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Abstract

Background: Artifact chimeric reads are enriched in next-generation sequencing data generated from formalin-fixed
paraffin-embedded (FFPE) samples. Previous work indicated that these reads are characterized by erroneous split-read
support that is interpreted as evidence of structural variants. Thus, a large number of false-positive structural variants are
detected. To our knowledge, no tool is currently available to specifically call or filter structural variants in FFPE samples. To
overcome this gap, we developed 2 R packages: SInFFPE and FilterFFPE. Results: SImFFPE is a read simulator, specifically
designed for next-generation sequencing data from FFPE samples. A mixture of characteristic artifact chimeric reads, as
well as normal reads, is generated. FilterFFPE is a filtration algorithm, removing artifact chimeric reads from sequencing
data while keeping real chimeric reads. To evaluate the performance of FilterFFPE, we performed structural variant calling
with 3 common tools (Delly, Lumpy, and Manta) with and without prior filtration with FilterFFPE. After applying FilterFFPE,
the mean positive predictive value improved from 0.27 to 0.48 in simulated samples and from 0.11 to 0.27 in real samples,

while sensitivity remained basically unchanged or even slightly increased. Conclusions: FilterFFPE improves the
performance of SV calling in FFPE samples. It was validated by analysis of simulated and real data.
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Background

For decades, formalin fixation and paraffin embedding (FFPE)
has been widely used to prepare and preserve biopsy specimens
[1]. FFPE tissues preserve morphological and cellular details and
provide a method for long-term storage at room temperature.
These advantages make FFPE tissues the most common sources
of archived clinical material: it is estimated that >400 million
FFPE samples are currently available, many of which have cor-
responding clinical records, including diagnoses, treatment op-
tions, and drug responses [1]. Furthermore, rare tumors are most
often stored as FFPE samples [2]. Therefore, FFPE samples pro-
vide a common and valuable source for medical research.
Next-generation sequencing (NGS) plays an important role
in medical research. It allows us to investigate entire genomes,
uncover the molecular characteristics of diseases, and provide

insights into therapies. However, formalin fixation can result
in fragmented, degraded, protein cross-linked DNA, introducing
false-positive results to NGS data analysis [3]. The interpretation
of NGS data strongly relies on bioinformatics tools; therefore, to
analyze FFPE samples, these tools need to be optimized to min-
imize the number of false-positive or false-negative results.
NGS can be used to detect genomic variants of dif-
ferent scales: single-nucleotide variants (SNVs), short inser-
tions/deletions, and structural variants (SVs), including copy
number variants (CNVs). So far, studies on FFPE-specific arti-
facts have been focusing on false-positive SNVs and only a few
on CNVs [3]. When performing variant calling on FFPE samples,
we observed a large number of false-positive SVs. However, to
our knowledge no study has yet considered filtration of these
calls. Artifact chimeric reads (ACRs) are known to be enriched
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in FFPE samples [4] and are likely leading to false-positive SV
calls. It is hypothesized that these ACRs are derived from the
binding of single-stranded DNA (ssDNA) fragments [4]. The pro-
portion of ssDNA is much higher in FFPE samples than in fresh
frozen (FF) samples because double-stranded DNA (ds-DNA) is
denatured owing to the high temperature used in the deparaf-
finization and reverse cross-linking steps for DNA extraction
from FFPE samples [4, 5]. These ssDNAs may randomly self-
assemble if short reverse complementary (SRC) regions exist.
During the end-repair step of library construction, T4 DNA poly-
merase removes the 3’ overhangs and fills in the 5 overhangs
of the binding product [4], thereby producing artifact chimeric
ds-DNA, which eventually leads to false-positive SV calls (see il-
lustration in Supplementary Fig. S1).

To evaluate and improve the performance of SV calling al-
gorithms in FFPE samples, ground truth data are needed. How-
ever, publicly available real-world FFPE data sets with matched
FF samples are scarce. Furthermore, to our knowledge, no exper-
imental validation of SV candidates is available for these data
sets. Therefore, we simulated data with known biological truth
and performed expert-based validation of SV calls for 2 real data
sets with FFPE and matched FF samples.

Aiming at improving SV calling performance in FFPE sam-
ples, we defined the following research objectives: (i) To develop
an NGS read simulator that can specifically simulate ACRs in
FFPE samples; the simulated reads should be as realistic as pos-
sible. (ii) To develop a tool that successfully removes ACRs while
keeping non-artifact chimeric reads resulting from real SVs. (iii)
To benchmark existing SV callers by using simulated as well as
real NGS data sets resulting from FFPE samples, and to evaluate
the effect of ACR removal on SV calling.

