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Abstract

Gene therapy is being investigated for a range of serious lung diseases, such as cystic fibrosis and emphysema.
Recombinant adeno-associated virus (rAAV) is a well-established, safe, viral vector for gene delivery with multiple
naturally occurring and artificial serotypes available displaying alternate cell, tissue, and species-specific tropisms.
Efficient AAV serotypes for the transduction of the conducting airways have been identified for several species;
however, efficient serotypes for human lung parenchyma have not yet been identified. Here, we screened the
ability of multiple AAV serotypes to transduce lung bud organoids (LBOs)—a model of human lung parenchyma
generated from human embryonic stem cells. Microinjection of LBOs allowed us to model transduction from the
luminal surface, similar to dosing via vector inhalation. We identified the naturally occurring rAAV2 and rAAV6
serotypes, along with synthetic rAAV6 variants, as having tropism for the human lung parenchyma. Positive staining
of LBOs for surfactant proteins B and C confirmed distal lung identity and suggested the suitability of these vectors
for the transduction of alveolar type II cells. Our findings establish LBOs as a new model for pulmonary gene
therapy and stress the relevance of LBOs as a viral infection model of the lung parenchyma as relevant in SARS-
CoV-2 research.
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Background
Recombinant adeno-associated virus (rAAV) is a well-
established vector for gene delivery, currently in use
clinically for gene therapy, with multiple, naturally oc-
curring serotypes and artificial variants facilitating
species-specific cell and tissue tropisms [1]. Engineering
of new AAV capsids has been the focus of extensive re-
search, but capsids selected in animal models and cancer
cell lines often translate poorly to large animal models
and humans. Clinical trials of gene therapy for cystic

fibrosis lung disease using AAV serotype 2 failed to
show efficacy [2], and of the many potential reasons for
this, an important factor is the lack of serotype screening
for airway tropism resulting in poor translation to the
human airways [3].
The identification of AAV serotypes for gene delivery

to the human lung has focused mainly on the transduc-
tion of the human airway epithelium [4, 5]. The lung
parenchyma, however, is the target for treating genetic
diseases such as surfactant deficiencies and interstitial
lung disease; in particular, alveolar type II (ATII) pneu-
mocytes, which express proteins crucial for surfactant
function.
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In this study, we aimed to identify AAV serotypes that
permit efficient gene delivery to the human lung paren-
chyma. We hypothesised that an ideal model for capsid
selection should be of human origin and should also
offer a polarised cell layer that mimics the tissue surface
available to viral vectors, including the distribution of
viral entry receptors. We chose a human 3D cell culture
model of the lung as a novel approach for serotype
screening—lung bud organoids (LBOs) [6]. The LBOs
were generated from human embryonic stem cells
(hESC) in this study because their differentiation effi-
ciency is more robust compared to iPSC lines [7] as
shown specifically for the generation of progenitor lung
cells from iPSC [8]. LBOs exhibit a strong bias towards
the generation of lung parenchyma cell types, especially
alveolar type II (ATII) pneumocytes [6] and provide a
reproducible, in vitro model in which to study human/
viral vector interactions that is substantially more similar
to the native tissue environment than traditional,
immortalised, submerged cell culture models. The
polarised 3D structure of LBOs allows for vector trans-
duction from the luminal surface, mimicking vector ad-
ministration by inhalation, and thus provides an
attractive translational model for diseases of the human
parenchyma.

Results
To generate LBOs, the hESC cell line AND-2 was se-
quentially differentiated via endoderm and branching in-
duction according to the timeline shown in Fig. 1 [6].
After 59 or 79 days of differentiation in culture, LBOs
were microinjected with AAV serotypes 1, 2, 5, 6, 6.2,
6.2FF, 8, and 9, or a negative control buffer, to mimic
vector delivery to the apical/luminal surface of the lung.
Injection of rAAV vectors expressing enhanced green

fluorescent protein (EGFP) from the CMV promoter re-
sulted in EGFP-dependent fluorescence in LBOs as early
as day 3 post-injection. On day 5 after injection (Fig. 2),
high levels of fluorescence directly observed from
expressed EGFP (‘native’ fluorescence) were observed
following transduction with rAAV2, rAAV6 and variants
rAAV6.2 and rAAV6.2FF ([4, 9], Fig. 2b–e, respectively).
Native EGFP fluorescence was much lower in cultures
injected with rAAV1 and rAAV8 (Fig. 2f, g), while fluor-
escence with AAV serotypes 5 and 9 (Fig. 2h, i) was in-
distinguishable from the mock injection (Fig. 2a). For
rAAV6.2, EGFP expression from the CMV promoter
was considerably more robust than that achieved with
the hCEFI promoter [10], which yielded only low levels
of fluorescence (Fig. 2d, j). Analysis of EGFP brightness
intensity confirmed that expression levels were highest
for rAAV2, rAAV6 and variants rAAV6.2 and
rAAV6.2FF which was significantly different from mock
injection while rAAV5 and rAAV9 resulted in the lowest
levels of brightness (Fig. 2k).
The LBOs were sectioned and stained for ATII cell

