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Abstract: During the process of growth and development, plants are prone to various biotic and
abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses.
lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt
(nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and
protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new
regulatory element, lncRNAs play a critical role in coping with environmental pressure during
plant growth and development. This article presents a comprehensive review on the types of plant
lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between
lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs
in plant growth and development, and their response to biotic and abiotic stresses. We conclude with
a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
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1. Introduction

In addition to being attacked by various pathogens (e.g., bacteria, fungi, and viruses),
plants are also prone to lots of environmental stresses (e.g., drought, high temperature, salt,
and low temperature). Plants have evolved several molecular mechanisms that enable them
to adapt to these stresses. In eukaryotes, more than 90% of RNA transcripts are termed
ncRNAs [1,2] and do not encode proteins. lncRNAs are a key player in regulating various
aspects of genomic activities [3]. So far, with the progress of sequencing technology, the
Plant Long non-coding RNA Database version 2.0 (PLncDB V2.0) has been constructed
with 1,246,372 lncRNAs from more than 80 plant species [4]. Another lncRNA database,
NONCODEV6, contains 94,697 lncRNAs from 23 plant species [5]. At the same time, the
database of experimentally confirmed functional lncRNAs (EVLncRNAs2.0) contains only
506 lncRNAs [6] (Table 1).

Plants have a variety of transcription machineries. Four DNA-dependent RNA poly-
merases are believed to be involved in the production of lncRNAs. Unlike mRNA, lncRNAs
do not have the potential of protein coding. Regarding gene expression, lncRNAs often
function as structural, catalytic, or regulatory molecules [7]. They can affect all elements of
a gene, including the promoter, untranslated regions, exons, introns, and the termination
region, and thus control the gene expression at different levels, including access, transcrip-
tion, splicing, and translation [8–12]. Some lncRNAs are involved in protecting the integrity
of the genome, while others are engaged in responses to adverse environmental conditions
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such as temperature fluctuations, drought, and pathogen attacks [13–15]. Plants respond to
the surrounding environment (sunlight, temperature, water availability, carbon dioxide
concentration, etc.) or pathogen attack (fungus, bacteria, virus, etc.) by multiple processes,
in which lncRNAs may play key roles [16–18].

Table 1. Validated long non-coding RNAs in 10 plant species [6].

Species Number of Functional lncRNAs

Arabidopsis thaliana 160
Oryza sativa 43

Digitalis purpurea 29
Zea mays 26

Solanum lycoperscium 24
Setaria italica 19

Populus tomentosa 18
Manihot esculenta 17
Salvia miltiorrhiza 17

Populus trichocarpa 15

2. Production, Characteristics, Nomenclature, and Classification of lncRNAs

According to the protein coding ability, RNA can be divided into two types, protein-
coding and non-protein-coding [7]. Generally, an RNA that encodes protein is called coding
RNA (also mRNA), while an RNA that does not encode any protein is called ncRNA [14].
Other than rRNAs and tRNAs, ncRNA can be further divided into sncRNA (small non-
coding RNA of ≤50 nt in length) and lncRNA of ≥200 nt in length. So far, there is no
formal method for naming different lncRNAs. In general, lncRNAs can be classified into
five categories based on the direction and starting site of transcription events: (1) long
intergenic ncRNA (lincRNA); (2) intron ncRNA (IncRNA); (3) antisense RNA and natural
antisense transcript (NAT); and (4) divergent lncRNA; (5) enhancer RNA (eRNA) [19–21]
(Figure 1a).

Most non-coding RNAs often lack high sequence or secondary structure conservation,
and their higher-order structures are unclear [22]. The biogenesis process of many lncRNAs
has a similar pattern to mRNAs, and most lncRNAs are enriched in the nucleus. [23,24].
lncRNA is different from mRNA in many aspects [25]. lncRNAs vary widely in length and
contain fewer exons. Similar to mRNAs, lncRNAs usually have an m7G cap at the 5′ end
and a poly-A tail at the 3′ end. mRNAs are produced by RNA polymerase II (Pol II), while
different lncRNAs are generated by different RNA polymerases: Pol II, Pol III, Pol IV, or Pol
V. During plant growth and development, the expression and coding capacity of lncRNAs
differ from those of mRNAs. lncRNAs are expressed at lower levels than mRNAs [26].
Interestingly, some lncRNAs may contain ORFs (open reading frames) that may have the
potential to encode oligopeptides [27] (Figure 1b).

lncRNA, once known as “transcriptional noise”, has been found to play a vital role in
various life processes [28,29]. The first study of lncRNA in animals was reported in 1991, in
which Brown et al. [30] discovered that lncRNA XIST expression could silence the whole
X chromosome during development. MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) was identified as a highly expressed ncRNA in lung cancer. The expression
level of MALAT1 was associated with increased metastatic potential and poor prognosis
in patients with non-small cell lung cancer [31]. In the animal kingdom, the functional
mechanisms of lncRNAs are intensively studied, especially in animal cells [32,33], neural
differentiation [34,35], cancers [36], organ development [8], and other fields.

