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Abstract

Collaboration among logistics facilities in a multicenter logistics delivery network can signifi-

cantly improve the utilization of logistics resources through resource sharing including logis-

tics facilities, vehicles, and customer services. This study proposes and tests different

resource sharing schemes to solve the optimization problem of a collaborative multicenter

logistics delivery network based on resource sharing (CMCLDN-RS). The CMCLDN-RS

problem aims to establish a collaborative mechanism of allocating logistics resources in a

manner that improves the operational efficiency of a logistics network. A bi-objective optimi-

zation model is proposed with consideration of various resource sharing schemes in multiple

service periods to minimize the total cost and number of vehicles. An adaptive grid particle

swarm optimization (AGPSO) algorithm based on customer clustering is devised to solve

the CMCLDN-RS problem and find Pareto optimal solutions. An effective elite iteration and

selective endowment mechanism is designed for the algorithm to combine global and local

search to improve search capabilities. The solution of CMCLDN-RS guarantees that cost

savings are fairly allocated to the collaborative participants through a suitable profit alloca-

tion model. Compared with the computation performance of the existing nondominated sort-

ing genetic algorithm-II and multi-objective evolutionary algorithm, AGPSO is more

computationally efficient. An empirical case study in Chengdu, China suggests that the pro-

posed collaborative mechanism with resource sharing can effectively reduce total opera-

tional costs and number of vehicles, thereby enhancing the operational efficiency of the

logistics network.

Introduction

With the development of e-commerce and continuous improvement of global living stan-

dards, the surge in the demand for consumer product delivery has led to increasingly complex

logistics networks. Such demand is difficult to accommodate with existing logistics resources,

especially during major festivals and events. In 2009 when Alibaba launched the Double Eleven

Shopping Festival, the number of parcels delivered was approximately 260,000; in 2019, the

number was 1.292 billion, a 5000-fold increase [1]. In response to this situation, logistics
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enterprises should adopt effective resource sharing and collaborative mechanisms to reduce

the occurrence of delayed delivery, damage, or missing packages during the delivery process.

The traditional multi-depot vehicle routing problem (MDVRP) was proposed to address

the situation where a large number of customers are served by multiple depots through a series

of vehicles, which aims to optimize the complex structure of logistics networks [2, 3]. Unfortu-

nately, with increasing customer demands, combined with rising transportation costs and lim-

ited logistics resources, the disadvantages of independent operation of distribution centers

(DCs) are impossible to overlook. Collaboration among DCs enables vehicles to achieve rea-

sonable resource sharing among multiple DCs and service periods [4]. The study of CMDVRP

aims to identify and validate a collaborative mechanism among DCs to reduce the total cost of

multicenter logistics distribution through collaboration, and thus improve the overall opera-

tional efficiency of the logistics network. The optimization problem of collaborative multicen-

ter logistics delivery networks based on resource sharing (CMCLDN-RS) is a logical extension

of CMDVRP. It considers resource sharing within and across service periods and can seek to

find a collaborative mechanism involving different resource sharing schemes for logistics net-

works to reduce total operational costs, which effectively improves the reliability and stability

of the logistics network.

In this study, a collaborative mechanism is designed to promote the efficiency of a multi-

center logistics delivery network. The mechanism considers various resource sharing schemes

to reduce total operational costs. A bi-objective integer programming model based on the

most suitable resource sharing schemes is developed to minimize the total logistics operational

costs and number of vehicles. An adaptive grid particle swarm optimization (AGPSO) algo-

rithm integrated with customer clustering is uniquely created to address the CMCLDN-RS

problem. The elite iteration process is incorporated into the improved hybrid algorithm,

which enhances the local and global search capabilities of the algorithm. By comparing differ-

ent profit allocation schemes, the proposed profit allocation strategy and orders that DCs join

a collaborative alliance are considered during the process of finding a stable collaborative alli-

ance based on vehicle sharing among different service periods.

The remaining sections of this paper are organized as follows. In Section 2, related literature

is reviewed. In Section 3, the problem of CMCLDN-RS is stated and explained in detail. In Sec-

tion 4, a bi-objective mixed-integer linear programing model based on resource sharing is

established for CMCLDN-RS to minimize total logistics operational costs. In Section 5, an

improved MOPSO algorithm is proposed to obtain the optimal route for serving customers. In

Section 6, a case study is conducted to test the applicability to CMCLDN-RS. In Section 7,

remarks and directions for future research are suggested.

Literature review

The collaborative multicenter delivery logistics network optimization with resource sharing is

a further discussion of the research for traditional MDVRP with time windows (MDVRPTW)

and collaborative logistics network optimization. It considers the synergy among participants

with the basis of MDVRPTW. Related research for collaborative MDVRPTW is illustrated in

Subsection 2.1, MDVRP optimization with resource sharing is presented in Subsection 2.2, rel-

evant solution methods and objectives for CMCVRP-RS are shown in Subsection 2.3, and

profit allocation in collaborative logistics networks is proposed in Subsection 2.4.

Collaborative MDVRPTW

Traditional MDVRPTW aims to find optimal routes for serving a set of customers with differ-

ent requests under time windows among multiple depots [5–7]. The collaboration between
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different depots is considered to achieve resource sharing in collaborative MDVRPTW.

Nadarajah and Bookbinder [8] suggested integrating trucks into the collaborative depots to

avoid situations in which the trucks were traveling with less than full loads. Wang et al. [9]

optimized a collaborative distribution network to obtain oil distribution routes efficiently,

which minimized the total operating cost to solve the half open MDVRP. Li et al. [10] pro-

posed that depots could form alliances to exchange transportation requests in a collaborative

logistics network, which maximizes the total profit in MDVRPTW. Vaziri et al. [11] focused

on the collaboration between multiple depots serving customers with different commodity

requirements and developed a mixed-integer programming model to solve MDVRPTW. Pre-

vious studies on collaborative MDVRPTW have demonstrated the benefits of cooperation, but

collaborative approaches can be diverse.

MDVRP optimization with resource sharing

MDVRP optimization is an important component of the entire logistics network optimization

process, and transportation resource sharing has been considered in many studies [12]. Lin

[13] coordinated transportation resources to improve the efficiency of the pickup and delivery

logistics network, and was able to increase the benefits and usage of vehicles. Liu et al. [2] con-

sidered vehicle sharing in a collaborative network to tackle a multi-depot capacitated vehicle

routing problem. Wen and Sun [14] proposed to optimize collaborative transport by sharing

fleets. Fernandez et al. [15] promoted the collaboration among depots to serve shared custom-

ers, which reduced the overall logistics operational cost. Cortes and Suzuki [16] considered

transportation resource sharing of certain customers in the delivery process and obtained 10%

cost savings due to the consolidation of different vehicles.

In a collaborative logistics network, constructing proper models for optimizing the network

with a basis of resource sharing is essential [17, 18]. Lyu et al. [19] established a mathematical

model which considered vehicle capacity sharing to optimize the transportation operations in

a collaborative logistics network. Neves-Moreira et al. [20] developed a novel mathematical

model for the freight transportation problem, which aimed to ensure resource synchronization

among multiple nodes. Guajardo et al. [21] proposed a mixed-integer linear programming

model to minimize the total transportation costs in solving the collaborative alliance configu-

ration problem. Chen et al. [22] considered logistics resource sharing and presented a collabo-

rative model based on the vehicle routing problem. Although collaboration among centers has

been considered in many studies, knowledge gaps still remain in simultaneous sharing of mul-

tiple resources.

Related solution methods and objectives for CMCVRP-RS

The research to solve the corresponding problems provides a reference for studying MCVRP

in a collaborative network based on resource sharing [18, 23]. Relevant solution methods and

objectives for CMCVRP-RS are shown in Table 1. The acronyms of relevant research are

defined as follows:

PDPTW: Pickup and delivery problem with time windows

GLNC: Global logistics network configurations

CLN: Collaborative logistics network

CSCL: Coalition structure in collaborative logistics

CLNO: Collaborative logistics network optimization
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MDVRP: Multi-depot vehicle routing problem

MDVRPTW: Multi-depot vehicle routing problem with time windows

LCT: Logistics collaboration considering trust

CCDP: Carrier collaboration decision-making problem

MDVTRSP: Multi-depot vehicle type rescheduling problem

CVRP: Collaborative vehicle routing problem with resource sharing

Clustering algorithms are often employed before solving the vehicle routing problem to

reduce computational complexity [32]. To solve MDVRP, Yücenur and Demirel [3] proposed

a genetic algorithm based on clustering and indicated that the clustering component provided

good performance. Reed et al. [33] used k-means clustering to cluster nodes and optimize the

logistics network, which improved the efficiency of obtaining optimal solutions. Gao et al. [34]

employed a k-means algorithm to solve the location of depots and surrounding cities for a

location allocation problem. Defryn and Sörensen [35] grouped customers into multiple clus-

ters; by doing so, vehicles could be reasonably allocated to each cluster. Praveen et al. [36] pro-

posed a new clustering algorithm for effectively mining data, which laid the foundation for

further optimization of vehicle routes.