Real data sets

Two real-world data sets were analyzed in this study. Both
contain whole-exome sequencing (WES) data of FFPE and
matched FF samples publicly available at the European Nu-
cleotide Archive (Supplementary Table S1). The first data set
contains 13 FFPE breast tumor samples and 13 corresponding
FF samples (Accession No. SRP044740). The second data set con-
tains 5 FFPE samples with unspecified tumor type and 4 corre-
sponding FF samples (Accession No. PRINA301548; note: 2 FFPE
samples belong to the same patient).

Simulated data sets

The real data available to us are all WES data; however, the ideal
data for SV calling are whole-genome sequencing (WGS) data
with sufficient read length. Therefore, to complement the avail-
able real data, we generated simulated data that are more opti-
mal for SV calling (mimicking WGS data with 150 bp read length).
To generate simulated data sets, we first simulated 400 non-
overlapping SVs with varying lengths (1-10 kb; 100 duplications,
100 deletions, 100 inversions, and 100 translocations) on chro-
mosome 12 of genome assembly hgl9 using RSVSim [6]. Next,
we applied SImFFPE (algorithm described in section “Simulat-
ing ACRs with SImFFPE”) to the mutated, as well as the origi-
nal, chr12 sequence to generate simulated FFPE NGS reads that
cover the whole chromosome. Notably, the 100 translocations
were simulated as large insertions of random segments from
other chromosomes. To evaluate the effect of FilterFFPE (algo-
rithm described in section “Filtering ACRs with FilterFFPE”) on

SV calling, we generated 3 simulated data sets (see Table 1). Al-
together, 41 samples were simulated.

The general workflow of SimFFPE is shown in Fig. 1.

The whole simulation can be split into 2 parts—the sim-
ulation of normal fragments and the simulation of artifact
chimeric fragments (ACFs). While normal fragments are sim-
ulated directly from the reference genome, the simulation of
ACFs is more complex. Details of ACF simulation are described
in the subsection “Simulating ACFs.” We observed normally dis-
tributed fragment lengths in real data; therefore, we used a nor-
mal distribution to simulate fragment lengths. This observation
is in line with several other publications on NGS simulators (e.g.,
7, 8).

Simulations for WGS, as well as WES and targeted sequenc-
ing data, are supported. For WES and targeted data, we uni-
formly model the capture efficiency. Simulated read sequences
are generated from one end (single-end sequencing) or both
ends of the fragments (paired-end sequencing). We refer to the
reads generated from ACFs as ACRs. It should be noted that well-
known errors in NGS data, such as base substitutions and indels,
are not the focus of this work; therefore, SIimFFPE performs only
simple random error simulations.

Phred quality scores are correlated with base position in the
reads [8]. Accordingly, SimFFPE estimates positional Phred score
profiles from real NGS data for simulations. We provide 2 exem-
plary positional Phred score profiles for read lengths of 100 and
150 bp.

Simulating ACFs

To simulate ACFs, the essential task is to find genome sequence
pairs with SRC regions and combine them to form double-
stranded fragments. A graphic representation of this process is
available in Supplementary Fig. S1.

To locate candidate SRC pairs for binding, we randomly select
short (on average 6 bp) genome sequences (referred to as “seed
sequences”) and find their reverse complementary sequences
(referred to as “target sequences”). The obvious match—target
sequences at the same genomic location on the reverse strand—
are excluded.

For a given seed sequence, there can be millions of candidate
target sequences. If 1 target sequence were randomly selected,
this could result in simulated data widely deviating from real
data. To simulate data as realistically as possible, an elaborate
set of characteristics is considered when simulating SRC pairs.
Among others, these characteristics include SRC region length
distribution, location (whether from the same chromosome and,
if so, whether from adjacent chromosomal regions), distance,
and strand (Fig. 2). All default distributions and proportions of
SimFFPE are based on the characteristics of the 18 real FFPE sam-
ples from the 2 aforementioned public data sets (Supplementary
Section S3). Based on the SRC region length distribution in these
samples, we decided to use a lognormal distribution (x = 1.8, o
= 0.55) to approximate the true distribution. More information
about the relevant parameters can be found in the vignettes and
reference manual of the SimFFPE package [9].

