
Frontiers in Immunology | www.frontiersin.

Edited by:
Min Cheng,

Weifang Medical University,
China

Reviewed by:
Annika M. Bruger,
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Accurate prediction of neoantigens and the subsequent elicited protective anti-tumor
response are particularly important for the development of cancer vaccine and adoptive
T-cell therapy. However, current algorithms for predicting neoantigens are limited by
in vitro binding affinity data and algorithmic constraints, inevitably resulting in high false
positives. In this study, we proposed a deep convolutional neural network named APPM
(antigen presentation prediction model) to predict antigen presentation in the context of
human leukocyte antigen (HLA) class I alleles. APPM is trained on large mass
spectrometry (MS) HLA-peptides datasets and evaluated with an independent MS
benchmark. Results show that APPM outperforms the methods recommended by the
immune epitope database (IEDB) in terms of positive predictive value (PPV) (0.40 vs. 0.22),
which will further increase after combining these two approaches (PPV = 0.51). We further
applied our model to the prediction of neoantigens from consensus driver mutations and
identified 16,000 putative neoantigens with hallmarks of ‘drivers’.

Keywords: neoantigen, CNN, HLA, driver mutation, prediction
INTRODUCTION

Cancer develops as a result of the accumulation of tumor-specific somatic mutations (1–3), where
non-silent mutations in the coding region could be recognized as beacons of “foreign” by the immune
system, named neoantigen (4, 5). They can elicit a protective anti-tumor response when presented on
the surface of cancer cells by the major histocompatibility complex (MHC) [also called human
leukocyte antigen (HLA)]. Neoantigens have long been regarded as ideal targets in immunotherapy
because they are restrictedly expressed by tumor cells and not subjected to central or peripheral
tolerance (6). Neoantigen-based immunotherapy has achieved great success in recent years (7–11),
further highlighting the importance of accurate prediction of neoantigens for the development of
cancer vaccines and adoptive T-cell therapy (12–15). However, the current prediction approaches and
algorithms to identifying immunogenic neoantigens from mutant peptides are far from satisfactory.
Low precision is a major obstruction to their identification scheme (16), partially because they
primarily rely on the HLA-peptide binding affinity (17). The binding affinity produced by in vitro
org May 2021 | Volume 12 | Article 6821031
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binding experiments neglects other biological steps involved in the
peptide delivery process, which results in a substantial fraction of
false positives. Only ~1–5% of predicted bound peptides using
HLA binding-affinity predictions have been experimentally
validated (18). One way to solve this problem is to train the
prediction algorithm with peptides eluted fromHLA complexes of
mono-allelic or mixed-allelic cancer cell lines and identified by
mass spectrometry (MS) analysis (19). The MS datasets profile the
peptides naturally presented on the cell surface, which has already
gone through antigen processing and transporting steps (20, 21).
Another reason for low precision may be that the recognition
features, such as amino acid properties and spatial structure were
not taken into consideration (22, 23). Compared with other
artificial neural networks used in MHCflurry, NetMHC-4.0 and
NetMHCpan-4.0 (24–26), the convolutional neural network
(CNN) preserves local spatial features (27) and is more suitable
for studying peptides where spatial locations of the amino acids
are critical for binding (28).

In this study, we proposed an antigen presentation prediction
model (APPM), a CNN algorithm trained to accurately predict
the likelihood of a peptide presented by HLA-I molecules. APPM
outperformed the approach recommended by IEDB (2020.04
netMHCpan EL 4.0) in terms of specificity and positive
predictive value among 20 high-frequency HLA alleles. Besides,
we predicted the neoantigens derived from the TCGA driver
mutations, the preparation of which can be used in off-the-shelf
immunotherapies to save the time from detecting mutations to
personalized vaccine injection.

METHODS

Data Collection
More than 1,900,000 published HLA-peptides MS data of mono-
allelic or mixed-allelic cell lines which collectively expressed 20
high-frequency HLA-A and HLA-B allotypes are collected (16,
19, 29, 30). All these data are labeled in binary notation. Label=1
denotes MS-identified peptides (hits), whereas label=0 denotes
peptides from the reference proteome (SwissProt) that were not
detected via mass spectrometry.