markers surfactant protein C (SP-C) and surfactant pro-
tein B (SP-B) to confirm distal lung maturity (Fig. 3a, b).
Native EGFP-dependent fluorescence was observed
alongside positive SP-B immunostaining in LBOs trans-
duced with rAAV6.2-CMV-eGFP (Fig. 3c) compared
with non-transduced organoids (Fig. 3b) indicating the
suitability of this vector to transduce the human lung
parenchyma. To further understand the basis for rAAV
transduction, which can depend on both primary glycan
receptors and protein co-receptors, we also stained the
LBOs for the universal AAV co-receptor (AAVR or
KIAA0319L, Fig. 3d), α-2,3-linked sialic acid (Fig. 3e, f)
and heparan sulphate (Fig. 3g, h). Scattered cells staining
positive for α-2,3-linked sialic acid were observed

Fig. 1 Key stages of lung bud organoid generation. Representative images of the key stages in lung bud organoid generation are shown
together with the key respective differences in culture, plate type/coating and cellular factors. d0: hESC are routinely cultured in adherent mode
on Matrigel-coated plates. d0–d4: Transition to suspension culture allows differentiation (via embryoid bodies) to definite endoderm. d4–d6:
Transition to adherent culture on fibronectin-coated plates and a two-step treatment with cellular factors induces anterior foregut endoderm. d6–
d28: Transition to suspension culture allows the generation of nascent organoids. d28–d45+: mature LBOs are generated after nascent organoids
are placed in a Matrigel sandwich, with ‘buds’ starting to emerge after a few days as highlighted by the arrow. Mature LBOs are typically used for
experiments from d45 onwards (in this study d59 and d79). LBO image shown is representative of d59–79. Images are representative of > 4 cycles
of LBO generation. Scale bars 200 μm
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Fig. 2 Native EGFP fluorescence in lung bud organoids on day 5 after rAAV transduction. Lung bud organoids (aged d59) were microinjected
with 3.5E8 to 1E9 GC of rAAV serotypes expressing EGFP from either the CMV promoter or hCEFI promoter as indicated. Mock injection with
buffer served as a negative control. Five days after injection, LBOs were imaged en face for EGFP fluorescence (a–j). One representative image
from n = 3–4 injected organoids is shown; for serotypes rAAV6.2, rAAV5 and rAAV9, the image is representative of two independent experiments.
Scale bar 200 μm. Quantification of EGFP brightness intensity in en face images of transduced or mock-injected LBOs (k). Brightness was
determined as the sum of the values of the pixels in the LBO area of the image and was normalised to LBO size and background fluorescence of
the mock injected group. Kruskal-Wallis test comparing the mean rank of each group to the mock injected group. (*) P < 0.05; (**) P < 0.005

Fig. 3 Immunohistochemistry for markers of alveolar type II cells and AAV entry receptors. Representative images are shown of fixed-frozen
sections of LBOs (n = 2–3), with nuclei stained with DAPI (blue) and various markers (red), including ATII cell marker SP-C (a), ATII cell marker SP-B
(b, c), universal AAV co-receptor AAVR (d), glycan receptor α-2,3-linked sialic acid (e, f) and glycan receptor heparan sulphate (g, h). Native
fluorescence is observed following microinjection of AAV6.2-CMV-eGFP (c) compared with negative control LBOs (b). Sections digested with
sialidase A (e) and heparinase III (g) to remove glycans are included as negative staining controls. Staining controls for images a–d are shown in
suppl. Fig. 2. Scale bar 50 μm
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(Fig. 3e, f), along with staining of subcellular structures
characteristic of AAVR ([11], Fig. 3d) and the ‘spotted’
staining pattern commonly observed for heparan
sulphate ([12], Fig. 3g, h). The observations confirmed
the presence of all three rAAV receptor molecules in the
LBO cultures.

Discussion
The development of models of the human lung is im-
portant for the investigation of new treatments, but is
often challenging when human lung tissue is scarce.
Moreover, isolated adult alveolar stem cells quickly de-
differentiate in culture further complicating their use as
founder cells for organoid culture. The generation of
LBOs from hESC provides a 3D model of the human
lung parenchyma, which has been shown to model as-
pects of embryonic development, RSV infection and
genetic diseases such as Hermansky-Pudlak syndrome
[6, 13]. We chose to use this model to identify AAV se-
rotypes with tropism for human lung parenchyma—a
crucial step in developing novel viral gene therapies for
diseases of the lung.
Microinjection was used to deliver the rAAV vectors