Because only 1 target sequence of a seed is finally selected,
computational costs are greatly reduced by SimFFPE identify-
ing target sequences of a seed only within a small region. More
specifically, we partition the genome into small windows (5 kb).
Target sequences are searched in a random window or within
the same window of the seed. The resulting SRC pairs and ACFs



Table 1. Characteristics of the simulated data sets
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Name n Coverage (x) SV frequency (%) ACFs (%)
Sim1 10 10-100 50 10
Sim2 10 50 10-100 10
Sim3 21 50 50 0-20
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Figure 1: Workflow of SImFFPE. The algorithm generates normal and artifact chimeric fragments and simulates read sequences from these fragments. Phred scores

are simulated on the basis of read position. A FASTQ file is generated as output.

SRC region length
(log-normal)

SRC pai
pair Same (43%)

Chromosome

Different (57%)

Strand

2x plus or 2x
minus (50%)

Distance (log-normal)

Adjacent (63%) Same (65%)

Different (35%)

Same (50%)

Distant (37%) Strand

Different (50%)

1x plus, 1x
minus (50%)

Figure 2: Aspects that are considered when simulating short reverse complementary (SRC) pairs. The proportions and distribution models shown in parentheses are
SImFFPE’s default settings, which are determined on the basis of 18 real FFPE samples from 2 public data sets.

are called between-window SRC pairs and distant ACFs, and
within-window SRC pairs and adjacent ACFs, respectively.

The reason to differentiate between these 2 cases is as fol-
lows: we observed that in real FFPE samples, ~27% (43% on the
same chromosome x 63% from adjacent chromosomal regions)
of ACFs are derived from the binding of adjacent (within 5 kb)

SRC pairs (Supplementary Figs S5 and S6). Owing to the small
window size and the sheer human genome size (>3 Gb), such a
relatively high proportion indicates a high chance of binding be-
tween 2 adjacent ssDNAs. It seems reasonable to assume that 2
ssDNAs originating from adjacent genomic regions are, on av-
erage, physically closer to each other and thus have a higher



chance of binding. Accordingly, we divide the ACF simulation
into 2 parts: the adjacent ACF simulation and the distant ACF
simulation. For both, several demands have to be met.

The most important considerations for adjacent ACF simu-
lation are as follows (details in Supplementary Figs S7-S9): (i) In
real data, we observed a relatively high proportion of adjacent
ACFs resulting from genomically close SRC pairs (50-200 bp). An-
alyzing the distribution of the distance between the combined
SRC pair in real data, we decided to choose a lognormal distri-
bution (1 = 4.7, o = 0.35) for simulation because this closely re-
sembles real data. (ii) One SRC pair may originate from differ-
ent strands of DNA or from the same strand. The probabilities
for these 2 cases are not equal. We observed a higher propor-
tion of same-stranded (65%) versus different-stranded (35%) SRC
pairs in adjacent ACFs in real data. A corresponding parameter
(sameStrandProp; default = 0.65) was set. It seems possible that
a long ssDNA molecule might form a hairpin structure and gen-
erate chimeric ds-DNA. This might explain the higher propor-
tion of same-stranded SRC pairs in adjacent ACFs. (iii) In some
real samples, we observed that some read pairs from adjacent
ACFs both align to the same genomic locus (Supplementary Fig.
S9). We found out that this occurs when enzymatic fragmenta-
tion is used in library preparation. Enzymes are able to recog-
nize and cut at specific sites of the genome. As shown in Fig. 3,
an adjacent ACF can be a repeat or an inverted repeat of a DNA
sequence. Thus, enzymatic fragmentation leads to both ends
of the ACF being cut at the same genomic locus. If the ACF is
an inverted repeat and is enzymatically fragmented (with both
sides ending at the same genomic position), then the read pair
are sequenced from the same starting point and proceed with
the same sequence (until the end of the repeat unit). As a re-
sult, this read pair is mapped to the same genomic locus. Ac-
cordingly, SimFFPE supports the simulation of enzymatic frag-
mented adjacent ACFs. When enzymatic fragmentation is sim-
ulated, SImFFPE cuts the adjacent ACF (if it is a repeat) at a ran-
dom site in one end, and cuts the other end at the same genomic
locus of the repeated sequence. For simplicity, we did not model
the specific cutting sites of enzymes, but we ensured that the
fragment length distribution was still well simulated.

For distant ACF simulation, some additional aspects have to
be taken into account: (i) Analysis of the real data sets indicates
that strand usage for the formation of distant ACFs is almost
equal. (ii) In real data sets, we observed a common feature across
the whole genome: within some small genomic regions (1-2 kb),
there were more ACRs originating from distant ACFs compared
to other regions. These are referred to as “spikes” (Supplemen-
tary Fig. S9). To simulate these spikes, we use a g-distribution («
= B = 0.5) to model the amount of distant ACRs in each small
region. Thus, the simulation enriches distant ACRs in some of
these small regions.