The study of plant lncRNAs is a new field. With the development of sequencing
technology, tens of thousands of lncRNAs have been identified. These lncRNAs participate
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in the regulation of different growth and development processes of plants, such as responses
to pests and diseases [37–41], growth [42–44], and abiotic stresses [45–47].
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Figure 1. The source and mechanism of lncRNA. (a) The lncRNAs are transcribed inside the nucleus
from the genome by Pol II and the arrows represent different types of lncRNAs. (b) lncRNA can
encode small peptides [27]. (c) lncRNA enod40 directly binds to MtRBP1 (Medicago truncatula RNA
binding protein 1) in root nodules to relocate MtRBP1 from the nuclear speckle of plant cells to
the cytoplasmic granules [48]. (d) miRNA is transcribed by RNA Pol II. First, the pre-miRNA
(precursor miRNA) is processed into miRNA duplex by DCL1 (Dicer-like protein 1), and then the
miRNA duplex is processed into single stranded miRNA by HEN1 (HUA ENHANCER 1). The
mature miRNA strand is combined with AGO (Argonaute) to carry out post-transcriptional gene
regulation through target cutting or inhibition [49]. (e) lncRNA IPS1 (INDUCED BY PHOSPHATE
STARVATION1) can competitively bind to miRNA399 to upregulate the expression level of PHO2 and
maintain phosphate homeostasis in Arabidopsis [50]. (f) Transcription of lncRNA APOLO (AUXIN-
REGULATED PROMOTER LOOP) and PID is directly activated by ARF7, while APOLO binds to its
adjacent site PID to form an R-loop and recruits LHP1 to change chromatin conformation. APOLO can
regulate auxin-related response genes to coordinate auxin distribution and lateral root formation [51].
(g) LAIR (LRK Antisense Intergenic RNA) is an inverted NAT of LRK (leucine-rich repeat receptor
kinase), which can directly interact with the LRK1 genomic region and act as a scaffold to recruit
OsMOF or OsWDR5 to deposit H4K16ac or H3K4me3, respectively, resulting in up-regulation of
LRK1 expression and increased grain yields [52]. (h) lncRNAs PMS1T (PHOTOPERIOD-SENSITIVE
GENIC MALE STERILITY T) and miR2118 combine with Pms1 (photoperiod-sensitive genic male sterility
1) transcript PMS1T, which can be recognized by miR2118 and cut to form a string of 21-nt miRNAs.
These plant-specific miRNAs are called phasiRNA (phased siRNA), which regulates the fertility of
rice [53].

3. The Action Mode and Function Mechanism of lncRNAs

lncRNAs have been shown to perform many biological functions with complex and
varied mechanisms in many eukaryotes [54]. Figure 2 depicts the action mode and function
mechanism of lncRNA. They regulate gene expression at the transcriptional and post-
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transcriptional levels and are involved in epigenetic regulation [7,55,56]. At present, there is
no unified statement on the action mechanism of lncRNA. In this review, we systematically
summarized the regulatory mechanisms of lncRNAs at different molecular levels, and the
regulatory role of lncRNAs in plant stress and growth and development.

3.1. Multilayered Regulation of Gene Expression

lncRNA can bind to transcription factors as signal molecules to participate in various
regulatory reactions or take part in signaling pathways to further regulate the spatiotempo-
ral expression of protein-coding genes [57]. For instance, the lncRNA as-DOG1 can inhibit
the expression of DOG1 to break the dormancy of Arabidopsis seeds [58].

lncRNA can bind to protein [48]. Many lncRNAs are in chromatin and can interact
with proteins to promote or inhibit their binding activity in the target DNA region [25].
lncRNA can guide RNA–protein complexes to bind to specific locations or recruit chromatin-
modifying enzymes to target genes either in cis or trans (Figure 2a). For example, in M.
truncatula, the lncRNA enod40 could bind to MtRBP1 protein directly in root nodules to re-
locate MtRBP1 from nuclear speckles to cytoplasmic granules in plant cells [48] (Figure 1c).

lncRNAs can perform molecular functions as scaffold molecules [57,59] (Figure 2b)
They can combine with various proteins to form ribonucleoprotein complexes. The specific
sites contained in lncRNAs can be combined with certain regulatory molecules, thereby
affecting the life process of an organism [60] (Figure 2a). Some enhancer RNAs can even
affect DNA topology [61] (Figure 2c). A lncRNA produced by RNA Pol IV in Arabidopsis is
the binding scaffold for several RNA-binding proteins [62]. According to previous studies,
Pol IV is believed to produce siRNA precursors [28]. Pol V can generate scaffold transcripts
essential for the recognition of target genes and ultimately chromatin modification by the
RdDM (RNA directed DNA methylation) pathway [28]. Unlike Pol IV, Pol V is mostly
not required for siRNA biogenesis [28]. However, a subset of siRNAs has been shown
to require Pol V, suggesting that it may have a limited or indirect involvement in siRNA
biogenesis [28]. The RdDM pathway mainly depends on two core proteins, DCL3 (DICER-
LIKE3) and AGO4 (ARGONAUTE4). DCL3 cleaves long double-stranded RNAs to generate
siRNAs (small interfering RNAs), which bind to AGO proteins to form AGO–siRNAs
complexes, and lncRNAs generated by RNA polymerase act as scaffolds to transport
AGO–siRNAs complexes to target chromatin sites [63,64] (Figure 1d).

