [19]. This was interpreted as an auto

stimulatory mechanism for AtHMA2 whereby cytoplasmic metal

binding to the C-terminus drives faster transport [19]. The

increased Zn and Cd tolerance in yeast conferred by removal of

the C-terminal region of AtHMA4 is more consistent with an auto

inhibitory role for the C-terminus in this pump although further

analysis is required to investigate this. Certainly the C-terminus of

AtHMA4 does seem to have an important role in planta but there is

no evidence as yet for an auto inhibitory function. In fact

considering accumulation of Zn in the shoots, removal of the C-

terminus seems to result in a less effective pump. There are several

possible reasons for AtHMA4-trunc being less effective than

AtHMA4-FL in rescuing the Zn-deficiency phenotype: the

truncated version of the protein could be less stable when

expressed in plants; it may be targeted to a different membrane;

it could function more efficiently as a metal efflux system in roots

so that metals are transferred out of the plant. Although important

in planta, the role of the C-terminus is still not clear; it could act as a

metal sensor to regulate activity of the pump in response to

available ions or it may interact with proteins that regulate the

pump, or with a metal chaperone to specifically target Zn to the

pump for transport (although no Zn chaperone has yet been

identified). Any differences in the operation of these constructs in

yeast and plants could be due to several factors: targeting signals

may differ, turnover rates may vary, and interactions with other

proteins and with the endogenous metal-responsive transcriptome

may differ between yeast and plants.

In conclusion, it seems that AtHMA4 FL is more promising for

future biotechnological application than AtHMA4-trunc and that

complementation of the hma2 hma4 mutant is a suitable strategy for

exploring structure/function relationships of AtHMA4.

Materials and Methods

Plant material and growth conditions
Arabidopsis thaliana ‘Columbia-8’ (European Arabidopsis Stock

Centre N60000; http://arabidopsis.info/) and transformed lines

were grown in a controlled-environment growth room (22uC 16 h

light, 20uC 8 h dark cycle) or under similar conditions in a

glasshouse, in 1:1:1 (v/v) JI No. 2: Vermiculite (Medium):

VAPOGRO SEED MODULAR (Winscombe, UK), with

0.28 g/L INTERCEPT 5 g insecticide (Bayer, Canada). Arabi-

dopsis thaliana (Columbia) hma2-4 (SALK_034393) hma4-2

(SALK_050924) double T-DNA insertion mutant [14,15] was a

kind gift from Prof. C. Cobbett. The hma2 hma4 mutant plants are

infertile under normal growth conditions, therefore Zn supple-

mentation was provided by watering with 3 mM ZnCl2 in order to

grow hma2 hma4 plants for transformation. This was also supplied

to isolate seed from transformed hma2 hma4 but not in the

phenotypic analysis unless stated specifically.

Growth parameters (rosette diameter and bolt height) were

determined after 42 days growth. For silique measurements,

photographs of siliques were taken after 49 days growth of plants

on soil and representative bolts were taken from each line. Silique

lengths were determined from these pictures using ImageJ software

(http://rsbweb.nih.gov/ij/). Silique lengths were measured for 60

siliques from six plants in the middle section of the bolt. To

measure seed per silique, the siliques were immersed in 70%

ethanol (v/v) overnight and then transferred into methyl salicylate

(100%) and left overnight. This produced clear siliques which were

photographed under the microscope allowing seeds to be counted.

AtHMA4 constructs for yeast expression, yeast
transformation and growth analyses

The full length AtHMA4 coding sequence (AtHMA4-FL, 1172

aa), and the truncated AtHMA4 sequence lacking the C-terminal

region (D714-1172, AtHMA4-trunc, 713 aa) were cloned into the

yeast expression vector p426 under control of a galactose inducible

promoter as described previously [10,11]. The C-terminal 473

amino acids of AtHMA4 were amplified using primers 59GAAC-

TAGTAGGGACTTGTCTGCTTGTGA and 59GTATCGAT-

GGCATTCACGGAATGAGACT, digested with SpeI and ClaI,

and inserted into same sites of p426. This allows expression of the

deletion mutant Athma4D1–699, referred to as AtHMA4-C-term.

Constructs were transformed into wt Saccharomyces cerevisiae

(BY4741), the ycf1 mutant, or the zrc1 cot1 double mutant as

described previously [11]. For metal sensitivity tests yeast cells

were grown in liquid culture overnight at 30uC in SC (Synthetic

Complete) without uracil (5 g L21 (NH4)2SO4, 1.7 g L21 yeast

nitrogen base (Difco, UK), 1.92 g L21 yeast synthetic drop-out

media supplement without uracil; (Sigma, UK)) and containing

2% (w/v) glucose (adjusted to pH 5.0 with KOH prior to

autoclaving). The cultures were diluted to an OD600 of

approximately 0.8 with SC without uracil containing 2% (w/v)

galactose (pH 5.0) and grown for a further 4 h. The cultures were

diluted to the same OD600 (approx. 0.3) and aliquots were

inoculated onto SC without uracil, 2% (w/v) agar (Difco technical)

2% (w/v) galactose (adjusted to pH 5.0 with KOH before addition

of agar and prior to autoclaving) containing various concentrations

of metal supplied as the sulphate salt. All culture dilutions were

made in SC without uracil, 2% (w/v) galactose (pH 5.0). Final pH

measurements were made after autoclaving. Inoculated plates

were incubated at 30uC for 3–5 days.