Data Encoding
The training datasets are peptides with the length from 8-mer to 11-
mer, which are represented by a one-letter amino acid alphabet (a
total of 20 distinct amino acids, namely ‘ACDEFGHIKLMN
PQRSTVWY’). Such length range captures ~95% of all HLA class
I-restricted peptides. To implement machine learning, the peptide
sequences are vectorized by a one-hot encoding scheme. Peptides
with multiple lengths (8-mer to 11-mer) were represented as fixed-
length vectors by using a padded character ‘Z’. Each amino acid and
the padded ‘Z’ are encoded as a one-hot vector (see Figure S1 for
details). As a result, peptides are encoded as the fixed matrix of 11
rows (maximum length) by 21 columns (20 distinct amino acid
alphabets and the padded character ‘Z’).

Imbalanced Distribution of Training Datasets
The collection of MS datasets shows a severe class imbalance.
Overall, the total number of 0-labeled data is 1,866,484 which is
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39 times as many as the 1-labeled counterparts. An extreme case
can be found in HLA-A*02:07 datasets where the negative-
labeled records are 72 times more than 1-labeled records. Such
extreme imbalance influences the prediction of the machine
learning model, inclined to show a better performance on the
0-labeled peptides (the majority) and a worse on the 1-labeled
ones (the minority) (31). Thus, the class balance is adjusted via
over-sampling and under-sampling procedures in preprocessing
the training datasets. Briefly speaking, the under-sampling goes
by removing the 0-labeled training data points at random,
whereas the over-sampling duplicates the 1-labeled data points.
Table 1 shows the proportions of over-sampling and under-
sampling on different HLA alleles.

Convolutional Neural Network (CNN)
Usually, the Convolutional Neural Network (CNN) consists of
convolutional layers, pooling layers and fully connected (dense)
layers. In this study, an advanced CNN which is inspired by the
inception module from GoogLeNet is used (32, 33). Three parallel
convolutional sections with eight two-dimensional convolutional
kernels for each were constructed to maximize the feature
extraction (see Figure S2 for details). The output of three
convolutional layers connects to a flattened matrix and is delivered
to the fully-connected layers which contain 100 hidden nodes. The
output layer displays the results of binary classification by two nodes
where a tested peptide is classified as binding or not binding toHLA.

The model is implemented with Tensorflow (v. 1.14.0) and
trained by Adam optimization algorithm with standard parameters
on an NVIDIA GeForce RTX 2080 Ti GPU. Instead of the
frequently-used activation function Rectified Linear Unit (ReLU),
the advance function of Leaky ReLU (a=0.2) is applied to activate
the model and the “drop-out” and “early stopping” schemes are
introduced to avoid overfitting.

Data Splitting
The peptides of the MS dataset are randomly split into training sets,
validation sets and test sets, and all three sets have approximately
the same distribution of 1-labeled and 0-labeled peptides. The
validation sets are used only for early stopping. The training sets
are used to perform feed-forward and backpropagation and the test
sets are used to evaluate performance via AUC.

Independent Validation Dataset
To benchmark the APPM and other HLA-peptide predictors, we
collected HLA-bound peptides MS datasets from other studies
that use cell lines to express a single HLA allele (34, 35). From
these MS-identified peptides (hits), we generated non-binders
(decoy sets) by sampling unobserved peptides from the same
proteins through the Uniprot human reference proteome
(UP000005640_9606) as previously described (36). For each
MS-identified peptide, we randomly selected 99-time decoy
peptides of four different lengths (8, 9, 10, 11), and the number
of each length is the same. The rationale for the 99-fold bias is
that for a sample of peptide fragments from an organism, it is
commonly considered that approximately 1%∼2% of the
fragments will bind to MHC receptors (37). After removing
the peptides appearing in the model training data and the
May 2021 | Volume 12 | Article 682103
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duplicate sampled from different proteins, we obtained a mono-
allelic benchmark dataset.