A summary of the differences in simulating adjacent and dis-
tant ACFs is provided in Table 2.

The workflow of FilterFFPE is shown in Fig. 4. To filter ACRs while
preserving informative chimeric reads resulting from true SVs,
it is important to identify features that can help to distinguish
between these 2 types of chimeric reads. As long as sequencing
depth and SV frequency are not too low, >1 or even dozens of
chimeric fragments can cover the same breakpoints of the SV
event (Fig. 4B). However, because the binding of 2 ssDNAs is a
rather random event, there is little chance that the breakpoint
of an ACF is also present in other ACFs or in chimeric reads

from real SV events (note that for paired-end sequencing, the
read pair from an ACF can share the same breakpoints, but both
reads belong to the same fragment). Therefore, an apparent fil-
tering strategy is to evaluate the number of reads sharing the
same breakpoint: if n or fewer chimeric reads (default: n = 2 for
paired-end sequencing) share the same breakpoints, these reads
are recognized as potential ACRs. Notably, chimeric reads cover-
ing true SVs may also be identified as potential ACRs at low se-
quencing depths or low SV frequencies. Therefore, we need an
additional feature to validate these potential ACRs. This feature
is the presence of an SRC region. According to the ACF forma-
tion mechanism, only the presence of an SRC region causes 2
ssDNAs to bind and form an ACF. Therefore, FilterFFPE analyzes
whether an SRC region is present next to the breakpoint of an
ACR candidate.

The detection of an SRC region is based on the main char-
acteristics of ACRs. ACRs contain 2 genome segments: 1 from
the seed sequence and 1 from the complementary target. Thus,
there exist (at least) 2 alignments, both containing soft-clipped
bases. In an ACR, towards the end of the mapped sequences, a
short region should be mapped in both alignments. This region
can be identified as the SRC region that links 2 ssDNAs form-
ing the ACF. First, FilterFFPE identifies potential ACRs. Second,
the presence and lengths of SRC regions within these ACR can-
didates is analyzed. Only reads with plausible SRC regions (SRC
region length > m, with default m = 1 to remove as many ACRs
as possible) are removed by FilterFFPE. This step helps not to ex-
clude real chimeric reads resulting from low-coverage regions or
low-frequency SVs by mistake, i.e., preserving sensitivity. How-
ever, sequencing noise in ACRs may harm the correct detection
of SRC regions. Thus, it is possible that some ACRs are falsely
categorized as real chimeric reads, i.e., positive predictive value
(PPV) is decreased. Therefore, this second filtration step is op-
tional.

After determining the reads to be excluded, FilterFFPE gen-
erates a filtered and indexed BAM file, as well as a text file con-
taining the names of the excluded reads.

The steps taken to evaluate SV calling performance in real and
simulated FFPE samples with and without application of Fil-
terFFPE are shown in Fig. 5 (see Supplementary Section S4 for
information on sequence alignment, duplicate removal, down-
sampling, and so forth). Three SV callers, Delly (v0.7.9) [10],
Lumpy (v0.3.1) [11], and Manta (v1.6.0) [12], were used for SV call-
ing. These tools have performed best in recent benchmarking
studies [13-15].

For real data sets, each pair of matched FFPE and FF samples
was downsampled to the same size. Furthermore, only reads
within exonic regions with sufficient coverage were used for
SV detection (exonic regions with mean coverage >30x in both
samples of the pair). PPV, sensitivity, and F1-score were used to
evaluate each tool’s SV calling performance with and without
application of FilterFFPE.

Different SV callers can detect the same breakpoint with mi-
nor shifts in the genomic location. To determine whether an SV
call indicates a true-positive SV and whether it is shared be-
tween 2 samples, a maximum shift of +5 bp is allowed to iden-
tify consistent breakpoints. This threshold was determined on
the basis of a previous evaluation on different SV callers’ break-
point resolution by Gong et al. [14].

Because data on experimental validation of SV candidates in
real samples were not available, we performed expert-based val-
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Figure 3: Examples of forming a repeat and an inverted repeat by adjacent ssDNA combination. ACF: artifact chimeric fragment; SRC: short reverse complementary.