3.2. Interaction between ncRNA and miRNA

lncRNA can be used as a bait to combine with miRNA and then act as a molecular
sponge by blocking the interaction between miRNA and its downstream target genes and
indirectly regulating the target gene function of miRNA [65] (Figure 2d). Several lncRNAs
have been found to be precursors of miRNAs and siRNAs [66,67] (Figure 2e). miRNA
is ncRNA with a length of 20–24 nt. miRNAs are Dicer nuclease processed derivatives
of immediate precursor pre-miRNAs, they contain a hairpin structure and have a 5′-
phosphate and a 2-nucleotide 3′ overhang [68], and the further mature miRNA single-
strands bind to AGO through targeting dot cleavage or repressing post-transcriptional gene
regulation [49,68]. On one side, miRNA targets lncRNA to generate phasiRNA (phased
small interfering RNA) [69]. On the other side, lncRNA acts as sources of miRNA or
regulates miRNA accumulation or activity at the transcriptional and post-transcriptional
levels [70]. The most important action mode of lncRNA and miRNA is to reduce the
expression level of miRNA by adsorbing miRNA to reduce the inhibition of mRNA and
dynamically regulating the translation speed and stability of downstream target genes [71].
For example, both IPS1 (Figure 1e) and At4 can competitively bind to miR399 to upregulate
the expression level of PHO2. miR399 and PHO2 play an important role in maintaining
phosphate homeostasis in Arabidopsis [50,72]. Such fine-tuning of miRNA activity by
endogenous non-cleavable lncRNA targets is referred to as targeting [50].
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Figure 2. The action mode and function mechanism of lncRNA. (a) The expression of lncRNA may
require special secondary structure or specific binding motifs. (b) lncRNA can act as a molecular
scaffold to shorten the distance between different protein complexes and combine with specific
sequences to play a special function. (c) The eRNAs expressed by enhancers are regulated by
exosomes, which can combine with promoters and enhancers to affect the topology of DNA and
finally change the expression of genes [61]. (d) lncRNA acts as a molecular sponge by adsorbing
miRNA to regulate the expression of downstream genes. (e) Double stranded lncRNA can be used as
a precursor of smRNA (small miRNA). (f) ASCO-lncRNA (AS competitor long noncoding RNA) in
Arabidopsis can affect the expression of proteins regulating alternative splicing. ASCO acts as a bait to
compete with mRNA to bind to NSR (nuclear speckle RNA) splicing regulators. ASCO-RNA and
NSR-binding proteins compete for the binding of their targets, and hijacking NSR changes for the
splicing pattern of mRNA targets regulated by NSR and produces alternative splicing isomers [73].

4. lncRNAs Are Involved in Regulating Plant Growth and Development
4.1. Plant Vernalization

lncRNA is involved in the vernalization of plants [59,74]. Figure 3 illustrates how
COOLAIR, COLDWARP, and COLDAIR are involved in regulating vernalization response
of FLC gene. In Arabidopsis, FLC (FLOWING LOCUS C) encodes a mad box transcription
factor, a key gene regulating vernalization [75]. FLC transcription will be inhibited at a low
temperature but gradually decreased with the extension of cold exposure [76]. lncRNA
COOLAIR (COLD-INDUCED LONG ANTISENSE INTRAGENIC RNA) is the antisense
transcript of FLC, which is involved in the methylation of H3K36 and the synchronous
replacement of H3K27m3 in the early vernalization [77]. COLDAIR (COLD-ASSISTED
INTRONIC NONCODING RNA) is transcribed from the first intron of FLC and directed
to FLC by recruiting the polycomb complex PRC2–CLF to inhibit the establishment of
H3K27me3, while H3K4me3 is induced at the FLC locus to promote the enhancement of
FLC expression [78]. COLDWRAP (WINTER-INDUCED NONCODING RNA FROM THE
PROMOTER) mainly controls the intragenic gene loop between the promoter and the first
intron of the FLC gene [79]. When exposed to a cold stress, COLDWRAP and COLDAIR
work together to establish a restrictive intracellular chromatin loop that inhibits FLC expres-
sion [79]. In addition, COLDWRAP combines to PRC2-CLF to help it locate in the FLC gene
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and promote H3K27me3 response vernalization of FLC chromatin [79]. When induced by
cold treatment, COOLAIR can cover almost the whole FLC gene [80]. During cold exposure,
the nucleation region composing of VIN3, VRN5, and PRC2 accumulates as part of the
PHD–PRC2 complex downstream of the FLC transcription initiation site [81]. In this region,
the aggregation of this complex will lead to the decrease in H3K4me3/H3K36me3 and the
increase in H3K27me3 [82]. COOLAIR appears in the form of multiple alternative splicing
isomers and indirectly inhibits FLC expression through transcriptional interference [80]. A
recent report has found a homologous domain protein, AtNDX, which regulates the expres-
sion of COOLAIR [83]. AtNDX binds to single stranded DNA rather than double stranded
DNA non-sequentially in vitro and is in the heterochromatin region of the COOLAIR pro-
moter in vivo [83]. The R-loop mediated by AtNDX stably inhibits COOLAIR transcription,
thereby changing FLC expression [83]. This region extends from 200 bp upstream of the
COOLAIR promoter to the polyadenylation site near COOLAIR [83]. In conclusion, these
lncRNAs jointly participate in and regulate the vernalization response of Arabidopsis.