Heuristic algorithms are often used to solve the vehicle routing problem [37, 38], parameter

selection optimization [39, 40], and multi-objective optimization problems [41–43]. For exam-

ple, Dondo et al. [44] developed a mixed-integer linear programming model to solve a large-

scale MDVRPTW and then utilized an improved hybrid local search algorithm to obtain feasi-

ble routes. Ferdinand et al. [45] presented a heuristic genetic algorithm to solve the pickup and

delivery problem with consideration of resource sharing among different logistics providers.

Wang and Kopfer [46] connected multiple carriers so that they could respond to different

transportation requests, and a heuristic algorithm was presented to solve the centralized vehi-

cle routing problem. Bae and Moon [28] proposed a heuristic algorithm and a genetic algo-

rithm for MDVRPTW, which aimed to minimize the fixed and travel costs of depots. Li et al.

[7] proposed an improved ant colony optimization algorithm to solve the MDVRP. Lv et al.

[41] proposed a surrogate-assisted particle swarm optimization (PSO) algorithm with Pareto

Table 1. Comparison of relevant solution methods and objective functions for CMCVRP-RS.

Reference in chronological

order

Acronym of problem

studied

Objective function Solution method

Ropke and Pisinger [24] PDPTW Construct routes visiting all locations Adaptive Large Neighborhood Search Heuristic

Sheu and Lin [25] GLNC Minimize network configuration costs Statistics and analysis

Hafezalkotob and Makui [26] CLN Maximize flow problem Game theory

Guajardo and Rönnqvist [12] CSCL Minimize total cost among participants Design coalition structure

Xu et al. [27] CLNO Obtain high stability and low cost Expected value model and orthogonal experiment

design method

Li et al. [10] MDVRPTW Minimize total traveling costs Hybrid genetic algorithm

Bae and Moon [28] MDVRPTW Minimize fixed costs of depots and delivery

expenses

Heuristic and genetic algorithms

Daudi et al. [29] LCT Provide understandings for practitioners Establish a trust framework

Zhang et al. [30] CCDP Maximize total profits Stochastic plant-pollinator algorithm

Guedes and Borenstein [31] MDVTRSP Minimize total transportation costs Heuristic solution method

Chen et al. [22] CVRP-RS Minimize total costs Extended ant colony optimization

https://doi.org/10.1371/journal.pone.0242555.t001
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active learning for multi-objective optimization problems. Sedighizadeh and Mazaheripour

[42] presented a hybrid algorithm combing the particle swarm optimization and the artificial

bee colony algorithms to address multi-objective vehicle routing problems.

Profit allocation in collaborative logistics networks

In a collaborative logistics network, establishing a collaborative mechanism is critical. Benefits

arising from collaboration need to be reasonably split among participants. A fair profit allocation

strategy is important for the stability of the logistics network. Cruijssen [47] first proposed the

idea of supplier-initiated logistics operation to coordinate shippers and achieve equalities. Dai

and Chen [48] addressed two issues in a collaborative logistics network, namely sharing of service

requests and profit allocation, and compared the performance of different profit allocation mech-

anisms. Kumoi and Matsubayashi [49] proposed a cooperative game to analyze stable and fair

profit allocations normatively to fairly allocate the profit of a grand coalition. A method based on

cooperative game theory has been used to allocate additional profit and promote the participa-

tion of consumers in a distributed energy network [50]. Yu et al. [51] calculated the exact Shapley

value to distribute profit generated in a collaborative pickup and delivery network. A game theo-

retic approach has been developed to maximize productivity while ensuring fair profit allocation

in collaborative multi-echelon supply chains [52]. Wang et al. [53] proposed a cooperative strat-

egy to minimize carbon emissions in pickup and delivery processes and designed a fair method

of profit distribution based on cooperative game theory to stabilize alliances.

In comparison with the aforementioned studies in the domain, the main contributions of

this paper are listed in the following aspects: (1) it considers different types of resource sharing

schemes, including sharing both within the same DC and across DCs to optimize a collaborative

multicenter delivery network; (2) it establishes a bi-objective optimization model for the total

operational cost and number of vehicles minimization based on resource sharing in multiple

service periods; (3) it employs an AGPSO based on k-means customer clustering, which incor-

porates an efficient selective endowment mechanism and thus performs well in global and local

research; and (4) it implements a real-world case study to evaluate the applicability of the pro-

posed CMCLDN-RS model and approach, which contributes empirically to the literature on

collaborative multi-echelon multi-period logistics network optimization, and then lays a foun-

dation for the construction and sustainable development of intelligent transport systems.

Problem statement

The optimization of CMLDN can improve operational efficiency by using various resource

sharing methods [54]. Fig 1 shows the changes in a logistics delivery network when logistics

facilities agree to cooperate to achieve resource sharing. Customers can be redistributed

among DCs based on the required time, type of service, and geographical locations for cooper-

ative purposes to utilize resources. Transportation between DCs is accomplished by trucks,

and vehicles are utilized to serve customers.

As shown in Fig 1A, before CMCLDN-RS optimization, the independent operation of DCs

causes serious problems. Primarily, a large number of vehicles for delivery are used due to the

different time demands of different customers. In addition, long-distance and cross deliveries

not only make the network complex but also increase the delivery cost. These problems signifi-

cantly reduce the delivery efficiency of the logistics network as a whole. Furthermore, the attri-

butes of some products make them inconvenient to be delivered with other products, which

causes a high cost for delivery. In Fig 1B, after CMCLDN-RS optimization, logistics facility

resources, vehicle resources, and customer services are shared during the delivery process.

Two types of resource sharing schemes are considered: internal vehicle sharing among
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different service periods, and vehicle sharing among DCs. In the optimized network, not only

long-distance and cross deliveries are avoided, but network complexity is also reduced. With

the assumption of $30 per unit time for delivery cost and $20 per unit time for penalty cost

(earliness and delay penalties), Table 2 shows a comparison of non-collaborative and collabo-

rative cases with the corresponding cost, number of vehicles, and service waiting times.

Table 2 indicates that the central transportation cost, which is $143 in the first service

period and $102 in the second, should be considered after CMCLDN-RS optimization. The

delivery costs in the first and second service periods are $2610 and $1350 before CMCLDN-RS

optimization and $1830 and $840 after, respectively. The total number of vehicles used for

serving customers is 18 before CMCLDN-RS optimization and 11 after. The total service wait-

ing time changes from 21 mins to 0, which is a reduction of 21 mins. The results show an obvi-

ous reduction in the total cost (from $4380 to $2915) and the number of vehicles (from 18 to

11) in the collaborative logistics network. That is, utilizing resource sharing can reduce the

operational costs of the entire delivery network.

Fig 1. Illustration of the CMLDN-RS problem.

https://doi.org/10.1371/journal.pone.0242555.g001

Table 2. Comparison before and after the CMCLDN-RS optimization.

Case Period Transportation cost ($) Delivery cost ($) Penalty cost ($) Total cost ($) Number of

vehicles

Service waiting

time

Before CMCLDN-RS

optimization

1st period 0 2610 380 2990 11 19

2nd

period

0 1350 40 1390 7 2

After CMCLDN-RS optimization 1st period 143 1830 0 1830 11 0

2nd

period

102 840 0 840 0

https://doi.org/10.1371/journal.pone.0242555.t002
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Model formulation

Two resource sharing schemes are considered in the optimization problem of CMCLDN-RS

efficiently utilizing logistics resources. Trucks are shared between DCs, and shared vehicles are

utilized to serve customers. To make CMCLDN-RS more realistic, several assumptions are

illustrated as follows.

Assumption 1: The demands of each customer are known and stable within each service

period.

Assumption 2: In the original logistics network, each DC operates independently.

Assumption 3: Each DC pursues maximum profits.

To formulate the CMCLDN-RS optimization problem into a mathematical model, the defi-

nitions used in the model are provided in Table 3.