Predictive Performance Metric Calculation
Sensitivity, also called recall, was calculated as:

correctly   predicted   positive   peptides
all   positive   peptides

Specificity was calculated as:

correctly   predicted   negative   peptides
all   negative   peptides

Positive predictive value, also called precision, was calculated as:

correctly   predicted   positive   peptides
all   peptides   predicted   to   be   positive

The Cancer Genome Atlas (TCGA)
Driver Mutations
To obtain a consensus driver mutations list, we download the
driver-mutations dataset processed and compiled by TCGA
MC3 and driver working group (https://gdc.cancer.gov/about-
data/publications/pancan-driver) (38, 39). The driver-discovery
dataset was derived from a compiled MAF file of 9079 TCGA
samples across 33 different cancer types (syn7824274, https://
gdc.cancer.gov/about-data/publications/mc3-2017). Based on
sequencing and structure analyses, we ultimately selected 3,437
cancer driver mutations as the consensus list were identified
by ≥ 2 approaches from CTAT-population, CTAT-cancer, or
structural clustering (see Supplementary File 4).

Candidate Peptides From Driver Mutations
For each driver mutation, we extract 8-11mers candidate peptides
that contain the driver specific mutant amino acid for neoantigen
Frontiers in Immunology | www.frontiersin.org 3
screening. For instance, the extracting procedure of 9-mer candidate
peptides is described as follows (Figure S3). Firstly, we extracted a
17-mer peptide from the protein sequences, where the mutant
amino acid was placed in the center with eight upstream and
downstream wild amino acids as flanks. Secondly, by using the
sliding window protocol, a 9 amino acid size window was slid N (N
= 9) times to obtain 9-mer peptides. Briefly speaking, the mutant
amino acid serves as the end point of the first 9-mer peptide. This 9-
mer sliding window moves along the 17-mer fragment until the
mutated point becomes the starting point of the 9-mer. Peptides
with other lengths are treated in the same way.
RESULTS

Development of APPM
We aimed to improve the precision and specificity of the HLA-
peptide prediction approaches through a novel tool that has been
trained on improved training data and a new supervised machine
learning model. HLA-Peptides of MS data were eluted by
immunoprecipitation of HLA molecules and then identified by
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
(40, 41). Compared with in vitro binding affinity assays, MS data
directly profiles peptides that are actively presented by cells or
tissues (42). We collected publicly available HLA-peptides MS
data from 16 mono-allelic HLA-A and HLA-B cell lines
genetically engineered to express a single HLA allele and from
B lymphocytes or cancer cell lines expressing multiple HLA
complex alleles (16, 19, 29, 30, 43). These MS data consist of 20
high-frequency HLA-I alleles. We split the datasets into three
sets: training, validation and testing sets (Methods). Owing to so
many negative peptides (from reference proteome), we apply the
over-sampling and under-sampling scheme, which neutralizes
the substantial fraction of the imbalance issue.
TABLE 1 | The Training Detail on different HLA alleles.

Alleles Label = 1 Label = 0 Train Test Under-sampling Over-sampling

A*01:01 3398 48700 45498 6600 1 2
A*02:01 6779 165342 160921 11200 0.8 3
A*02:03 1780 116299 107879 10200 0.8 3
A*02:07 3206 232783 225389 10600 0.7 5
A*03:01 5419 83117 77536 11000 1 3
A*11:01 2114 123143 114857 10400 0.8 3
A*24:02 5189 142382 136571 11000 0.7 3
A*29:02 1149 54125 49074 6200 1 5
A*31:01 1879 45918 41597 6200 1 4
A*32:01 584 40401 34885 6100 1 5
A*68:02 1516 92678 83994 10200 0.8 3
B*07:02 3162 201778 194340 10600 0.6 3
B*15:01 1684 106482 97966 10200 0.8 3
B*35:01 1019 53819 48638 6200 1 4
B*40:01 1321 80192 71313 10200 0.9 3
B*44:02 1525 44760 40085 6200 1 4
B*44:03 1487 39482 34769 6200 1 4
B*51:01 2597 77898 70095 10400 1 4
B*54:01 969 65623 56412 10180 1 3
B*57:01 1599 51562 46961 6200 1 4
May 2021 | Volume 12
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Using these public HLA-peptides MS data, we build a
convolutional neural network (CNN) framework to predict
HLA-I presentation, a form of deep learning that excels at
handling general sequence data such as amino acid sequences
(Figure 1) (28). The model has three parallel convolutional
modules, each consisting of eight two-dimensional convolutional
layers, which preserved HLA class I-peptide binding features.