VRN1 is a flowering activator and a central gene regulating the vernalization of cereal
crops [84]. Winter wheat flowering requires long-term low-temperature induction, and
VRN1 is a key regulator of low-temperature induction and can accelerate the flowering
transition [74]. lncRNA VAS from the wheat VRN1 gene can recruit transcription com-
plexes RF2b–RF2a to enable it to bind to the TaVRN1 promoter region to activate VRN1
transcription and promote flowering [74].
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Figure 3. COOLAIR, COLDWARP, and COLDAIR are involved in regulating vernalization response
of FLC gene [19]. COLDAIR is transcribed from the first intron of FLC. It inhibits the establishment of
H3K27me3 and induces H3K4me3 by recruiting and directing PRC2-CLF to FLC [78]. COLDWRAP
is from the promoter of FLC induced by vernalization. COLDWRAP and COLDAIR collaborate to
establish a restrictive intracellular chromatin loop [79]. COLDWRAP binds to PRC2-CLF, localizes to
FLC gene, and promotes vernalization of FLC chromatin in response to H3K27me3 [79]. COOLAIR
has two alternatively spliced isoforms (AS I and AS II). R-loop stabilization mediated by AtNDX
inhibits COOLAIR transcription, thereby altering FLC expression [83]. The nucleation region consists
of VIN3, VRN5, and PRC2, and accumulates as part of the PHD–PRC2 complex downstream of
the FLC transcription start site [81]. The aggregation of the nucleation region leads to a decrease in
H3K4me3/H3K36me3 and an increase in H3K27me3 [82]. AS: alternative splicing; PRC2: polycomb
repressive complex 2; green boxes indicate exons of COOLAIR, AS I and II represent exons, dotted
lines indicate splice sites; the red dotted line represents the R-loop; the yellow and purple dotted
lines indicate the modification direction; numbers represent introns; H3K4me1, histone H3 lysine
4 monomethylation; H3K36me3, histone H3 lysine 36 trimethylation; H3K27me3, trimethylation of
histone H3 lysine 27.
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4.2. Plant Growth

lncRNAs take part in plant growth and regulate plant life activities in seed develop-
ment [84,85], fiber accumulation [13], lipid metabolism [86], and leaf development [87]. In
rice, lncRNA TL (TWISTED LEAF) was reported to maintain leaf flatness by regulating the
expression of the R2R3-MYB gene [88]. In alfalfa, the lncRNA enod40 binds to MtRBP1 in
root nodules to relocate the protein from the nucleus to play a role in the cytoplasm [52].
Nitrate is a key signal molecule that regulates plant gene expression, metabolism, growth,
and development [89–92]. The lncRNA T5120 was reported in Arabidopsis and can promote
nitrate assimilation and plant growth, thereby improving nitrogen utilization efficiency [93].
The overexpression of T5120 in Arabidopsis promoted the plant response to nitrate with
enhanced nitrate assimilation, improved biomass, and root development. It is notewor-
thy that T5120 is co-regulated by the nitrate transcription factor NLP7 and the nitrate
sensor NRT1.1 to regulate nitrate signal transduction [93]. miR9678 targets the lncRNA
WSGAR in wheat and produces phasiRNA by cutting, which delays seed germination [69].
ASCO-lncRNA in Arabidopsis plays a role as a bait and regulates root development [73]. In
Arabidopsis, ASCO expression affects the splicing patterns of several mRNA targets and
is regulated by NSRs binding proteins. Therefore, ASCO-lncRNA can hijack nuclei as
regulators to produce alternative splicing isomers, causing changes in plant root develop-
ment [73] (Figure 2f). lncRNA APOLO can coordinate auxin distribution and lateral root
formation [51] (Figure 1f).