The CMCLDN-RS optimization model aims to minimize the total operational cost and

number of vehicles of a collaborative multicenter delivery network, as shown in Eqs (1) and

(2).

minTC ¼ TC1 þ TC2 þ TC3 ð1Þ

minV ¼ max
p2P
fmin

X

v2V

x
p

v � ðminfjNRp

v j; 1gÞg ð2Þ

TC1 is the cost for goods transportation. cπidkxπidk is the transportation cost among DCs,

max
p2P
fjDKpjg �

MK
T is the truck maintenance cost, Gdπydπ refers to the government subsidies

when DC d joins an alliance, and y1 �maxfepd � atk
dp; 0g and y2 �maxfatk

dp � tpd ; 0g are the pen-

alty costs for trucks.

TC1 ¼
X

p2P

X

i2D

X

d2D;i6¼d

X

k2K

ðcpidkxpidkÞ þmax
p2P fjDKpjg �

MK

T
þ
X

d2D

Fd �
X

d2D

X

p2P

Gdpydp

þ
X

k2K

X

d2D

X

p2P

y1 �maxfepd � atk
dp; 0gþ

X

k2K

X

d2D

X

p2P

y2 �maxfatk
dp � tpd ; 0gð3Þ

TC2 is the cost for goods delivery within each DC. cπdcvxπdcv is the delivery cost for visiting

customers served via closed delivery routes only by one DC, y1 �maxfepc � atv
cp; 0g and y2 �

maxfatv
cp � tpc ; 0g are the penalty costs for vehicles in closed delivery routes, and max

p2P
fjCVpjg �

Mv
T is the vehicle maintenance cost.

TC2 ¼
X

p2P

X

d2D[C

X

c2C[D

X

v2V

cpdcvxpdcv þ
X

v2V

X

c2C

X

p2P

y1 �maxfepc � atv
cp; 0g

þ
X

v2V

X

c2C

X

p2P

y2 �maxfatv
cp � tpc ; 0g þmax

p2P

fjCVpjg �
Mv

T
ð4ÞÞ

TC3 is the cost for goods delivery among DCs. cπdsvxπdsv is the delivery cost for visiting

customers served via open delivery routes among DCs, y1 �maxfeps � atv
sp; 0g and y2 �

maxfatv
sp � tps ; 0g are the penalty costs for vehicles in open delivery, and max

p2P
fjSVpjg �

Mv
T is the
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Table 3. Symbols and description.

Set Definition

K Set of trucks for transportation among DCs.

V Set of delivery vehicles for delivery from DCs to customers.

D Set of DCs.

B Set of paired DCs for resource sharing in open delivery.

{α,β} Paired DCs, {α,β}2B.

C Set of customers; each customer can be served via internal vehicle sharing within each DC.

S Set of customers who can be served via vehicle sharing among DCs

P Set of service periods, P = {1,2,3,. . .,π}.

DKπ Set of trucks for serving DCs within the πth service period, π2P.

CVπ Set of vehicles for visiting customers served via internal vehicle sharing within each DC for the

πth service period, π2P.

SVπ Set of vehicles for visiting customers served via vehicle sharing among DCs within the πth

service period, π2P.

Parameters

cπdcv Demand-dependent cost of delivering goods with vehicle v from node d to node c within the πth

service period.

cπidk Demand-dependent cost of transporting goods with truck k from distribution i to d within the

πth service period.

cπdsv Demand-dependent cost of delivering goods with vehicle v from node d to node s within the πth

service period.

|DKπ| Number of trucks for serving DCs within the πth service period, π2P.

|CVπ| Number of delivery vehicles for visiting customers served via internal vehicle sharing within

each DC for the πth service period, π2P.

|SVπ| Number of delivery vehicles for visiting customers served via vehicle sharing among DCs within

the πth service period, π2P.

|CNv| Number of customers served by vehicle v via internal vehicle sharing.

|SNv| Number of customers served by vehicle v via vehicle sharing among DCs.

Gdπ Subsidies provided to DC d if it agrees to cooperate in the two-echelon logistics network within

the πth service period, d2D,π2P.

Lk Loading capacity of truck k.

Lv Loading capacity of delivery vehicle v.

Mk Annual maintenance cost of truck k.

Mv Annual maintenance cost of delivery vehicle v.

θ1 Penalty cost coefficient for arriving early.

θ2 Penalty cost coefficient of arriving late.

Qp
c Demand of customer c within the πth service period, c2C.

Qp
s Demand of customer s within the πth service period, s2S.

Qid Delivery quantity from DC i to d
MM Very large number.

½epd ; tpd � Operational time window for DC d within the πth service period, π2P.

½epc ; t
p
c � Service time window for customer c within the πth service period, π2P.

½elpc ; llpc � Acceptable delivery time windows for customer c within the πth service period.

atk
dp Truck k’s arrival time at node d within the πth service period, d2D[C.

atv
cp Vehicle v’s arrival time at node c within the πth service period, c2D[C.

atv
sp Vehicle v’s arrival time at node s within the πth service period, s2D[S.

ttpdcv Vehicle v’s travel time from node d to node c within the πth service period, c2D[C.

ttpdsv Vehicle v’s travel time from node d to node s within the πth service period, s2D[S.

Fd Fixed cost of DC d, d2D.

jNRp
v j Number of delivery routes within the πth service period, v2V,π2P.

(Continued)
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vehicle maintenance cost.

TC3 ¼
X

p2P

X

d 2 g [ S;

g 2 fa; bg

X

s 2 d [ S;

d 2 fa;bg;

g 6¼ d; d 6¼ s

X

v2V

cpdsvxpdsv

þ
X

v2V

X

s2S

X

p2P

y1 �maxfeps � atv
sp; 0g

þ
X

v2V

X

s2S

X

p2P

y2 �maxfatv
sp � tps ; 0g þmax

p2P
fjSVpjg �

Mv

T
ð5Þ

Subject to:

X

v2V

X

d2D[C

xpdcv ¼ 1; c 2 C; p 2 P ð6Þ

X

d2D[S

X

v2V

xpdsv ¼ 1; p 2 P; s 2 S ð7Þ

X

c2C

Qp

c xpdcv � Lv; d 2 D; v 2 V; p 2 P ð8Þ

X

s2S

Qp

s xpdsv � Lv; v 2 V; d 2 fa;bg; p 2 P ð9Þ

X

d2D[C

xpdcv �
X

j2D[C

xpcjv ¼ 0; c 2 C; v 2 V; p 2 P ð10Þ

X

d;c2C

xpdcv � jCNvj � 1; v 2 V; p 2 P ð11Þ

X

d;s2S

xpdsv � jSNvj � 1; v 2 V; p 2 P ð12Þ

Table 3. (Continued)

Set Definition

Decision

variables

xπidk If truck k travels from DC i to DC d within the πth customer service period, then xπidk = 1;

otherwise, xπidk = 0, d2D,c2D[C,v2V,π2P.

xπicdk If the service of customer c is changed from DC i to DC d within the πth customer service

period, then xπicdk = 1, otherwise, xπicdk = 0, i,d2D,c2C,v2V,π2P.

xπdcv If delivery vehicle v travels from node d to node c within the πth customer service period, then

xπdcv = 1, otherwise, xπdcv = 0, d2D[C,c2D[C,v2V,π2P.

xπdsv If delivery vehicle v travels from node d to node s within the πth customer service period, xπdsv =

1, otherwise, xπdsv = 0, d2D[C,c2D[C,v2V,π2P.

x
p

v If delivery vehicle v is used within the πth customer service period, then x
p

v ¼ 1, otherwise,

x
p

v ¼ 0, v2V,π2P.

ydπ If DC d agrees to cooperate in vehicle routing optimization within the πth customer service

period, then ydπ = 1, d2D,π2P, otherwise, ydπ = 0.