Table 2. Differences in simulating adjacent and distant ACFs

Parameter

Adjacent ACF

Distant ACF

SRC pair

Strand usage of the SRC pair
Distance between the SRC pair
Enzymatic fragmentation
simulation

Spike simulation

Within-window

Between-window

Unequal Equal
Lognormal Random
Applicable

Applicable

idation by 2 independent experts in the field of SV detection
(see Supplementary Section S5 for characteristics used to de-
termine true-positive SVs). To facilitate manual inspection, we
divided SV calls in FFPE samples (before and after FilterFFPE’s
application) into 4 categories: (1) SV calls with high probability
of being true-positive SVs (1,041 SV calls). These are shared SV
calls with matched FF samples (without application of FilterFFPE
in FF samples). (2) SV calls with reduced probability of being
true-positive calls (2,282 SV calls). These are non-shared SV calls
with reliable support (shared with >1 non-matched FF sample,
or havingin total >10 reads of split- and/or paired-read support).
The criteria for reliable support were determined on the basis of
prior manual inspection of 500 randomly selected non-shared
SV calls. (3) SV calls with low probability of being true-positive
calls (1,952 SV calls). These are non-shared SV calls that lacked
reliable support (do not match a call in any FF sample and have
<10 supporting reads) but showed characteristics that we iden-
tified in categories 1 and 2 as being typical for true-positive vari-
ants (matching a call that is labeled as true positive in any other
FFPE sample, or overlapping with a gene that is characterized by
a high number of SV calls). (4) SV calls with high probability of
being false-positive calls (the remaining 44,877 SV calls).

We manually inspected all 5,275 SV calls in categories 1-3.
The SV calls in the fourth category were automatically labeled
as false-positive calls because they lack characteristics of poten-
tially true variants. To ensure that this automatic classification
was reliable, we randomly selected 2,000 of the 44,877 calls and
performed manual inspection. In total, 1,996 of these 2,000 calls
are false-positive calls; the remaining 4 are ambiguous (and re-
main so after application of FilterFFPE; for details see Supple-
mentary Section S5). We therefore consider it plausible to au-
tomatically label the whole category as false-positive calls. In
total, we labeled 1,506 SV calls as true-positive and 47,026 as
false-positive calls. In addition, 1,620 SV calls could not be clas-
sified clearly and were thus excluded from further evaluation.
The number of SV calls with information on initial category and
final judgment is shown in Supplementary Table S2.

Results
Simulating realistic FFPE data using SimFFPE
A comparison of SImFFPE to existing NGS data simulators is

provided in Table 3. The other tools mainly serve to simulate
read-level sequencing noise. In contrast, SImFFPE additionally
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Figure 5: Performance evaluation of SV callers Delly, Lumpy, and Manta with and without application of FilterFFPE considering real and simulated FFPE samples. Steps
performed in case of (A) simulated data and (B) real data are visualized. del: deletions; dup: duplications; FF: fresh frozen; FFPE: formalin-fixed paraffin-embedded;

inv: inversions; SV: structural variant; trans: translocations.

simulates ACFs that are characteristic of FFPE samples. These
ACFs are fragment-level noise that can lead to false-positive
SV calls.

Figure 6 shows exemplary aligned reads generated by
SimFFPE. For comparison, data from a real sample (FFPE and
matching FF) are displayed. SImFFPE generates ACRs that closely
resemble those highly noisy reads in real FFPE samples. In con-
trast, existing simulators such as ART [7] only produce normal
reads similar to those in FF samples (Supplementary Fig. S9).
We further compared the proportion of abnormally paired reads
in real and simulated samples (Supplementary Section S7). The
proportion of abnormally paired reads is higher in real FFPE sam-
ples than in FF samples. The distribution of this proportion in
simulated data set Sim3 (with varying artifact levels) is very
close to that of real FFPE samples.

Filtering FFPE-specific ACRs with FilterFFPE

On all real and simulated samples, we performed filtration with
FilterFFPE (using default setting with 2-step filtration; for results
on filtration with FilterFFPE applying the first step only, see Sup-
plementary Sections S8-5S11).

For each simulated sample, excluded reads could be divided
into ACRs and normal reads (tagged by SimFFPE when gen-
erating the data) and counted separately (Supplementary Fig.
S13). As a result, in 40 of 41 simulated samples (1 sample with-
out any ACFs was simulated), 99.73-100% of the removed reads
were ACRs (mean: 99.96%, see Supplementary Fig. 514, results
with 2-step filtration). These excluded ACRs account for 97.72-
97.94% (mean: 97.82%) of all chimeric reads derived from ACFs
(Supplementary Fig. S16). Reads obtained from ACFs can also
be non-chimeric (without supplementary alignment): these in-