4.3. Light Response

Among the few lncRNAs with known biological functions, two are involved in the
light regulation process. HID1 (HIDDEN TREASURE 1) is involved in photomorphogenesis
and seedling greening [94]. FLORE (CDF5 LONG NON-CODING RNA) is a lncRNA that
regulates circadian rhythm. The aggregation of FLORE can inhibit the expression of CDF5
(CYCLING DOF FACTOR), while CDF can directly bind and repress the CO (CONSTANS)
and FT (FLOWERING LOCUS T) promoters to regulate photoperiod flowering [95]. It
is interesting that both CDF5 and FLORE transcripts accumulate in vascular tissues to
conversely regulate the CO-FT module, which in turn regulates the flowering time [95].
Strong light can enhance the synthesis and coloration of anthocyanins in apple fruits. Qiu
et al. [96] verified that a lncRNA MdLNC610, which is located 81 kb downstream of the
ethylene biosynthesis gene MdACO1, was involved in anthocyanin accumulation under
strong light. MdLNC610 can promote ethylene release and anthocyanin accumulation in
apples upstream of MdACO1 [96]. Both strong light and ethylene can significantly promote
apple coloring and anthocyanin biosynthesis [96]. MdLNC610 can enhance the activity of
the MdACO1 promoter and is in the same topological domain of MdACO1. MdLNC610 and
MdACO1 can significantly improve ethylene release, anthocyanin accumulation, and the
expression of related genes [96]. Figure 4 enumerates the roles of lncRNAs in plant growth
and stress responses.

4.4. Yield and Seed Formation

lncRNAs affect seed formation and yield composition. lncRNA LAIR, a reverse an-
tisense transcript of LRK1, was identified in rice [52]. It can directly interact with the
LRK1 genomic region and act as a scaffold to recruit OsMOF and OsWDR5. H4k16ac
and H3K4me3 were deposited, resulting in the up regulation of LRK1 expression and the
increase in grain yield [52] (Figure 1g). Chen et al. [109] have found the lncRNA MISSEN
that regulates the molecular functions of tubulins during endosperm nuclear division
and endosperm cellularization. By competing with tubulin, MISSEN binds to HeFP and
prevents HeFP (helicase family protein) from participating in endosperm development,
which in turn interferes with the normal development of the endosperm, rendering the
produced seeds defective.
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Figure 4. The role of lncRNA in plant growth and stress response. lncRNA33732 and lncRNA16397
respond to pathogen infection [97,98]. GhlncNAT-ANX2 and GhlncNAT-RLP7 are a pair of lncNRAs
that regulate pathogenic infection and are involved in enhancing cotton disease resistance [99].
COOLAIR [77], COLDWRAP [79], COLDAIR [59], and MAS [100] respond to cold and regulate spring
flowering time in Arabidopsis. SVALKA regulates cold signal transduction [101]. The binding of
lincRNA159 to miR164 reduces the expression of three NAC genes targeting miR164 in cassava
under cold stress [102]. HID1 plays an important role in seedling photomorphogenesis under
red light [94]. FLORE regulates photoperiod flowering [95]. DRIR regulates plant tolerance to
drought and salt stress [103]. CNT0018772 and CNT0031477 respond to salt stress [104]. TalnRNA5
and TahlnRNA27 respond to heat stress [105]. XLOC_086307, XLOC_086119, and XLOlC_066284
are involved in heavy metal cadmium response [106]. MSTRG.85814.11 regulates iron deficiency
response [107]. lncRNA1459 is involved in fruit ripening [108]. ASCO alters root development [73].
APOLO coordinates auxin distribution and lateral root formation [51]. enod40 promotes root nodule
formation [48].

4.5. Floral Organ Development

At present, many lncRNAs, including LDMAR (LONG-DAY SPECIFIC MALE-FERTILITY-
ASSOCIATED RNA) [110] and PMS1T (Figure 1h) [53], are known to be involved in the
regulation of flower growth and development. In Arabidopsis, the upregulation of LINC-AP2
and the downregulation of its neighboring gene AP2 (APETALA2), an intergenic lincRNA
close to the transcription factor AP2, occur simultaneously after TCV (turnip crinkle virus)
infection [9]. The strong upregulation of LINC-AP2 is correlated with structural abnormali-
ties of flowers [9]. Another lncRNA, XLOC_057324, plays an essential role in controlling
fertility and flowering [111]. The lncRNA SUF (SUPPRESSOR OF FEMINIZATION), an
antisense lncRNA of MpFGMYB, is important for Goldilocks female sexual differentiation.
SUF loss of function mutants generated by the deletion of Cas9 null mutants shows male to
female sexual conversion [112]. The identification of ncRNAW6 in the HaWRKY6 promoter
revealed another regulation layer of this gene by ncRNAs [113]. ncRNAw6 is derived from
a transposon of the mite family that is capable of forming a hairpin structure. The hairpin
is processed by DCL3 to produce 24-nt het siRNAs to trigger the DNA methylation of the
HaWRKY6 region and enhance HaWRKY6 transcription [113]. The level of DNA methyla-
tion, loop formation, and the level of HaWRKY6 expression are regulated in a tissue-specific
manner [113]. Ef-cd, an antisense RNA at the OsSOC1 locus, positively regulates ossoc1
activity through depositing H3K36me3 and reducing the time span required for plant mat-
uration, but not reducing the yield [114]. An intronic lncRNA AG-incRNA4 in Arabidopsis
is expressed in leaves and interacts with the PRC2 complex component CLF to deposit
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the H3K27me3 histone mark at the AG loci, thereby contributing to the repression of AG
expression in leaves [115]. The knockdown of AGlincRNA4 leads to the activation of AG in
leaves by reducing the H3K27me3 levels at AG sites. The corresponding mutants exhibit a
phenotype such as ectopic AG expression [115]. During cabbage pollen development and
pollination fertilization, 15 lncRNAs were predicted to potentially regulate the expression
of 13 miRNAs in the form of ETMs (endogenous pseudo target mimics). Two of these
lncRNAs, bra-eTM160-1 and bra-eTM160-2, were further identified to regulate the activity of
cabbage miRNA160, which is involved in pollen development by affecting the expression of
ARF family members of target genes [116]. These studies have demonstrated that lncRNAs
regulate reproductive growth versus flower bud differentiation at different molecular levels,
which is essential for normal plant reproduction.