https://doi.org/10.1371/journal.pone.0242555.t003
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X

c2C

X

v2V

Qp

c xpdcv þ
X

s2S

X

v2V

Qp

s xpdsv � Qp

d; p 2 P; d 2 D ð13Þ

X

c2C

Qp

c xpicdk ¼ Qid; i; d 2 D; k 2 K ð14Þ

X

s2S

Qp

s xpisdk ¼ Qid; i; d 2 D; k 2 K ð15Þ

dtv
dp þ ttpdcv � MMð1 � xpdcvÞ � atv

cp; c; d 2 D [ C; v 2 V; p 2 P ð16Þ

dtv
dp þ ttpdcv þMMð1 � xpdcvÞ � atv

cp; c; d 2 D [ C; v 2 V; p 2 P ð17Þ

dtv
dp þ ttpdsv � MMð1 � xpdsvÞ � atv

sp; c; d 2 D [ S; v 2 V; p 2 P ð18Þ

dtv
dp þ ttpdsv � MMð1 � xpdsvÞ � atv

sp; c; d 2 D [ S; v 2 V; p 2 P ð19Þ

dtv
dp þ ttpdcv � llpc ; c; d 2 D [ C; v 2 V; p 2 P ð20Þ

dtv
dp þ ttpdcv � elpc ; c; d 2 D [ C; v 2 V; p 2 P ð21Þ

xpicd ¼ f0; 1g; i; c; d 2 C [ D; p 2 P ð22Þ

xpdcv ¼ f0; 1g; d 2 D; c 2 D [ C; v 2 V; p 2 P ð23Þ

xpdsv ¼ f0; 1g; d 2 D; s 2 D [ S; v 2 V; p 2 P ð24Þ

xpicdk ¼ f0; 1g; i; d 2 D; c 2 C; v 2 V; p 2 P ð25Þ

ydp ¼ f0; 1g; d 2 D; p 2 P ð26Þ

Constraints (6) and (7) ensure that each customer is served by only one DC. Constraints (8)

and (9) guarantee that the delivery loads do not exceed the vehicle capacity. Constraint (10)

ensures the conservation of goods flow for visiting customers served via internal vehicle shar-

ing within each DC. Constraints (11) and (12) aim to eliminate the subtour in the delivery pro-

cess. Constraint (13) guarantees that total customer demands do not exceed the DC capacity.

Constraints (14) and (15) stipulate the delivery quantity from DC i to d, which is equivalent to

the total change of customer quantities from DC i to d. Constraints (16) and (17) limit the

arrival time of each vehicle for visiting customers served by internal vehicle sharing within

each DC. Constraints (18) and (19) limit the arrival time of each vehicle for visiting customers

served by vehicle sharing among DCs. Constraints (20) and (21) guarantee that each customer

is served in their expected time windows. Constraints (22)–(26) are binary decision variables.
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Research methodologies

Related definitions and solution procedure

Our proposed CMCLDN-RS problem not only can improve the operational efficiency of a

multicenter distribution network but can also reduce the network operation costs. Fig 2 shows

the AGPSO process for solving the CMCLDN-RS problem. To clarify the relevant optimiza-

tion process, several required parameters are defined as follows.

nPOP: Population size

nREP: Repository size

gnmax: Maximum number of iterations

Rnmax: Maximum number of optimization runs

W: Coefficient of inertia

R1: Personal learning coefficient

R2: Global learning coefficient

nGrid: Number of grids per dimension

α: Inflation rate

β: Leader selection pressure

γ: Deletion selection pressure

Mut: Mutation rate

Adaptive grid particle swarm optimization

Due to the complexity of CMCLDN-RS when considering a large number of customers, it is

inefficient to solve the heuristic algorithm directly. Therefore, the combination of a clustering

algorithm and AGPSO is used to solve the CMCLDN-RS optimization problem. AGPSO aims

to make the obtained optimal Pareto solution as close as possible to the true Pareto optimal

frontier. The Pareto solutions are calculated based on the nondominated sorting and crowding

distance for each generation, and then the optimal Pareto is filtered out of all the Pareto solu-

tions [55, 56]. First, the nondominated solutions are sorted in accordance with the value of the

bi-objective function, and the nondominated solutions in the Pareto frontier with peer rank

has the same degree of optimization. Second, the crowding distance of each particle is calcu-

lated as the sum of the distance values that correspond to each objective for every particle.

Third, the Pareto frontier of different ranks are obtained. Finally, the optimal non-dominated

solutions can be considered and selected as the solution with peer rank based on the focus of

the bi-objective.

The most important components of AGPSO are determining how to choose the personal

best position pbest and global best position gbest and how to maintain the external repository.

For AGPSO, the method to select the best position of an individual is to compare the current

particle position with the best historical position of the individual. If the new solution domi-

nates the current pbest, then the new solution acts as the new pbest. gbest is not unique in

multi-objective optimization, presenting multiple global optimal solutions that are not domi-

nated by one another. These solutions are stored in the external repository. The external repos-

itory not only stores the nondominated vectors obtained along the search process but also

plays a role in guiding the population to the latest Pareto frontier. In addition, the Pareto
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Fig 2. AGPSO flowchart.

https://doi.org/10.1371/journal.pone.0242555.g002
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frontier can be extended to the Pareto front surface to select the optimal solution for solving

problems involving more than two objective functions [57]. The specific process of AGPSO is

explained as follows, and the pseudo-code procedure is shown in Table 4.

1. Customer clustering: The imported customer data are clustered based on the attributes of

customers. Manhattan distance is utilized to calculate the distance between customers.

2. Population initialization: Population POP and the velocity of each particle are initialized,

and the initial vehicle routes are generated according to the capacity constraints (8)-(9),

subtour constraints (11)-(12), and time window constraints (16)-(21), and then the objec-

tive function values corresponding to each particle are found. The locations that replace the

nondominated vectors are stored in the repository REP.

3. Fitness function value calculation: The fitness function values include the total operational

cost in Eq (1) and number of vehicles in Eq (2), and the two objectives constitute a two-

dimensional coordinate, which is used to obtain the Pareto frontier of different ranks based

on the nondominated sorting and crowding distance. The fitness function values of each

particle are calculated based on the crowding distance of each particle and the nondomi-

nated sorting process. The initial personal best position pbest and global best position gbest
of the particle are determined on the basis of the population initialization scheme.

4. Velocity and position update and pbest adjustment: W is the inertia weight that controls the

convergence of the algorithm, and R1 and R2 are uniform random numbers in interval

[0,1]. If pbest is dominated by the new particle position, then pbest will be replaced by the

Table 4. AGPSO algorithm procedure.

AGPSO algorithm:

Input: customers’ corresponding data, POP(population size), REP(external
repository), Itmax(maximum number of iterations)

Output: Pareto-optimal solutions.

Step 1: Define o as the number of clusters.

Step 2: Randomly choose o original cluster centers.

Repeat Steps 3 and 4 until the membership in each cluster becomes stable.

Step 3: (Re-)assign each customer to a cluster whose cluster center is the
closest.

Step 4: Update the center of each cluster.

Step 5: Output the clustering resuls.

Step 6: Initialize the population POP[i] and the velocity of each particle VEL
[i].

Evaluate each of the particles in POP

Step 7: Calculate the objective function value of each particle.

Store the non-dominated vectors in REP.

while i�Itmax
do

Update the velocity of each particle:

VEL[i+1]�W×VEL[i]+R1×{PBESTS[i]−POP[i]}+R2×{PBESTS[h]−POP[i]}

Calculate the new position of the particle: POP[i+1] = POP[i]+VEL[i]

Maintain the particles within the search space

Evaluate each of the particles in POP

Update the repository together with the geographical representation of the
hypercubes

Update the particle position: PBESTS[i] = POP[i]

end while

https://doi.org/10.1371/journal.pone.0242555.t004

PLOS ONE Collaborative multicenter logistics delivery network optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0242555 November 23, 2020 13 / 31

https://doi.org/10.1371/journal.pone.0242555.t004
https://doi.org/10.1371/journal.pone.0242555


new position. If any one is not dominated by others, then one with a probability is ran-

domly selected.

5. External repository maintenance: The objective function values of each particle in the

newly generated population Pt+1 is calculated, when the accumulated demands exceed the

capacity of the vehicle according to the capacity constraints (8), (9) and (13), in addition, it

will return to the departure DC for the internal vehicle sharing routes, for vehicle sharing

between DCs, it will return to an adjacent DC for the vehicle sharing routes among DCs.

The positions that replace the nondominated vectors are stored in repository REP. The

external repository is maintained and updated, and REPt+1 is generated, and then gbest of

each particle is chosen.

6. Algorithm termination conditions: If the algorithm reaches the termination condition then

the iteration is stopped; otherwise, t = t + 1, and step (3) is repeated. When the algorithm

terminates, the current external repository At is the Pareto solution set.

Adaptive grid density estimation algorithm. An adaptive grid density estimation algo-

rithm is utilized to update the external repository. The updates of the external repository must

meet either of the following two conditions: (1) the newly-generated particles dominate one or

more particles in the external repository; (2) the number of particles in the external repository

has reached the allowed capacity. The adaptive grid algorithm first appeared in the Pareto

archived evolution strategy [56, 58]. The adaptive grid density estimation algorithm needs to

compute the density information of particles in Archive. The target space is divided into small

cells with a grid and the number of particles contained in each area is used as the density infor-

mation of the particles. The main procedure is as follows.

Step 1: The boundary of the target space during t-generation evolution ðminFt
1
;maxFt

1
Þ and

ðminFt
2
;maxFt

2
Þ is calculated.