Generation of AtHMA4 constructs for expression in plants
Full-length AtHMA4, the truncated AtHMA4 mutant or the 473

amino acid AtHMA4 C-terminal region were inserted into the

expression vector pBECKS400.6 [30] under control of the

CaMV35S promoter. AtHMA4-FL was EcoRI-digested from p426,

the ends were filled and the sequence was ligated into the SmaI site

of pBECKS400.6. AtHMA4-trunc was amplified with primers
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59CTCGGATCCGAAAATGGCGTTACAAAACAAAG and

59GCGGTACCTCACTTTTTGTTCCCAATCTTTTTCTTC-

TCTC, digested with BamHI and KpnI and inserted into the same

sites of pBECKS400.6. The reverse primer introduces a stop codon.

AtHMA4-C-term was amplified with primers 59CTAGTAGG-

GACTTGTCTGCTTGTGA and 59CGATGGCATTCACG-

GAATGAGACT, and ligated into the SmaI site of pBECKS400.6.

The ATG at bp 2098 of the AtHMA4 coding sequence starts

expression of the C-terminal 473 amino acids of AtHMA4.

Plant transformation
Plasmids were transformed into Agrobacterium tumefaciens GV3101

by electroporation. Arabidopsis thaliana (Columbia) hma2-4 hma4-2

mutant [12] was grown with Zn supplementation to promote

flowering, and plants were transformed using the floral dip method

but including a 3 h pre-induction of vir genes by addition of

100 mM acetosyringone to the culture before dipping [31].

Homozygous T3 plants were used for analysis.

RT-PCR
RNA and cDNA were prepared and semi-quantitative PCR was

performed as described by [32]. Actin 2, used as the control, was

amplified using primers 59GGTAACATTGTGCTCAGTGG-

TGG and 59CTCGGCCTTGGAGATCCACATC that span an

intron. Two alternative primer pairs were used to detect AtHMA4-

FL. Primers 59GGAATTCGCAGCAGTTGTGTTCCTATTCA

and 59GGAATTCGAGATTTGGTTTTACTGCTCTG detect

a region before the C-terminus and also amplify AtHMA4-trunc but

do not amplify AtHMA4-C-term, while primers 59GAAGGAG-

CAATGTCGTCTGGAG and 59AGCACTCACATGGTGA-

TGGT detect a region within the C-terminus and so also amplify

AtHMA4-C-term but not AtHMA4-trunc.

Ionomic analysis
Plants were grown in soil supplemented with sub-toxic concen-

trations of various elements including 0.09 ppm Cd and were

regularly watered with Fe-HBED and 0.256 Hoagland’s solution

[33]. Elemental analysis was carried out as previously described

using ICP-MS [33]. Ionomic data is available at www.ionomicshub.

org; tray references for the single mutants are 260 (Ws hma2-1), 816

(SALK_042906, SALK_093482, SALK_109431 and SALK_

034393), 940 (GABI_168C10), 1609 (SALK_050924) and 1615

(SALK_132258, SALK_066029 and SALK_019060).

Supporting Information

Figure S1 Schematic diagram of AtHMA4-FL protein
and equivalent schematic diagrams of the two partial
sequences AtHMA4-trunc and AtHMA4-C-term. Predicted

transmembrane domains are shown as cylinders. The location

corresponding to the HMA4-2 TDNA insertion site is indicated, as

are the sites for the two point mutations D401A and C357G.

Found at: doi:10.1371/journal.pone.0013388.s001 (0.44 MB TIF)

Figure S2 Alignment of HMA4 with HMA2 and HMA3,
showing AtHMA4-trunc and AtHMA4-C-term ORFs,

primer locations and HMA4-2 TDNA insertion. ClustalW2

(UPGMA clustering) alignment of AtHMA4 (At2g19110) with

AtHMA2 (At4g30110) and AtHMA3 (At4g30120) cDNA se-

quences. Conserved residues are shaded. The ORFs (with stop

codons) for 35S expression constructs AtHMA4-trunc (AtHMA4-

trun) and AtHMA4-C-term (AtHMA4Cter) are shown below the

alignment in green and yellow respectively. Primers that amplify a

region of the sequence before the C-terminus are indicated in dark

blue; primers that amplify a region of the sequence within the C-

terminus are indicated in light blue. The HMA4-2 TDNA

insertion position maps to the cDNA just after C600, indicated

in red.

Found at: doi:10.1371/journal.pone.0013388.s002 (0.14 MB

TIF)

Figure S3 Silique lengths and number of seeds per
silique is reduced in the AtHMA4-FL lines. Silique lengths

(A) and number of seeds per silique (B) taken from lines after 49

days growth on soil. Plants were watered with tap water apart from

the +Zn plants which were watered with 3 mM ZnSO4. Silique

lengths are the mean 6 S.E. of 60 siliques from six plants while

values for seed per silique were determined from 36–40 siliques

from five plants. Significant differences are indicated: #
significantly greater than wt; * significantly lower than wt (Students

t test, P,0.05). Example siliques are shown for wt (C), hma2 hma4

+ Zn (D), AtHMA4-FL line 2 and AtHMA4 FL line 3. Scale bar

= 1 mm.

Found at: doi:10.1371/journal.pone.0013388.s003 (0.86 MB

TIF)

Figure S4 Ionomic profiles for shoots of T-DNA inser-
tion lines. A, hma2 mutants; B, hma4 mutants. Values are the

mean +/2 S.E. (n = 12) expressed as % of values for wt.

Found at: doi:10.1371/journal.pone.0013388.s004 (0.66 MB

TIF)

Figure S5 Ionomic profiles for shoots of selected lines of
hma2 hma4 expressing either AtHMA4-FL, AtHMA4-
trunc or AtHMA4-C-term. Values are the mean +/2 S.E.

determined from 12 plants expressed as % of values for wt.

Found at: doi:10.1371/journal.pone.0013388.s005 (0.47 MB

TIF)
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