5. LncRNAs Respond to Biotic and Abiotic Stresses
5.1. Biotic Stress Response

Plants are attacked by various pathogenic organisms, especially viruses, fungi, and
bacteria. Pathogens interfere and destroy the physiological activities of plants in many
ways, resulting in a great impact on growth and production. In Figure 5, we show the action
mechanism of lncRNA in response to various stresses. To cope with this adverse effect,
plants have evolved lncRNA survival strategies [38]. Some lncRNAs are related to the
response to herbivorous insect feeding in plants [39]. Some lncRNAs are even associated
with insect resistance mediated by the plant jasmonate hormone signal pathway [38].
Some early responding lincRNAs are co-expressed with many genes in the JA signaling
pathway [38]. Furthermore, during infestation by phytophagous insects, silencing two
lincRNAs (JAL1 and JAL3) reduces the JA content and the content of insect resistant
substances regulated by JA, leading to the weakening of host resistance to phytophagous
insects [38]. It is worth noting that the expression of some late responding lincRNAs can
also be regulated by the JA signal pathway [38] (Figure 5a).

The lncRNA MSTRG.19915, a natural antisense transcript of the MAPK gene BrMAPK15,
was found to be associated with susceptibility to downy mildew (Hyaloperonospora brassicae)
in Chinese cabbage [119]. BrMAPK15 enhanced resistance against downy mildew [119].
When MSTRG.19915 was silenced, seedlings showed enhanced resistance to downy mildew,
which may be related to the up-regulation of BrMAPK15 expression [119]. Li et al. [37]
first reported 565 lncRNAs responsive to nematodes, which play a crucial role in host
resistance or sensitivity to nematode infection. Zhang et al. [99] extracted the lncRNA L2
(GhlncNAT-ANX2) and lncRNA L3 (GhlncNAT-RLP7) from cotton that were responsive to
two major species of Verticillium dahlia. Silencing L2 and L3 may up-regulate the expres-
sion of LOX1 and LOX2, thus enhancing the resistance of cotton to Verticillium dahlia [99].
Overexpression of the lncRNA ELENA1 (ELF18-INDUCED LONG NONCODING RNA
1) in Arabidopsis increased the expression of PR1 (pathogenesis-related gene 1) and en-
hanced the resistance to Pst DC3000 (Pseudomonas syringae pv. tomato DC3000) [117]. The
lncRNA ELENA1 had increased the transcript level upon pathogen infection and combined
with FIB2 and MED19a [117,118]. After dissociation of FIB2, MED19a could continue to
bind to the promoter to activate PR1 expression to enhance disease resistance [117,118]
(Figure 5b). TYLCV (tomato yellow leaf virus) has a great effect on tomato crop production.
In TYLCV-susceptible strains, SILNR1 is a key lncRNA for virus resistance and normal leaf
development. SILNR1 is complementary to siRNA produced by TYLCV, and SILNR1 is
downregulated to increase host susceptibility [120]. Yu et al. [121] discovered 567 lncRNAs
from Xanthomonas oryzae-infected rice leaves, the targets of which were significantly en-
riched with the JA pathway. To reveal the interaction between lncRNAs and JA-related
genes, 39 JA-related protein coding genes were found to interact with 73 lncRNAs by
co-expression analysis, indicating the potential regulatory role of these lncRNAs in the JA
pathway [121]. The lncRNA ALEX1, whose expression was highly induced upon pathogen
infection, was identified. The overexpression of ALEX1 in rice caused the activation of
the JA pathway and thereby enhanced the host resistance to pathogenic bacteria [121].
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As a positive regulator, lncRNA33732 in tomato was able to enhance tomato resistance
against Phytophthora infestans by inducing the expression of respiratory burst oxidase and
increasing H2O2 accumulation [97]. In rape, lncRNAs play a significant role in resisting
infection of Sclerotinia sclerotiorum [122]. Li et al. [123] reported 5294 lncRNAs that were
used to construct the expression profiles of lncRNAs responsive to Fusarium oxysporum in-
fection in banana. Table 2 lists the lncRNAs research progress and corresponding functional
identification in recent years.
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Figure 5. Mechanisms of lncRNAs in response to external pressure. (a) JA signaling is regulated
by lncRNAs (such as JAL1 and JAL3) in response to early plant attack by diamondback moth [38].
(b) The transcription level of lncRNA ELENA1 increases under pathogen attack. The transcripts then
bind to FIB2 and MED19a (Mediator subunit 19a). When FIB2 dissociates, MED19a then binds to the
promoter region to activate the expression of PR1 leading to enhanced disease resistance [117,118].
(c) The lncRNA Ptlinc-NAC72 is induced under long-term salt stress to regulate salt tolerance with
the tandem in the PtNAC72.A/B 5′ UTR [60]. (d) MIR398b/c and its antisense NAT398b/c genes
are co-expressed in vascular tissues. NAT398b/c inhibits pri-miRNA processing, while knocking
out NAT398b/c promotes miR398 processing. By silencing miR398-targeted genes, heat tolerance is
improved. On the contrary, overexpression of miR398 activates NAT398b/c and reduces heat tolerance.
Moreover, NAT398b/c can also be activated by MIR398b/c overexpression [69]. (e) Prolonged cold
exposure peaked in CBF1 expression along with increased expression of the lncRNA SVALKA in the
antisense direction to CBF1. The transcripts of SVALKA would lead to decreased CBF1 transcription
and increased RNA PII occupancy on both strands. CBF1 repression by RNA PII collisions originates
from the SVALKA-asCBF1 lncRNA cascade, ultimately resulting in decreased CBF1 transcription
on the sense strand and decreased full-length CBF1 mRNA, and thus reduces cold tolerance [101].
(f) The spliceosome MSTRG.85814.11 positively regulates its target gene SAUR32 to promote the
response to iron deficiency in the rhizosphere of plants [107].
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Table 2. Discovery and function analysis of lncRNAs.