to the centre to the LBOs to limit transduction to the
apical surface and minimise the opportunity for rAAV
transduction via receptors expressed only on the basolat-
eral surface. We showed that reporter EGFP fluores-
cence was greatest following transduction with AAV
serotypes 2, 6 and variants of serotype 6 in d59 orga-
noids, with similar transduction patterns for organoids
injected at d79, indicating the robustness of this model
over time (suppl. fig. 1). The AAV5 vector was negative
for eGFP expression in this human model (Fig. 2h) al-
though serotype 5 was previously identified as suitable
for the transduction of murine lung parenchyma [4].
This highlights the variation in vector tropism observed
between species, a well-known challenge in the field of
viral in gene therapy, and also more generally a problem
for viral infection studies. Staining of the LBOs for the
lung parenchymal markers SP-B and SP-C confirmed
distal lung identity and suggests the suitability of AAV
serotypes 2, 6 and variants of 6 for transduction of ATII
cells. Serotypes 6.2 (AAV6 capsid + F129L) and 6.2FF
(AAV6 + F129L + Y445F + Y731F) were designed for im-
proved lung transduction [4, 9], but in this study, no dif-
ferences were observed. The hCEFI promoter was
investigated for its potential for long-term (months to
years) therapeutic transgene expression compared with
the strong CMV promoter which is prone to silencing.
In a long-term study, native EGFP fluorescence was still
detectable with the rAAV6.2 vector on d70 post-
transduction for both the CMV and hCEFI promoters
(data not shown). Overall, however, hCEFI expression
levels were relatively low in the LBOs (Fig. 2k)

suggesting that other promoter options for long-term
expression in the human lung parenchyma should be ex-
plored, such as the Ubiquitin C promoter used in the
distal lung [14]. Furthermore, staining revealed the pres-
ence of the universal AAVR co-receptor, and also α-2,3-
linked sialic acid and heparan sulphate, which have been
previously observed in resected adult, human lung tissue
[15, 16]. Although the location of these receptors and
their subtypes within the human lung and during lung
development is not fully understood [12], lectin staining
as performed in this study has been reported to intensify
in the alveolar region during development from foetal to
adult lung [15]. This could lead to improved transduc-
tion of adult lung with AAV serotypes dependent on α-
2,3-linked sialic acid entry receptors, such as rAAV5, if
the glycan receptor rather than a co-receptor was rate-
limiting.
The highly efficient transduction of LBOs with AAV

serotypes 2 and 6 is consistent with the observed strong
positive staining for heparan sulphate (Fig. 3g, h), a key
entry receptor for these serotypes [1]. These findings in-
dicate that LBO cultures may be a useful model for
screening vectors targeting the human parenchyma,
particularly in the early (neonatal) stages of lung devel-
opment, as required in, for example, treatment of
congenital surfactant deficiencies. LBOs might also be
suitable for the generation of new capsids targeting the
human parenchyma via directed evolution and screening
of AAV capsids libraries. The LBOs also have the poten-
tial to model aspects of respiratory viral infection in the
human parenchyma, including infection of ATII cells
with MERS-CoV and SARS-CoV-1 and 2 [17]. LBO sec-
tions stained positive for the SARS-CoV-2 entry recep-
tors ACE2 and TMPRSS2 (suppl. Fig. 3), supporting our
hypothesis that LBOs may be a useful model for SARS-
CoV-2 research.
In future studies, we anticipate that LBOs can be gen-

erated from genome-edited hESCs, giving rise to con-
comitant morphological and functional phenotypes, that
could serve as refined human disease models to facilitate
the investigation of therapeutic gene therapy vectors. For
example, wildtype LBOs have been shown to recycle SP-
B from their lumen in a functional assay [6], which
could constitute a qualitative read-out of the correction
of genetic disorders of surfactant.
In summary, we have established human LBOs as a

model to screen for viral vector transduction, identifying
serotypes suitable for transduction of the human lung
parenchyma.

Methods
The hESC line AND-2 was sequentially differentiated to
LBOs (for details see supplementary methods, Fig. 1 and
references [6, 18, 19]). Needles with long continuous
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taper were pulled for LBO microinjection, which was
deemed successful when the organoid visibly pulsated
during injection (aiming for 3–4 successful injections
per site and, depending on the LBO size and number of
buds, 2–3 locations; see supplementary methods for de-
tailed microinjection protocol). This corresponded to
3.5E8-1E9 rAAV genome copies (GC) of vector per LBO
(n = 3–4 LBOs per group). Recombinant AAV vectors
were produced by triple transfection in HEK293T cells
and purified via iodixanol density gradient centrifugation
[20]. Vector purity was tested via SDS-PAGE and titres
were determined using quantitative PCR. For immuno-
histochemistry analysis, LBOs were processed in fixed-
frozen sections. Cellular proteins and glycan receptors
were stained using primary antibodies to α-surfactant
protein B (#sc-133143, Santa Cruz Biotech), α-
prosurfactant protein C (#ab3785, Merck), α-KIAA03
19L (AAVR, #PA5-67257, Invitrogen) and α-heparan
sulphate, clone F58-10E4 (#370255, Amsbio), as well as
Maackia amurensis Lectin II to detect α-2,3-linked sialic
acid (#B-1265, Vectorlabs). As a negative control for
staining, glycan receptors were digested using heparinase
III or sialidase A and sections processed in parallel.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13287-020-01950-x.

Additional file 1: Supplementary figure 1. Comparison of EGFP
brightness intensity in rAAV-dosed d59 vs. d79 organoids. Supplemen-
tary figure 2. Negative staining controls (with no primary antibody) for
immunohistochemistry on fixed-frozen sections in figure 3. Supplemen-
tary figure 3. Immunohistochemistry in LBO sections for entry receptors
of SARS-CoV-2.
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