Step 2: The Modulus of the grid is calculated as follows: DFt
1
¼

maxFt
1
� minFt

1

M ;DFt
2
¼

maxFt
2
� minFt

2

M .

Step 3: The indices of the grids in which particles are calculated. For particle i, the grid index

consists of two parts: IntðF
i
1
� minFi

1

DFt
1

Þ þ 1; IntðF
i
2
� minFi

2

DFt
2

Þ þ 1
� �

.

Step 4: Grid information is calculated and the number of particles in the grid is saved to array

Grid [].

Step 5: Particle density estimates are calculated and the results are stored to array Archive_Obj
[].

Archive truncation operation. When the number of particles in the archive exceeds the

allowed capacity, excess individuals need to be discarded to maintain the stability of the

archive. For grid g with more than one particle, the number of particles PN to be deleted in the

grid g is calculated using Eq (27), then PN particles are randomly discarded in it.

PN ¼ Int
jAtþ1j �

�N
jAtþ1j

� Grid½g; 2� þ 0:5

� �

ð27Þ

Grid [g] represents the number of contained particles in grid g. The schematic of the archive

truncation operation is shown in Fig 3. The black circles in Fig 3B are the deleted particles.

Mutation operator. To avoid the PSO-based algorithm to converge to a false Pareto front,

Coello et al. [59] proposed a new mutation operator in MOPSO, which considers the effect of

the mutation operator on the number of iterations and particle swarms. The mutation
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operator is used in this paper. Its pseudocode is illustrated in Table 5. pm is the particle to be

mutated, dims is the number of dimensions, currentgen is the current iteration, totgen is the

total number of iterations, and mr is the mutation rate.

Profit allocation method

For the CMCLDN-RS optimization problem, collaborative alliances can achieve resource shar-

ing among multiple centers and reduce the total operational cost of collaborative alliances. The

cost saving generated by collaboration should be fairly allocated to each participant. MCRS is a

game theory method for solving the problem of cost or benefit allocation [4, 60]. We suppose

that N = {1,2,3,. . .,i} can be the set of all participants and A be a subset of N. V(N) is the total

Fig 3. Illustration of the archive truncation operation.

https://doi.org/10.1371/journal.pone.0242555.g003

Table 5. Procedure of the mutation operator.

Mutation operator:

1: function Mutation Operator (pm, dims, currentgen, totgen, mr)

2: wdim = random (0, dims-1)

3: mutrange = (upperbound[wdim]-lowerbound[wdim])�(1-currengen/totgen)5/mutrate

4: ub = particle[wdim]+mutrange

5: lb = particle[wdim]-mutrange

6: if lb < lowerbound

7: lb = lowerbound[wdim]

8: end

9: if ub > upperbound

10: ub = upperbound[wdim]

11: end

12: particle[wdim] = RealRandom(lb,ub)

13: end

https://doi.org/10.1371/journal.pone.0242555.t005
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profits of the alliance with all participants in N and V(A) is the profit of A and can be calculated

by Eq (28).

VðAÞ ¼ ð1 � sÞmaxf
X

i2S
C0ðiÞ � CðAÞ; 0g; A � N ð28Þ

In Eq (28), C0(i) is the initial cost of participant i. C(A) is the optimized cost of alliance A. σ
is the synergy coefficient of the logistics provider that facilitates the collaboration among DCs.

The upper and lower bounds of the profit allocation method are Xmin = {X1min,� � �,Xjmin,� � �,

Xnmin} and Xmax = {X1max,� � �,Xjmax,� � �,Xnmax}, respectively. Xjmax expresses the maximum

profits of DC j, and Xjmin expresses the minimum profit of DC j. The actual profit of DC j can

be calculated using Eq (29).

XjðA;VÞ ¼ Xjmin þ
Xjmax � XjminX

j2N

ðXjmax � XjminÞ
� ðVðAÞ �

X

j2N

XjminÞ ð29Þ

In Eq (29), Xjmax and Xjmin can be calculated using Eqs (29) and (30) as follows, where V(A
−{j}) is the residual profit of alliance A except participant j and V(j) is the profit of participant

j.

Xjmin ¼ VðjÞ ð30Þ

Xjmax ¼ VðAÞ � VðA � fjgÞ ð31Þ

Subject to

X

j2A

Xj � VðAÞ ð32Þ

X

j2N

Xj ¼ VðNÞ ð33Þ

Xj � VðjÞ ð34Þ

Xjmin � XjðA;VÞ � Xjmax ð35Þ

Eqs (32) and (34) ensure the collective profit of each alliance and participant. Eq (35) guar-

antees that the value of Xj(A,V) is between Xjmin and Xjmax. The Cost reduction percentage η(i,
ϕ,u) of participant i in sequence ϕ when the uth participant joins the alliance is calculated

using Eq (36).

Zði; �; uÞ ¼
Xið[�ðmÞ�u;m2Am;VÞ

C0ðiÞ
; �ðiÞ � m ð36Þ

Case study

Algorithm comparison

The proposed AGPSO algorithm, nondominated sorting genetic algorithm-II (NSGA-II)

[61], and multi-objective evolutionary algorithm (MOEA) [62] are tested using 36 differ-

ent datasets to evaluate the applicability of the proposed algorithm to CMCLDN-RS opti-

mization. Table 6 shows the data from each of the 36 groups. The total operational cost,

the number of vehicles used for delivery, and the computation time are compared to assess
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the effectiveness of AGPSO. The selection process of related parameters is important and

necessary, and there are several methods to select related parameters, including compara-

tive experiment and selection [4, 39, 40, 63, 64], orthogonal experimental design [65], etc.

A parameter sensitivity analysis is performed to determine the parameter sensitivity and

select parameter values. Through a large number of computational experiments and com-

parisons, we find that the coefficient of inertia, Inflation rate, and mutation rate are rela-

tively sensitive, and when the coefficient of inertia is set as the medium value, and the

inflation rate and the mutation rate are set as small values, the optimal costs and number

of vehicles are more likely to be obtained in a short time. The related parameters of

AGPSO are illustrated as follows: nPOP = 50, nREP = 15, W = 0.5, R1 = 1, R2 = 2,

nGrid = 7, α = 0.1, β = 2, λ = 2, mut = 0.1. In addition, TS = 40 represents the travel speed,

Lk = 1500, Lv = 200, Mk = 1500, Mv = 500, θ1 = 0.05, θ2 = 0.1. The optimal total cost of

logistics operation, number of vehicles and computation time are calculated and com-

pared among the three algorithms with 20 randomly generated datasets are shown in

Table 7.

The best solution and computation time returned by each algorithm for each data instance

is listed in Table 7. t-test and p-value results for optimal logistics operational costs are shown

at the bottom of Table 7, which indicates that NSGAII and MOEA are significantly different

from AGPSO. Regarding cost optimization, AGPSO performs better than NSGAII and GA-TS

in most cases. For example, the average cost of the 36 instances of AGPSO is $22055, whereas

NSGAII and GA-TS are $23178 and $23828, respectively. The optimization effectiveness for

the number of vehicles is the same amongst all three algorithms. They all have an average num-

ber of 14 vehicles. For computation time, the proposed AGPSO tends to take the most time to

converge among the three algorithms. MOEA performs well in computation time but is infe-

rior in the cost optimization effectiveness.

Data description

A practical case of CMCLDN-RS optimization, conducted in Chengdu, China, is studied to

test the applicability of the proposed logistics network optimization mechanism. Four DCs

(DC1, DC2, DC3, and DC4) and 180 customers (C1, C2, . . ., C180) are selected from the

complex network to demonstrate the effectiveness of CMCLDN-RS optimization. The coor-

dinate location information of four DCs and 180 customers is shown in S1 Dataset. Table 8

shows the characteristics of all DCs and their allocated number of customers. Table 9 shows

the initial assignment of customers served by each DC in the initial non-collaborative logis-

tics network.

Table 6. Description of instances.

Instance Number of customers Number of DCs

1–4 90 2,4,6,8

5–8 110 2,4,6,8

9–12 130 4,6,8,10

13–16 150 4,6,8,10

17–20 200 6,8,10,12

21–24 240 6,8,10,12

25–28 300 8,10,12,14

29–32 360 10,12,14,16

33–36 400 10,12,14,16

https://doi.org/10.1371/journal.pone.0242555.t006
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In Table 9, customers with asterisks are potentially shared among DCs. In addition, Table 9

indicates that the existence of unreasonable customer services such as cross- and long-distance

transportations increase the complexity of the logistics network; thus, it’s essential to study the

collaboration mechanism and resource sharing schemes for CMCLDN-RS among multiple

DCs across several periods.