Table 3. Comparison of SimFFPE to existing NGS data simulators
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Name Installation Language 0os Sequencing type Read type Noise type
SimFFPE Bioconductor, R LMW WGS, WES SE, PE ACR, SeqE
Bioconda
ART [7] Bioconda, manual C++, Perl LMW WGS SE, PE SeqE
BEAR [16] Manual Python, Perl L WGS SE, PE SeqE
FASTQSim [17] Manual Bash, Python L WGS SE SeqE
GemSim [18] Manual Python LMW WGS SE, PE SeqE
Grinder [19] Manual Perl L, MW WGS SE, PE SeqE
InSilicoSeq [20] Bioconda, manual Python L, M, W WGS PE SeqE
NeSSM [21] Manual Python L WGS SE, PE SeqE
PIRS [22] Bioconda, manual C++, Perl L WGS PE SeqE
SimuSCoP [8] Manual C++ L WGS, WES SE, PE SeqE
SInC [23] Manual C++ L WGS PE SeqE

ACR: artifact chimeric read; L: Linux; M: MacOS; OS: operating system; PE: paired-end sequencing; SE: single-end sequencing; SeqE: sequencing error; W: Windows;

WES: whole-exome sequencing; WGS: whole-genome sequencing.
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Figure 6: Exemplary alignment of reads simulated by SImFFPE in comparison to real reads in matching FF and FFPE samples. Soft-clipped bases are shown. Alignments
are grouped by pair orientation. Pair orientation is presented in terms of read-strand: left (L) vs right (R), and first read vs second read of a pair. The color (not gray) of
the alignment indicates an abnormal pair orientation, or a different chromosome that the paired read mapped to. Alignments with normal pair orientation are colored

in grey. FF: fresh frozen; FFPE: formalin-fixed paraffin-embedded.

clude reads that do not cover breakpoints or cover only a few
bases of 1 of the 2 original sequences (see Supplementary Fig.
S15 for illustration). These non-chimeric reads do not lead to ar-
tifact split-read support and are thus not removed by FilterFFPE.
Therefore, the percentage of excluded ACRs based on all reads
from ACFs is 65.63% on average (Supplementary Fig. 517).

In real data sets, we applied FilterFFPE to both FFPE and
matched FF samples. The percentage of filtered reads ranged
from 0.33% to 9.2% in FFPE samples (median: 2.5%). In contrast,

only 0.015-0.33% (median: 0.10%) were filtered in FF samples.
These results match our previous observation that ACRs are en-
riched in FFPE samples compared to FF samples. It should be
noted that FF samples are expected to contain some ACRs be-
cause any heating step during sequencing can result in DNA
denaturation and thus ACR generation. Nevertheless, because
the percentage of ACRs in FF samples is low, the effect of
these ACRs on SV calling is usually negligible (Supplementary
Fig. $23).



Figure 7 shows the performance of the 3 SV calling tools Delly,
Lumpy, and Manta on the 3 simulated data sets with and without
previous application of FilterFFPE. Results show that FilterFFPE
substantially improves PPV of SV calling, considering a diverse
set of scenarios, while only affecting sensitivity in a few excep-
tional cases. Thus, an overall improvement in Fl-score is ob-
served.

As simulated coverage or ACF proportion increases, the num-
ber of ACRs increases; therefore, we expected and also observe
an increasing number of false-positive SV calls and decreas-
ing PPV. SV frequency has no effect on the number of ACRs,
and thus, we did not expect any effect on the number of false-
positive SV calls. It can be observed that both Manta and Delly
are characterized by stable PPV at different SV frequencies. In-
terestingly, Lumpy shows a decrease in PPV with increasing SV
frequency. Detailed evaluation of the SV calling results revealed
that Lumpy generated several SV candidates for real SVs with
different breakpoints. Some of these SV candidates were recog-
nized as false-positive calls because the detected breakpoints
were not close enough to the real ones (+5 bp).

After removing ACRs with FilterFFPE, PPVs of all 3 tools in-
crease in all our simulated data sets: Manta shows the largest
increase (on average from 0.06 & 0.15 [mean =+ SD] to 0.45 + 0.21),
followed by Delly (0.10 + 0.18 to 0.29 + 0.22) and Lumpy
(0.65 £0.13 to 0.71 + 0.12).

Sensitivity of the 3 tools is stable across all simulated data
sets, except for low coverage (<30x) or low SV frequencies
(<30%). In these extreme cases, it is difficult to distinguish
between real chimeric reads and ACRs. Therefore, applica-
tion of FilterFFPE slightly reduces sensitivity (on average from
0.83 4+ 0.13 to 0.78 + 0.17; 6 samples). For all other samples, sen-
sitivity even increases marginally after using FilterFFPE (on av-
erage from 0.94 + 0.05 to 0.95 + 0.05). Compared to the other
tools, Delly is characterized by lowest sensitivity—before and af-
ter filtration with FilterFFPE. This is due to the fact that Delly
did not detect translocations with precise genomic location: 61
of 100 simulated translocations could not be detected accurately
by Delly (often with a deviation of 30-300 bp at the breakpoint).