Time Name Species Biological Functions References

1997 TPSI1 Solanum lycopersicum Phosphate homeostasis [124]

2002 GmENOD40 Glycine max Root nodules formation [125]

2004
At4 Arabidopsis thaliana Phosphate homeostasis [72]

Enod40 Medicago truncatula Nuclear-cytoplasmic re-localization
Root nodules formation [48]

2007 IPS1 Arabidopsis thaliana Phosphate homeostasis [50]

2010 MtNOD40 Medicago truncatula Root nodules formation [126]

2011 COLDAIR Arabidopsis thaliana Vernalization flowering [59]

2013 BcMF11 Brassica campestris Flowering regulation [127]

2014

HID1
Arabidopsis thaliana

Seedling photomorphogenesis [94]

APOLO Auxin response; lateral root development [128]

ASL Flowering [129]

2016 TCONS_00061773 Solanum lycopersicum Nitrogen-deficient response [130]

2017

COLDWRAP Arabidopsis thaliana Vernalization flowering [79]

lncRNA16397 Solanum lycopersicum Disease resistance response [98]

LAIR Oryza sativa Rice grain yield [52]

2018

TL Oryza sativa Leaf shape remodeling [88]

MAS Arabidopsis thaliana Vernalization flowering [100]

COOLAIR Arabidopsis thaliana Vernalization flowering [77]

2019 lncRNA39026 Lycopersicon esculentum Disease resistance response [131]

2020 lncRNA MISSEN Oryza sativa Seed development [109]

2021 Ptlinc-NAC72 Populus trichocarpa Salt stress regulation [60]

2022 MdLNC610 Malus pumila Fruit coloring [96]

5.2. Abiotic Stress Response

Many chemical products have entered crop production, which inevitably cause a lot of
heavy metal poisoning (such as cadmium, manganese, and lead), and these heavy metals
are becoming one of the important hazards in crop production [132]. Under Cd stress,
120 lncRNAs that may regulate genes of cis cysteine-rich peptide metabolism, as well as
secondary metabolites of trans cysteine rich peptide metabolism and photosynthesis, were
identified to activate various physiological and biochemical responses in response to excess
Cd, presumably playing important roles in those gene and protein pathways in response to
Cd stress [106].