Predictive performance of APPM
To estimate the predictive performance of APPM, we first
compared the prediction results of APPM with the IEDB
recommended method (2020.04) (NetMHCpan4 EL (44), the
state-of-the-art class I binding predictors available at http://tools.
iedb.org/mhci/) in terms of PPV. We compiled a benchmark
using published MS data from cell lines genetically engineered to
express a single HLA-I allele. In this mono-allelic benchmark, the
MS-identified peptides are true positives where length-matched
amino acid fragments from the same protein as negative peptides
(decoys). For each paired HLA allele and peptide, NetMHCpan4
EL produced a binding score and percentile ranks. Using the
recommended threshold of the percentile rank (top 2% ranks
are considered binders), we obtained the average specificity
and positive predictive value (PPV) of 0.97 and 0.22 for
NetMHCpan4 EL (Supplementary File 1).

When tested on the same data, APPM outperformed
NetMHCpan4 EL with the specificity of 0.99 and PPV of 0.40.
Frontiers in Immunology | www.frontiersin.org 4
The improvement in reducing false positives rates was
substantial, with an average of 80% increase in PPV (Figure
2A). For the 20 frequent haplotypes of HLA class I, APPM only
exhibited a slightly lower PPV than NetMHCpan4 EL on HLA-
A*02:01, but presented higher PPV for the rest of 19 HLA
haplotypes, particularly with more than one fold of increase
for HLA-A*02:03, HLA-A*29:02, HLA-A*32:01 and HLA-
B*40:01 (Figure 2B), suggesting the advantage of our algorithm.

Combining Algorithms Improves
Prediction Performance
Interestingly, a low overlap rate (19%) is observed between
APPM and NetMHCpan4 EL for the false-positive peptides
(Figure 3A), probably due to the different prediction
mechanisms. In this case, we hypothesized that the prediction
performance could be improved by combining these two
predictive approaches. We redefined the predictive results: only
peptides identified positively in both methods are regarded as
positives. Using the combined predictions, we obtained the PPV
of 0.51 (Figure 3B), which is significantly higher than that of
both APPM and NetMHCpan4 EL (Figure 3C, p = 0.013, t-test
and Figure 3D, p < 0.001, t-test), without significant decrease of
sensitivity (Figure 3E, p = 0.1, ANOVA). These results suggested
that the combined predictions from different algorithms can
improve the positive rate for neoantigen selection, which is
consistent with previous studies (45, 46).
FIGURE 1 | The framework of our study includes the collection of training data and the deep learning model built based on the convolutional neural network.
May 2021 | Volume 12 | Article 682103
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Alleles-Specific Presentation Motif
To illustrate the binding characteristics of HLA-I alleles with
peptides, we draw allele-specific presentation motifs for 20 HLA-
I alleles (see Supplementary File 2 for motifs of all alleles).
Consistent with previous studies (17, 19, 47), these motifs
revealed the dependence of HLA presentation on each
sequence position for peptides of multiple lengths 8-11 (Figure
4A). For example, the anchor residues of 9mer are amino acid at
position 2 (refer as P2, a similar abbreviation for other positions)
and P9, while 11mer at P2 and P11.

In contrast to previous work (48), some distinct HLA alleles
have similar presentation motifs. For instance, HLA-A*02:01 and
HLA-A*02:03 have the same binding specificity, meaning the
pockets preferentially bind to bind the peptides with leucine at
P2 and valine/leucine at the last position. Likewise, HLA-A*03:01
and HLA-A*11:01 presented lysine at the last position, while
HLA-B*40:01, HLA-B*44:02, and HLA-B*44:03 prefer to deliver
peptides with glutamate at P2 (Figure 4B).