Table 7. Comparison of the results of algorithm optimization.

Instance AGPSO NSGAII MOEA

Cost

($)

No. of Vehicles Time (s) Cost

($)

No. of Vehicles Time (s) Cost

($)

No. of Vehicles Time (s)

1 7539 5 202.4 8407 5 209.3 11445 5 223.7

2 8534 6 176.3 8397 6 175.2 8983 6 167.2

3 10734 4 129.3 10279 4 129.3 10432 4 145.2

4 14368 3 92.3 15452 3 85.9 15126 3 84.2

5 9499 8 210.4 10575 8 212 11764 8 214.3

6 10840 5 169.6 11316 5 181.6 12408 6 159.7

7 13393 5 154.2 16600 5 153.8 18387 5 140.3

8 15630 4 98.2 18728 4 94.8 19652 5 91.9

9 11226 10 279.2 11674 10 290.2 12922 11 271.5

10 11230 10 246.2 11870 10 251.8 11859 10 240.8

11 15938 8 201.3 19037 8 203.4 17902 8 179.8

12 22269 6 139.1 24526 6 140.7 25027 7 138.1

13 11788 12 268.9 12659 12 271.4 13342 12 242.7

14 14053 10 236.2 14387 10 234.1 15175 10 221.3

15 21603 9 200.3 24334 9 194.1 25730 9 181.2

16 28731 8 148.3 32892 8 153.8 35883 8 139.7

17 22029 17 366.2 23170 17 374.2 24739 17 357.8

18 20627 15 305.8 21136 15 305.6 22191 15 321.7

19 21180 15 283.2 22596 14 281.9 21739 14 274.5

20 24831 15 251.3 26318 15 250.6 27098 15 246.3

21 25316 18 382.5 26835 19 375.8 27103 19 364.5

22 26122 16 365.4 27195 17 336.7 27876 18 327.3

23 27393 17 343.7 28236 17 348.5 28967 18 335.6

24 27964 17 352.6 29198 18 361.7 29873 18 358.7

25 28231 20 410.2 28972 21 421.6 28772 21 398.2

26 28965 18 393.4 29325 18 410.2 29967 19 401.7

27 29538 18 414.7 30122 19 425.1 30351 19 410.5

28 30419 19 387.3 31028 20 407.5 31516 20 412.1

29 30687 22 433.5 31127 23 418.2 31238 22 406.3

30 31293 21 441.6 32165 22 428.7 32157 22 425.2

31 31572 21 446.2 32381 21 435.4 32764 21 451.6

32 32091 22 455.9 32768 22 462.1 33150 22 442.5

33 31242 23 452.5 31758 24 430.4 32161 23 417.7

34 31894 23 457.3 32641 23 441.6 32985 23 431.6

35 32325 22 462.1 32965 23 438.2 33029 23 435.3

36 32879 22 468.9 33327 23 451.3 34101 23 448.1

Average 22055 14 300.7 23178 14 299.6 23828 14 291.9

T-test -6.70 -7.19

P-value 4.61E-08 1.08E-08

https://doi.org/10.1371/journal.pone.0242555.t007
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Optimization results

As mentioned in the above model formulation, the global sharing for the collaborative logistics

network consists of two collaborative modes. One mode consists of internal vehicle sharing

within each DC in different service periods. Some products in different DCs have similar but

unique attributes and are unsuitable for delivering with others; thus, collaboration among DCs

is considered so that vehicle sharing can deliver such category of products. In this study, such

a situation exists between DC1 and DC2 and between DC3 and DC4 in the initial multi-center

logistics network. Therefore, vehicle sharing between DC1 and DC2 and between DC3 and

DC4 should be considered. The other collaborative mode is vehicle sharing among DCs in dif-

ferent service periods (i.e., considering products of DCs with similar attributes but which can-

not be delivered with general products).

The parameter sensitivity analysis process is performed to select parameter values in the

optimization model as follows. The fixed cost of each DC is: F1 = 1200, F2 = 1000, F3 = 900, F4

= 1100. Incentives offered to each participant are: G1 = 298, G2 = 341, G3 = 268, G4 = 314. The

parameters used for AGPSO are as follows [39, 40, 63, 64]: nPOP = 150, nREP = 20, W = 0.5,

R1 = 1, R2 = 2, nGrid = 9, α = 0.1, β = 2, λ = 2, mut = 0.1, TS = 40, Lk = 1500, Lv = 200, Mk =

1500, Mv = 500, θ1 = 0.05, θ2 = 0.1. We consider two collaborative forms in this study, and 52

working periods are included in a year. The AGPSO algorithm is used to reassign customers

and calculate total cost in a working period. Cost savings generated by optimizing the initial

network are allocated via MCRS. Details are discussed below. Table 10 indicates the assign-

ment of customers served via internal vehicle sharing within each service period in the grand

alliance. Table 11 shows the assignment of customers served among DCs within each service

period.

Table 11 shows the open delivery routes (i.e. sharing among DCs) after CMCLDN-RS opti-

mization. In this sharing mode, the DC1-DC2 pair and DC3-DC4 pair collaborate to achieve

Table 8. Characteristics of logistics facilities.

Facility Number of allocated customers Longitude Latitude Time windows

DC1 27 103.954 30.8073 0 900

DC2 29 103.9451 30.56697 0 900

DC3 32 104.4326 30.76488 0 900

DC4 31 104.3035 30.56581 0 900

https://doi.org/10.1371/journal.pone.0242555.t008

Table 9. Initial assignment of customers served by each DC.

Facility Customers allocation

DC1 D1 D2 D3 D4 D5 D6 D7 D9 D12 D14 D16 D17 D20 D21 D22 D25 D26 D28 D29 D30 D31 D32 D33 D34

D36 D37 D38 D39 D41 D42 �D8 �D10 �D11 �D13 �D15 �D18 �D19 �D23 �D24 �D27 �D35 �D40

DC2 D43 D46 D48 D50 D53 D54 D56 D57 D58 D60 D61 D62 D64 D65 D66 D67 D68 D69 D70 D71 D72 D73

D74 D75 D76 D78 D79 D80 D83 D84 D86 D88 �D44 �D45 �D47 �D49 �D51 �D52 �D55 �D59 �D63 �D77
�D81 �D82 �D85 �D87 �D89 �D90

DC3 D91 D94 D95 D96 D102 D103 D108 D110 D111 D113 D115 D116 D117 D118 D119 D120 D121 D122

D123 D124 D125 D126 D128 D129 D130 D131 D132 D133 D134 �D92 �D93 �D97 �D98 �D99 �D100
�D101 �D104 �D105 �D106 �D107 �D109 �D112 �D114 �D127

DC4 D135 D136 D138 D139 D141 D143 D144 D147 D148 D149 D150 D151 D152 D154 D158 D159 D160

D161 D162 D164 D165 D166 D167 D168 D169 D170 D171 D172 D174 D175 D176 D177 D178 D179

D180 �D137 �D140 �D142 �D145 �D146 �D153 �D155 �D156 �D157 �D163 �D173

�: Customers potentially shared among DCs.

https://doi.org/10.1371/journal.pone.0242555.t009
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vehicle sharing among the three service periods. For example, in period 1 of alliance {DC1,

DC2}, the vehicle departs from DC1 and arrives at DC2 after serving D24, D42, D19, D35,

D89, and D10, and then departs from DC2 to serve D49, D44, and D47 and finally returns to

DC2. The same vehicle departs from DC2 to serve related customers in period 2, which is also

shared in period 3.

For global sharing, the result comparison before and after CMCLDN-RS optimization in

three periods is shown in Table 12 and Fig 4. The number of customers to be served and the

customer needs in each service period are different; thus, the logistics operational cost, service

waiting time, and number of vehicles used in different periods also differ. However, the three

components are all reduced after CMCLDN-RS optimization in the same service period. For

example, the logistics operational cost decreases from $7939 to $4649, the service waiting time

changes from 18.21 min to 16.42 min, and the number of vehicles decreases from 8 to 5 after

collaboration in the first service period. From a holistic perspective, the total logistics opera-

tional cost, service waiting time, and number of vehicles used for three service periods are all

reduced, which indicates that the CMCLDN-RS optimization is effective in coordinating logis-

tics resources.