Soil salinization remains a constraint to the increasing global food production. During
growth and development, plants suffer from salt stress with reduced yield due to the
absorption of too many toxic ions [133]. Wan et al. [134] reported 172 lncRNAs respon-
sive to salt stress through cis or trans interactions with important coding genes. A total
of 35 differentially expressed lncRNAs were predicted to interact with 42 differentially
expressed coding genes [134]. These genes may participate in the auxin response and the
ABA and Ca2+ signal transduction pathways under salt stress [134]. Twelve lncRNAs were
predicted to be the target mimics of 17 known mature miRNAs in Camellia sinensis, thus
affecting the expression of downstream functional genes [134]. A new intergenic lncRNA
was identified in Populus tomentosa, which was mainly localized in the cytoplasm [60].
Ptlinc-NAC72 contained a stem ring with five tandem repeats of “CTTTTT” motif, which
were complementary to the “GAAAA” repeats in the 5′ UTR of the two target genes [60].
Through recognition and interaction with the salt-responsive element “GAAAA”, Ptlinc-
NAC72 regulated the expression of the two target genes PtNAC72.A and PtNAC72.B at the
same time [60]. Co-transformation and GUS staining have verified that Ptlinc-NAC72 binds
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to the 5′ UTR region of two target genes at the post transcriptional level and plays a role
in stabilizing gene expression [60]. In addition, stable overexpression of the Ptlinc-NAC72
gene in Arabidopsis can enhance the salt resistance of Arabidopsis seedlings [60] (Figure 5c).
In cotton, lncRNA354 is a lncRNA from the intergenic region that acts as an miRNA sponge
to participate in the regulation of biological processes [135]. lncRNA354 affects the response
of upland cotton to salt stress by interacting with miR160b. The splicing of the GhARF17/18
gene maintains normal growth and development. However, under salt stress, lncRNA354
expression is weakened and the binding of miR160b to lncRNA354 is decreased, while the
increase in miR160b will inhibit the expression of GhARF17/18, thereby enhancing the
resistance to salt stress [135].

Extreme environments cause inevitable hazards to plants. Under these environments,
plants generate molecular signals to cope with the stress. In Arabidopsis, MIR398b/c and
its antisense NAT398b/c can interact to regulate plant heat tolerance [70] (Figure 5d).
Qin et al. [103] reported a lncRNA DRIR (DROUGHT INDUCED lncRNA), from Arabidop-
sis that can be induced by ABA, drought, and salt stress. DRIR can positively regulate
plant tolerance to drought and salt stress by regulating the expression of key genes for
stress responses. Also in Arabidopsis, lncRNA SVALKA can regulate cold tolerance in Ara-
bidopsis [101] (Figure 5e). In cassava (Manihot esculenta Crantz), CRIR1 (a cold-responsive
intergenic lncRNA 1) is a positive regulator of the plant response to cold stress [136].
CRIR1 is significantly induced by cold treatment to interact with MeCSP5 (cassava cold
shock protein 5) [136]. Further studies have found that CRIR1 may recruit MeCSP5 to
improve the translation efficiency of mRNA. CRIR1 affects the mechanism of the cold
stress response by regulating the expression of stress response genes and increasing their
translation efficiency [136]. In apple, 13 variable spliceosomes for lncRNAs MSTRG.85814
were identified, of which five were involved in the iron deficiency response. It was fur-
ther confirmed that the spliceosome MSTRG.85814.11 could positively regulate its target
gene SAUR32 to promote the plant rhizosphere response to iron deficiency and stepwise
regulation by MSTRG 85814.11-SAUR32-H+-ATPase (AHA10) in iron deficiency response
in an apple graft complex [107] (Figure 5f). StCDF1 (CYCLING DOF FACTOR 1) is a
transcription factor that regulates potato (Solanum tuberosum) tuberization [136]. StCDF1
and NAT StFLORE together regulate water loss by affecting stomatal growth and diurnal
opening [137]. Moreover, both natural mutations of StFLORE transcripts and CRISPR-Cas9
mutations increase the sensitivity of plants to water restriction [136]. StCDF1 regulates the
expression of StFLORE and a high level of StFLORE expression can reduce water loss and
enhance drought tolerance [137].

6. Concluding Remarks

lncRNAs, play a role in the process of light morphogenesis, growth and development,
stress adaptation, and so on. Although more and more data suggest that lncRNAs also
play an important role in plant immunity, the research on its specific regulation mechanism
is still limited. The conservation of lncRNAs is not high, and the mechanism revealed
in model plants may not be directly applied to other plant species. Therefore, lncRNA
research is still in the initial stage of exploration. In the present review, an indispensable
role of lncRNAs in plant growth and development, as well as under biotic and abiotic stress,
was summarized. A single gene may be regulated by multiple ncRNAs and lncRNAs may
not function in a single way or alone. On the contrary, lncRNAs can interact with many
genes and proteins and the mechanism is complex. It is worth noting that the structure,
function, and origin of lncRNAs in animals and plants are highly similar and there are
certain rules to follow [138]. The research of animal lncRNAs can be used as a reference
for plant lncRNA. Once target lncRNAs are excavated at a large scale in a specific species,
they can be annotated and predicted by using bioinformatic means. Further development
of CRISPR/cas9, RNA pull-down, RIP, CHIP, and RNAi may facilitate the elaboration of
function and mechanism of the lncRNAs.
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