It should be mentioned that these results are based on all re-
ported SV calls. In addition, every tool has diverse internal cat-
egories to characterize SV calls of different qualities, including
"precise” vs "imprecise” calls (whether breakpoints can be pre-
cisely located) and/or "pass” vs "non-pass” calls (whether cer-
tain quality conditions are met). Interestingly, with the com-
bined use of these categories and FilterFFPE, the best perfor-
mance is observed in case of FilterFFPE+Delly, considering only
precise calls. Delly’s precise calls have a mean Fl-score of
0.71 £ 0.14 across the 3 simulated data sets and reach 0.91 + 0.06
with FilterFFPE. More details can be found in Supplementary Figs
S18-S21.

Figure 8 shows the influence of FilterFFPE on SV calling in
real FFPE samples. Similar to the results in simulated data sets,
application of FilterFFPE leads to a considerable improvement in
PPV and a minor improvement in sensitivity: filtration with Fil-
terFFPE increases mean PPV in case of Delly from 0.14 + 0.14 to
0.26 £ 0.19, from 0.06 + 0.05 to 0.25 + 0.21 for Manta, and from
0.14 + 0.17 to 0.29 £ 0.25 for Lumpy; mean sensitivity increases
from 0.62 + 0.23 to 0.65 + 0.16 for Delly, from 0.44 + 0.24 to
0.46 + 0.23 for Manta, and remains 0.46 for Lumpy. For Delly and
Manta, more true-positive calls were exclusively detected after
application of FilterFFPE (Supplementary Tables S3 and S4), thus

resulting in increased sensitivity. Considering the tools’ inter-
nal categories, the best overall performance can be observed—
justlike in the case of simulated data—for FilterFFPE+Delly, con-
sidering only precise calls. Delly’s precise calls have a mean F1-
score of 0.45 + 0.28 in real FFPE samples and reach 0.58 + 0.24
with FilterFFPE. More details can be found in Supplementary Fig.
S22.

To further validate the performance of FilterFFPE, we also cal-
culated the number of reported SV calls in FF samples before
and after FilterFFPE’s application (Supplementary Fig. S23). Over
all 18 real FFPE samples, FilterFFPE reduces the number of re-
ported SV calls by 44% (Delly), 76% (Manta), and 61% (Lumpy).
In comparison, the number is reduced by only 0.3% (Delly) and
5% (Manta) and increased by only 0.2% (Lumpy) in matched FF
samples.

In this article, we introduce 2 R packages for improved handling
of sequencing data generated from FFPE samples: SImFFPE and
FilterFFPE. SImFFPE is a novel tool simulating realistic sequenc-
ing data from FFPE samples. Simulated data with known biolog-
ical truth are the prerequisite for, e.g., optimization of variant
calling pipelines. Based on the output of SimFFPE we developed
and tested a new filtration algorithm for SV calling: FilterFFPE.
Results on both simulated and real data show that our filtration
algorithm is able to improve PPV without compromising the sen-
sitivity of 3 established SV calling algorithms.

Despite developing a tool for realistic simulation of FFPE sam-
ples, it can be observed that the sensitivity of the 3 SV calling
tools Manta, Delly, and Lumpy differed between simulated and
real data. These discrepancies were mainly due to technical dif-
ferences between these data sets: our simulated samples were
whole-chromosome sequencing data (mimicking WGS data be-
cause they are the ideal material for SV calling) while real sam-
ples contained WES data and had a shorter read length (150 bp
in simulated samples vs 90 bp in real samples).

The sensitivity of Lumpy and Manta was much lower for real
data than for simulated data. Lumpy uses not only read-pair
and split-read support but also read-depth support to identify
SV candidates. However, regional coverage fluctuates heavily in
WES data. Thus, it can harm read-depth support detection in
Lumpy and lead to lower sensitivity. The reduced sensitivity of
Manta is likely due to inaccurately detected SV positions. The
accuracy of Manta’s local assembly might have been affected by
the shorter read length of the real data. Delly showed the low-
est sensitivity in simulated data sets but featured the highest in
real data. It could be observed that Delly’s imprecise positioning
of translocations leads to false-negative calls. In our simulated
data, 25% (100 of 400) of all SVs were translocations, but only 2%
(7 of 296) in real data.