Moreover, we analyzed the amino acid properties of anchor
residues of 20 HLA alleles and refined their binding character:
these binding peptides enriched in hydrophobic amino acids at
anchor residues. It is consistent with the known preference of
HLA-I binding and presentation (23, 49). We also explored the
whole preference of amino acid properties among HLA-A and
HLA-B molecules on anchor residues (Figure 4C). Besides the
common preference of hydrophobic amino acids, HLA-A alleles
Frontiers in Immunology | www.frontiersin.org 5
prefer to bind basic and polar amino acids, while the HLA-B
alleles prefer acidic amino acids.

Neoantigens From Driver Mutations
It is considered that the quality rather than the quantity of
neoantigens may lead to a robust and durable response to
immunotherapy (50). Most of the putative neoantigens are
considered as the product of passenger rather than driver
mutations, and their loss through chromosomal instability
during tumor evolution may be readily tolerated. Therefore,
targeting driver-mutation-neoantigens could manifest durable
anti-tumor responses and may reduce the resistance to
neoantigen therapies.

We applied the combining approach of APPM and
NetMHCpan4 to predict neoantigens derived from oncogenic
driver mutations. The consensus driver-mutation list was
compiled and discovered by The Cancer Genome Atlas (TCGA)
Multi-Center Mutation Calling in Multiple Cancers (MC3)
working group and driver working group among 9079 samples
across 33 cancer types (38, 39). For a total of 3,437 missense driver
mutations, we identified ~ 16,000 putative neoantigens in the
context of 20 high-frequency HLA alleles (Supplementary File 3).

Among these driver mutations, only 15% (513/3437) do not
yield putative neoantigens, while the products of the other could
be bound and presented by these HLA alleles. We identified 36
high-frequent shared putative neoantigens derived from eight
A

B

FIGURE 2 | Validation performance of IEDB recommended approach and APPM (A) The mean PPV accuracy on the mono-allelic MS benchmarks for APPM and
NetMHCpan4 EL. (B) The PPV values of two predictors at different HLA alleles.
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oncogenic driver mutations with more than 1% coverage of
multiple cancer patients in the 9079 TCGA cohort (Table S1),
e.g. HLA-A*03:01_KIGDFGLATEK from BRAF_p.V600E with
5.60% (508/9079) in Pan-Cancer. Besides, we also found tumor-
specific shared potential neoantigens with over 10% frequency in
a given cancer type (Table S2). For example, HLA-
B*15:01_IIIGCHAY from IDH1_p.R132C with 11.76% (4/34)
Frontiers in Immunology | www.frontiersin.org 6
in CHOL. Importantly, the immunogenicity of some shared
putative neoantigens we identified has been confirmed
experimentally (Table 2) (51). For instance, VVVGAGDVGK
from KRAS_p.G13D has been shown to be immunogenic in the
context of the HLA-A*03:01 allele. Overall, these putative shared
driver-mutation-neoantigen pools provide a potential list of
targets for off-the-shelf immunotherapy.
A B

D

E

C

FIGURE 3 | Algorithms Combination Improves Prediction Performance. (A) The false-positive peptides of APPM and NetMHCpan4 EL. These peptides are decoy
peptides of mono-allelic MS benchmarks that are incorrectly predicted to be bindings. (B) The mean PPV accuracy on the mono-allelic MS benchmarks for APPM,
NetMHCpan4 EL and combination. (C) The significant improvement of predictive performance in the term of PPV on the mono-allelic MS benchmarks. The left is
APPM and the right is the combination of APPM and NetMHCpan4 EL. **p < 0.05. (D) The significant improvement of predictive performance in the term of PPV on
the mono-allelic MS benchmarks. The left is NetMHCpan4 EL and the right is the combination of APPM and NetMHCpan4 EL. ***p < 0.01. (E) The mean sensitivity
on the mono-allelic MS benchmarks for APPM, NetMHCpan4 EL and combination. NS, no significance.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hao et al. A Novel Neoantigens Prediction Tool
A

B

C

FIGURE 4 | The motif of HLA alleles (A) The learned dependence of HLA presentation on each sequence position for peptides of lengths 8–11. The red, blue, black,
purple, and green lines represent the acidic, basic, hydrophobic, neutral and polar amino acids respectively. (B) Some similar motifs are depicted in this graph. (C) The
radar view is a deformation of the percentage graph illustrating the motifs of HLA-A and HLA-B at the overall level. Different colors represent varied HLA class I molecules.
Alleles defined by DNA sequencing are named to identify the gene, followed by an asterisk, numbers representing the allele group.
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DISCUSSION