The optimization results, including cost savings and the changes in initial and optimized

costs and number of vehicles, are summarized in Table 13 and illustrated in Fig 5. Table 12 dis-

plays that the total costs will be decreased when the participant agrees to join an alliance. For

example, the initial costs of alliance {DC1, DC2} is $16551, whereas the optimized cost is

$11344, thereby generating a cost savings of $4382. The total cost savings are also affected by

the number of alliance members. The cost savings of alliance {DC1, DC2} is $5207, whereas

Table 10. Assignment of customers served via internal vehicle sharing within each DC in the grand alliance.

Facility Customers allocation

DC1 Period 1: D3 D5 D12 D20 D21 D22 D38 D58 D60 D115 D122 D123 D170

Period 2: D6 D33 D34 D83 D102 D103 D121 D164 D166 D179 D180 D14 D2

Period 3: D1 D4 D7 D9 D56 D62 D84 D120 D17 D61

DC2 Period 1: D42 D53 D78 D86 D116 D117 D119 D132 D177

Period 2: D41 D43 D46 D50 D57 D118 D130 D174 D178 D88

Period 3: D25 D26 D48 D54 D64 D76 D79 D131 D158 D159 D175

DC3 Period 1: D68 D69 D70 D91 D96 D111 D113 D162 D169

Period 2: D31 D94 D95 D128 D144 D150 D151 D165 D152

Period 3: D29 D30 D39 D66 D67 D124 D125 D126 D161

DC4 Period 1: D16 D28 D75 D108 D110 D136 D139 D167 D171 D172 D176

Period 2: D133 D141 D148 D160 D72 D74 D129 D134 D135 D168

Period 3: D32 D36 D37 D65 D71 D73 D80 D147 D149 D154

https://doi.org/10.1371/journal.pone.0242555.t010

Table 11. Routes of customers served among DCs.

A Routes among DCs

{DC1, DC2} Period 1: DC1!D24!D42!D19!D35!D89!D10!DC2!D49!D44!D47!DC2

Period 2: DC2!D8!D27!D63!D11!D47!D81!DC1!D13!D23!D55!D59!DC1

Period 3: DC1!D18!D15!D90!DC2!D85!D87!D77!D82!D51!D40!DC2

{DC3, DC4} Period 1: DC3!D105!D142!D155!D146!DC4!D100!D109!D140!D101!D156!DC4

Period 2: DC4!D137!D107!D127!D153!DC3!D98!D104!D145!D99!D112!D114!DC3

Period 3: DC3!D173!D92!D138!D106!D143!DC4!D157!D163!D93!D97!DC4

https://doi.org/10.1371/journal.pone.0242555.t011
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the cost savings of {DC1, DC2, DC3} are $6888. The addition of DC3 saves considerable costs.

The number of vehicles is shown in Fig 5, which indicates that the number of vehicles used in

the initial alliance are more than the number in the optimized alliance.

In all circumstances, we observe effective cost reduction in Table 13 and Fig 5. Therefore,

DCs should cooperate and share their resources to minimize expenses. Fig 5 indicates that the

Table 12. Result comparison before and after CMCLDN-RS optimization in three periods.

Period Logistics operational cost ($) Service waiting time (min) Number of vehicles

Non-collaboration Collaboration Non-collaboration Collaboration Non-collaboration Collaboration

Period 1 7939 4649 18.21 16.42 8 6

Period 2 11408 6684 19.56 17.34 11 9

Period 3 13251 7756 20.67 18.45 14 11

Total 32598 19089 58.44 52.21 33 21

https://doi.org/10.1371/journal.pone.0242555.t012

Fig 4. Result comparison before and after CMCLDN-RS optimization in three periods.

https://doi.org/10.1371/journal.pone.0242555.g004
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Table 13. Comparison between initial and optimized networks within one working period.

A Initial Optimized V(A)
Cost ($) Number of vehicles Cost($) Number of vehicles

{DC1} 7659 9 7276 9 383

{DC2} 8892 8 8447 8 445

{DC3} 7223 9 6862 9 361

{DC4} 8825 10 8383 10 442

{DC1DC2} 16551 14 11344 8 5207

{DC1DC3} 11317 12 8026 6 3291

{DC1DC4} 12236 14 9636 7 2600

{DC2DC3} 12165 13 8988 7 3177

{DC2DC4} 13084 16 10138 8 2946

{DC3DC4} 16047 14 10608 7 5439

{DC1DC2DC3} 21905 23 15017 13 6888

{DC1DC2DC4} 22825 24 16196 14 6629

{DC1DC3DC4} 22010 23 14226 15 7784

{DC2DC3DC4} 22858 24 14750 14 8108

{DC1DC2DC3DC4} 32598 33 19089 21 13509

https://doi.org/10.1371/journal.pone.0242555.t013

Fig 5. Comparison of initial and optimized costs and number of vehicles.

https://doi.org/10.1371/journal.pone.0242555.g005
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largest cost and vehicle gaps are generated when forming the grand alliance. Although the col-

laboration with any other DC is cost effective, the participants intend to increase their profit

by considering global sharing and forming a grand alliance. In addition, the logistics provider

as the coordinator would not be allocated any profits, and so the synergy requirement parame-

ter σ = 0. The cost savings are equally allocated among DC1, DC2, DC3, and DC4 using

MCRS. Table 14 shows the allocation results.

Table 14 shows that different DCs gain different profits in different alliance scenarios. For

example, the profit of DC1 for cooperating with DC2 is $2170, whereas its profit for cooperat-

ing with DC3 is $1661. In practice, the DC attached to any alliance is subjected to profit gain-

ing from the entire network. Most economically driven companies participate in the alliance

to maximize profit. The order in which participants join the alliance will affect the results of

the profit allocation [66]. SMP is a method to find the proper alliance sequence for maximizing

benefits [48]. In accordance with SMP [24], the feasible alliance sequences are shown in

Table 15.

Comparisons of all the feasible collaboration sequences in Table 15 indicate that the optimal

alliance of the collaborative network is ϕ1 = {DC1,DC2,DC3,DC4}, as shown in Table 16. In

greater detail, the optimal collaboration strategy can be described as follows: DC1 joins the alli-

ance first and achieves 5% cost reduction; DC2 follows and yields 29.6% reduction, and DC1

has 33.6% reduction; when DC3 joins, the reduction becomes 34.6%, 29.8%, and 22.8% for

DC1, DC2, and DC3, respectively; and as DC4 enters, DC1, DC2, DC3, and DC4 can reduce

their costs by 39.0%, 36.0%, 51.3%, and 41.0%, respectively.

To verify the accuracy of our profit distribution, the Shapley value model, nucleolus, and

cost gap allocation (CGA) are applied to find distribution schemes corresponding to the grand

alliance and are then compared with MCRS. Considering previous research [67], the core cen-

ter shown in Fig 6 is also obtained by compressing the polyhedron and narrowing the core

into a single point.

Comparisons of the distance between each profit allocation method and the core center

prove that CGA is the farthest from the core center and MCRS is the closest. Therefore, the

best profit allocation scheme among DCs is $2584, $2777, $2565, and $2448, and MCRS is

selected to be the most appropriate allocation strategy in this case study.

Table 14. Profit distribution of DCs for global sharing.

A V(A) X(A,v)

{DC1} 383 (383, 0, 0, 0)

{DC2} 445 (0, 445, 0, 0)

{DC3} 361 (0, 0, 361, 0)

{DC4} 442 (0, 0, 0, 442)

{DC1, DC2} 5207 (2573, 2634, 0, 0)

{DC1, DC3} 3291 (1661, 0, 1630, 0)

{DC1, DC4} 2600 (1684, 0, 0, 916)

{DC2, DC3} 3177 (0, 1625, 1552, 0)

{DC2, DC4} 2946 (0, 1487, 0, 1460)

{DC3, DC4} 5439 (0, 0, 2679, 2760)

{DC1, DC2, DC3} 6890 (2592, 2653, 1644, 0)

{DC1, DC2, DC4} 6630 (2512, 2573, 0, 1546)

{DC1, DC3, DC4} 7784 (1979, 0, 3159, 2645)

{DC2, DC3, DC4} 8108 (0, 1967, 3041, 3100)

{DC1, DC2, DC3, DC4} 13509 (2987, 3199, 3703, 3620)

https://doi.org/10.1371/journal.pone.0242555.t014
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Analysis and discussion

Above we discussed two methods of collaboration to solve the optimization problem of

CMCLDN-RS. In this subsection, some analyses and comparisons are made to help find a suit-

able collaborative mechanism. Table 17 shows the difference between three types of delivery

networks: (1) non-collaborative delivery network without vehicle sharing (Case A), (2) collab-

orative delivery network considering vehicle sharing only within each DC (Case B), and (3) A

collaborative delivery network in consideration of vehicle sharing within each DC and among

DCs (Case C).