Because the purpose of SImFFPE and the type of its simu-
lated noise are different from those of existing simulators, it is
difficult to compare SimFFPE with other simulation tools. How-
ever, exemplary comparison of simulated and real data in the
IGV shows that reads generated by SimFFPE resemble real FFPE
samples, while reads generated by other simulation tools resem-
ble real FF samples.

It can be argued that for real data we do not know biolog-
ical truth based on validation experiments but just by expert-
based review. It is possible that our data contain misclassified
variants, i.e., false-negative and false-positive calls. Neverthe-
less, the classification was based on a detailed scheme and cri-
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teria, and we performed careful manual inspection on >5,000 SV
calls. Therefore, the effect of misclassified variants on our over-
all results can be assumed to be negligible.

Regarding FilterFFPE, the first filtration step may seem very
similar to filtering out SV calls with split-read support <2. How-
ever, these 2 strategies are fundamentally different. Many true
SV calls in real samples lack split-read support. For example, in
the 18 real FFPE samples, 41% (615 of 1,506) of the true-positive
SV calls had no split-read support. This can be related to the fact
that real SVs often overlap with homologous sequences and/or
sequence repeats [6]. These highly repetitive sequences can con-
found split-read alignment and thus obscure split-read support
detection. Short read length and low coverage can also lead to
missing split-read support. In addition, split-read support ap-
pears to be tool-dependent: for the same SV call we observe
varying amounts of split-read support and missing information
on how this number is calculated by each tool.

In real FFPE samples, we observed different levels of artifacts
and, thus, variable levels of PPV for SV detection. One possible
reason for sample-wise artifact level variation may be different
time at high-temperature steps during processing of FFPE sam-
ples in the laboratory. For instance, larger paraffin blocks require
longer time for deparaffinization, thus leading to a higher pro-
portion of denatured DNA and a higher number of ACRs. Besides,
long-term storage of FFPE samples leads to more fragmented
DNA, which is more vulnerable to denaturation at high temper-
ature. We also observed varying sensitivities for real samples,
which could be explained by different levels of sample coverage.

The mechanism of the ACR generation in FFPE samples was
first described in detail by Haile et al. [4]. They used S1 nucle-
ase to remove ssDNAs before sequencing. Their method serves
as a laboratory aid, while FilterFFPE serves as a bioinformatic
method to deal with these ACRs. Using S1 nuclease has the ad-
vantage of preventing ACR generation from the source. It has the
ability to degrade large amounts of ssDNA, especially in highly
noisy FFPE samples. However, this can be unfavorable for low-
frequency variant detection, especially considering that the FFPE
material is often very precious. Moreover, the majority of already
sequenced FFPE samples have not been treated with S1 nucle-
ase. And currently, to our knowledge, S1 nuclease treatment is
not yet widely adopted in the standard protocol for sequencing
FFPE samples.

SV calling in FFPE samples is challenging owing to the presence
of ACRs leading to a large number of false-positive calls. To fa-
cilitate future development of FFPE-specific algorithms, we de-
veloped SImFFPE. It is the first simulation tool generating re-
alistic NGS data from FFPE samples, simulating ACRs as well
as normal reads. In addition, we developed the filtration algo-
rithm FilterFFPE. Analyses on simulated as well as real data
show that our algorithm successfully removes ACRs while keep-
ing real chimeric reads. Thus, FilterFFPE improves PPV consider-
ably without affecting sensitivity.

Project name: SImFFPE and FilterFFPE

Project home page: https://bioconductor.org/packages/release/
bioc/html/SImFFPE.html; https://bioconductor.org/packages/re
lease/bioc/html/FilterFFPE.html

Operating system: Platform independent

Programming language: R

Other requirements: None

License: LGPL-3

RRID:SCR-021085; RRID:SCR-021086

The 2 real data sets analyzed during the present study are avail-
able in the European Nucleotide Archive repository at https:
//wrww.ebi.ac.uk/ena/browser/home and can be accessed with
accession Nos. SRP044740 and PRINA301548.

The 3 simulated data sets can be generated with SIimFFPE and
RSVSim as described.

Additional supporting files including FilterFFPE’s outputs and
tabular data are available from the GigaScience GigaDB database
[24].
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ACF: artifact chimeric fragment; ACR: artifact chimeric read; bp:
base pairs; CNV: copy number variant; dsDNA: double-stranded
DNA; FF: fresh frozen; FFPE: formalin-fixed and paraffin-
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