Neoantigen is the foreign protein that arises as a consequence of
tumor-specific DNA alterations and could be presented on the
surface of tumor cells byMHCmolecules.When recognized by TCR
specifically, it will elicit anti-tumor immune responses. In the current
clinical application of targeting neoantigens immunotherapies, the
accurate identification of relevant neoantigens has become a central
challenge (46). Current prediction algorithms are insufficiently
precise due to the limitation of in vitro binding affinity training
data and algorithmic constraints, therefore resulting in high false
positives (16, 19, 41). One of the solutions is to train a novel
prediction algorithm by using MS-identified peptides from mono-
allelic or mixed-allelic cell lines (19, 52).

In this study,webuildhighPPVneoantigenpredictionalgorithms
by training models on in vitro MS data and CNN deep learning
model. Based on the mono-allelic benchmark, we demonstrate that
our model, APPM, outperforms netMHCpan4 EL among 19 high-
frequency HLA alleles in precision. Moreover, the combination of
APPMandNetMHCpan4 EL improves the prediction performance,
suggesting that the combined strategy can identify potential
neoantigens in clinical practices with more precision. However, the
mass spectrometry assay itself has a technological limitation: not all
possible eluted ligands canbedetected,which inevitably generates the
false negative peptides (53–55).

An important limitation of this work is that we apply MS
datasets to train and evaluate our predictor. Using MS-identified
peptides to reflect the factor of gene expression, protease
cleavage, transportation and presentation might bring the MS
bias in our prediction. Our work also neglects T cell recognition
of presented epitopes. Many putative neoantigens identified by
our predictor will not induce CD8+ T cell responses when used
in cancer patients. This limitation is consistent with the previous
study that presentation of antigens is essential but not sufficient
for induction of robust anti-tumor responses (56).

Besides, neoantigens derived from driver mutations are
particularly important for neoantigen-targeting immunotherapy.
Firstly, driver-mutation-neoantigens are a source of “high-quality
neoantigens” that may reduce the likelihood of resistance to
neoantigen therapy. Secondly, driver mutations were shared
between patients of the same cancer type with relatively high
frequencies (57–61), as well as between primary tumors and
metastases (62). A limited number of high-frequent driver
Frontiers in Immunology | www.frontiersin.org 8
mutations may generate shared neoantigens that could be widely
applied to multiple tumor patients and may be ideal targets for off-
the-shelf immunotherapy (63). However, whether the shared
putative neoantigens are immunogenic in different cancer
patients remains to be determined. Nevertheless, prioritizing
such neoantigens whenever possible is important, as constructing
a library for storage of these shared neoantigens can significantly
save time from detecting mutations to the preparation of the
personalized vaccine and increase the efficiency of neoantigen-
based immunotherapies.
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Supplementary Figure 3 | The extracting procedure of candidate peptides. The
blue points represent the wild amino acids and the red points refer to the driver
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TABLE 2 | Validated immunogenic neoantigens derived from driver mutations.

Driver
Mutation

pmhc CancerTypes Frequency

KRAS_p.G12D HLA-
A*03:01_VVGADGVGK

Pan-Cancer 1.78% (162/
9079)

KRAS_p.G13D HLA-
A*03:01_VVVGAGDVGK

COAD 8.77% (20/228)

KRAS_p.G13D HLA-
A*03:01_VVGAGDVGK

COAD 8.77% (20/228)

KRAS_p.Q61H HLA-A*01:01_ILDTAGHEEY PAAD 3.87% (6/155)
KRAS_p.Q61L HLA-A*01:01_ILDTAGLEEY TGCT 1.55% (2/129)
KRAS_p.Q61R HLA-A*01:01_ILDTAGREEY COAD 1.32% (3/228)
IDH2_p.R140Q HLA-B*07:02_SPNGTIQNIL LAML 4.35% (6/138)
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