The two proposed collaboration methods can save the cost and number of vehicles in the

optimized logistics network. As shown in Table 17 and Fig 7, significant reductions in total

cost and number of vehicles can be achieved. The total logistics operational cost savings are

$3260 in Case A and $10373 in Case B. After the CMCLDN-RS optimization, the cost savings

increase to $13509 in Case C. The greatest reduction in total number of vehicles is in Case C,

from 33 to 21. Therefore, the resource sharing schemes implemented in Case C are much

more useful and efficient for optimizing CMCLDN-RS. Table 18 shows the profits of each DC

after optimization.

Table 18 and Fig 8 indicate an obvious profit gap between non-collaborative and collabora-

tive networks for each DC but a relatively small profit gap between Cases B and C. This study

considers that the customer demands for special commodities are less than the demands for

Table 15. Feasible alliance based on global sharing in CMCLDN-RS.

ϕ1(DC1,DC2,DC3,DC4) ϕ2(DC1,DC3,DC2,DC4)

Participant i DC1 DC2 DC3 DC4 Participant i DC1 DC3 DC2 DC4

η(i,ϕ,1) 5.0% η(i,ϕ,1) 5.0%

η(i,ϕ,2) 33.6% 29.6% η(i,ϕ,2) 21.7% 22.6%

η(i,ϕ,3) 34.6% 29.8% 22.8% η(i,ϕ,3) 34.6% 22.8% 29.8%

η(i,ϕ,4) 39.0% 36.0% 51.3% 41.0% η(i,ϕ,4) 39.0% 51.3% 36.0% 41.0%

ϕ3(DC1,DC4,DC2,DC3) ϕ4(DC2,DC3,DC1,DC4)

Participant i DC1 DC4 DC2 DC3 Participant i DC2 DC3 DC1 DC4

η(i,ϕ,1) 5.0% η(i,ϕ,1) 5.0%

η(i,ϕ,2) 22.0% 18.5% η(i,ϕ,2) 18.3% 21.5%

η(i,ϕ,3) 33.6% 17.5% 28.9% η(i,ϕ,3) 29.8% 22.8% 34.6%

η(i,ϕ,4) 39.0% 41.0% 36.0% 51.3% η(i,ϕ,4) 36.0% 51.3% 39.0% 41.0%

ϕ5(DC2,DC4,DC1,DC3) ϕ6(DC3,DC4,DC2,DC1)

Participant i DC2 DC4 DC1 DC3 Participant i DC3 DC4 DC2 DC1

η(i,ϕ,1) 5.0% η(i,ϕ,1) 5.0%

η(i,ϕ,2) 16.7% 16.5% η(i,ϕ,2) 37.1% 31.3%

η(i,ϕ,3) 28.9% 17.5% 33.6% η(i,ϕ,3) 42.1% 35.1% 22.1%

η(i,ϕ,4) 36.0% 41.0% 39.0% 51.3% η(i,ϕ,4) 51.3% 41.0% 36.0% 39.0%

https://doi.org/10.1371/journal.pone.0242555.t015

Table 16. Optimal collaboration sequences based on the SMP principle.

ϕ1 = {DC1,DC2,DC3,DC4}

Participant i DC1 DC2 DC3 DC4

η(i,ϕ,1) 5.0%

η(i,ϕ,2) 33.6% 29.6%

η(i,ϕ,3) 34.6% 29.8% 22.8%

η(i,ϕ,4) 39.0% 36.0% 51.3% 41.0%

https://doi.org/10.1371/journal.pone.0242555.t016
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ordinary commodities. Thus, the cost savings of the component based on vehicle sharing

among DCs are relatively small, resulting in low profits for DCs in this part. As shown in Fig 8,

the profits for DC1 are $2584 in Case B and $2987 in Case C. The profit gap is $403. However,

from a long-term perspective, with the increase of collaboration and the increasing demand

for special commodities, the scenario of global vehicle sharing including two types of vehicle

sharing schemes is effective.

Management insights

The CMCLDN-RS optimization provides a reference for the planning of a multicenter logistics

network and the improvement of the modern logistics system, which incorporates collaboration

Fig 6. Profit allocation by using MCRS, Shapley, nucleolus, and CGA.

https://doi.org/10.1371/journal.pone.0242555.g006

Table 17. Comparison of cases A, B, and C.

Scenario Cost of Case A

($)

Cost of Case B

($)

Cost of Case C

($)

Number of vehicles in Case

A

Number of vehicles in Case

B

Number of vehicles in Case

C

Before

optimization

32598 32598 32598 33 33 33

After optimization 29338 22225 19089 31 27 21

Gap 3260 10373 13509 2 6 12

https://doi.org/10.1371/journal.pone.0242555.t017
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among multiple centers and types of resource sharing schemes. Governments and logistics compa-

nies can collaborate to integrate logistics resources to improve the efficiency of logistics networks.

The managerial insights are provided as follows.

1. Considering different resource sharing schemes in a collaborative multicenter logistics net-

work has far-reaching impacts. The proposed models and intelligent algorithms reduce the

total operational cost by $13509 and the number of vehicles by 12 for CMCLDN-RS, which

provides a reference for solving the problem of existing different resource sharing schemes

in the logistics network. Different resource sharing schemes are suitable for diverse scenar-

ios. A suitable sharing mode can utilize limited logistics resources, improve the utilization

rate of resource sharing, and enhance the stability of a cooperative alliance. Therefore, dif-

ferent resource sharing schemes for the rational use of social resources and the development

of urban logistics should be considered when designing a logistics network.

2. In the delivery process, a reasonable and effective collaborative mechanism can effectively

improve the operational efficiency of the logistics network and reduce the network com-

plexity. The collaborative mechanism can rationally allocate limited resources and achieve

resource coordination in the distribution process. Unreasonable transportation phenomena

in the non-collaborative logistics network can be effectively avoided by rational division of

time periods and rational utilization of resources.

Fig 7. Illustration of cost and number of vehicles in cases A, B, and C.

https://doi.org/10.1371/journal.pone.0242555.g007

Table 18. Profits for each DC in cases A, B, and C.

Participant i Profits in Case A Profits in Case B Profits in Case C

DC1 383 2584 2987

DC2 445 2777 3199

DC3 361 2565 3703

DC4 442 2448 3621

Total 1631 10373 13509

https://doi.org/10.1371/journal.pone.0242555.t018
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Conclusions

This study evaluates the optimization of a collaborative network on the basis of resource shar-

ing and aims to find the most suitable collaborative delivery mechanism by exploring the

diverse collaboration methods among multiple centers. This collaborative mechanism can not

only effectively reduce the total operational costs of the collaborative network but also reduce

the number of vehicles used to serve customers. The most suitable collaborative mechanism

can be obtained by comparing three types of collaborative methods in different logistics net-

works, including non-collaborative networks, internally shared collaborative networks, and

globally shared collaborative networks. A mixed-integer linear programing model is estab-

lished to minimize the total operational costs. An improved MOPSO algorithm is proposed to

solve the optimization problem. A fair profit strategy is presented to allocate the profits to alli-

ance participants.

To verify the applicability of the proposed CMCLDN-RS in real life, a case study is con-

ducted in the city of Chengdu, China. The total operational costs and number of vehicles

before and after CMCLDN-RS optimization reduce significantly as a result. After the imple-

mentation of a collaborative mechanism based on resource sharing, the total operational costs

are effectively reduced from $32598 to $19089, indicating savings of $13509; in addition, the

Fig 8. Comparison of profits for each DC in cases A, B, and C.

https://doi.org/10.1371/journal.pone.0242555.g008
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number of vehicles changed from 33 to 21, implying a reduction of 12 vehicles. Comparison

among AGPSO, NSGA-II, and GA-TS indicates that AGPSO performs best among the three

in terms of solution quality. Among the four profit allocation methods of MCRS, Shapley,

nucleolus, and CGA, MCRS is proven to be the most appropriate profit allocation method for

fairly allocating the cost savings to participants.

This study measures the effects of different collaboration modes on the delivery network,

an area that needs additional research. Future work can be conducted in the following four

directions by considering: (1) different collaboration methods among pickup centers and DCs

on the basis of resource sharing; (2) the simultaneous pickup and delivery problem in vehicle

sharing; (3) the effect of vehicle space on delivery network optimization; and (4) the dynamic

and uncertain customer demands during each vehicle delivery trip in a multi-echelon collabo-

rative network.

Supporting information

S1 Dataset. The dataset includes the longitude and latitude coordinates and service time

windows of all customers and four DCs in case study.

(XLSX)
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