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Introduction

Organisms as distant from humans as fruit flies have been 
used to provide knowledge about the development and com-
plexities of the sleep cycle. The use of simple organisms has 
the advantage of the lower complexity of the brain, since 
their central nervous system has fewer neurons and conse-
quently a neural network that allows, to certain extent; rec-
ognize the activity of each single element. Furthermore, and 
associated with genomic approaches, these studies have 
helped to unravel the mechanisms related to the sleep–wake 
cycle and to provide an evolutionary perspective of the bio-
logical rhythms.1–3

To our knowledge, Weir4 was the first to carefully describe 
the behavioral and morphological characteristics of the 
rodents of the genus Proechimys, of family Echimydae, sub-
order Hystricomorpha (named casiragua in the Brazilian 
Amazonia) maintained in captivity after being captured in 
the tropical rainforest since 1969, although this species has 
been used in scientific research since the 1950s.4–10

Our laboratory has shown that although Proechimys guyan-
nensis are able to show convulsive behavior and status epilep-
ticus of long duration under certain treatments (intrahippocampal 
kainic acid or systemic pilocarpine), these animals are resistant 
to the further development of chronic epilepsy suggesting the 
possibility of endogenous antiepileptogenic mechanisms.11,12 
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This finding prompted us to further investigate morphological 
and physiological characteristics of the P. guyannensis brain in 
an attempt to reveal the mechanisms underlying the so-called 
epileptogenic resistance. In summary, these studies have 
revealed that P. guyannensis’ brain presents striking  
differences both morphologically and physiologically when 
compared to the laboratory Wistar rats (WRs). These changes 
include, among others, the different distribution of 
γ-aminobutyric acid (GABA), opioid and cannabinoid bind-
ing,13 an anatomically distinctive hippocampal cornu ammonis 
2 (CA2) subfield14 and the presence of large pyramidal-like 
neurons throughout the stratum oriens from CA2 to CA1 area 
with strikingly different electrophysiological properties.15

Accordingly, this article describes and compares the main 
characteristics of the sleep–wake cycle in the P. guyannensis 
to those classically reported for the WRs.

Methods

Animals

Eight female P. guyannensis and eight female WRs, weigh-
ing between 240 and 280 g, were used in this study. Animals 
were housed under environmentally controlled conditions 
(22°C ± 1°C), a 12/12 h light–dark cycle (lights on at 7 a.m.), 
with water and food ad libitum. All procedures involving the 
animals and their care were performed in accordance with 
the Ethical and Practical Principles of the Use of Laboratory 
Animals16,17 and the experimental protocol was approved by 
the Ethical Committee of UNIFESP (CEP 2132/11). All pre-
cautions were taken for reducing the number of animals.

Electrode implantation

Animals were deeply anesthetized with ketamine (40 mg/kg 
intraperitoneal (i.p.)) and xilazine (5 mg/kg, i.p.). For deep 
electrographic recordings (EGRs), bipolar stainless steel 
electrodes were implanted in the right hippocampus under 
stereotaxic guidance. For surface EGRs, two screw elec-
trodes were bilaterally fixed in the frontal area of each hemi-
sphere. Electrodes for electromyography (EMG) were 
surgically implanted into the neck muscle. The electrodes 
were then soldered to a 6-pin socket and fixed to the skull of 
animals with acrylic cement. All recordings were registered 
in the individual home-cages of each animal and lasted up to 
48 h. Recordings were made using a Nihon Koden Co appa-
ratus model QP 223A (Tokyo, Japan). Signals were acquired 
with rate sampling of 256 Hz, scale of 100 µV and 1 s. Brain 
recordings were amplified and filtered at 0.1 s (1.6 Hz) and 
35  Hz, high-pass and low-pass, respectively, while EMG 
was filtered at 0.3 s (0.53 Hz) and 70 Hz. EGRs were ana-
lyzed using Neurotronics™ Inc program (Neurotronics®, FL, 
USA). Sleep–wake phases were characterized according to 
Timo-Iaria et al.18 The following parameters were analyzed: 

the percentage of total time of wakefulness (TTWS), total 
time of slow wave sleep (TTSWS) and total time of para-
doxical sleep (TTPS) based on changes in the EGRs and 
EMG in both species.

Statistical analysis

Comparisons between animal groups, and between the light 
and dark phases in the same group were analyzed using the 
independent and dependent “t” test, respectively. Data are 
presented as mean ± standard error (SE) and the significance 
level was established at 5%.

Results

In the rodent P. guyannensis, the EGRs obtained both in the 
brain and in the muscles during the different stages of sleep 
and wakefulness were similar to those observed and exten-
sively published for the WR (Figure 1(a)–(f)). In summary, 
the wakefulness of these animals was characterized by fast 
(desynchronized) activity in the neocortex, and theta activity 
in the hippocampal region accompanied by fast electromyo-
graphic activity during exploratory behavior. Slow wave 
sleep (SWS) was characterized by accentuated reduction in 
muscle tonus concomitantly with the prevalence of delta 
waves and other graph elements in cortical and hippocampal 
areas. During the paradoxical sleep (PS) period, the cortex 
expressed desynchronized activity and theta rhythm in the 
hippocampus with almost complete disappearance of the 
muscle activity.18

P. guyannensis presents a pattern of sleep and nocturnal 
activities that can be considered polyphasic (Figure 2(a) and 
(b)). These animals slept for about 45% of the time during 
the light phase and 28% of the time during the dark phase of 
the cycle (Figure 3).

In comparison, WR slept 68% and 42% in the light and 
dark phases of the cycle, respectively. In addition, wakeful-
ness periods in P. guyannensis represented 55% in the light 
and 72% in the dark. In WR, these periods represented around 
26% and 56% in the light and dark phases, respectively.

Several aspects of the cycle were significantly different 
between P. guyannensis and WR animals during the light 
period. These differences included the reduced sleeping 
time, increased wakefulness, increased duration of SWS, 
increased latency and decreased duration of the PS and 
increased awakenings in P. guyannensis when compared to 
the WRs (Figure 4(a)–(f)).

One aspect that could be considered similar for both spe-
cies was the latency for the initiation of the SWS. During the 
dark period, differences in the sleep-wakefulness pattern 
were less pronounced between the two species (Figure 5(a) 
and (b)).

Lower total sleep duration, higher waking percent and 
increased awakenings continued to characterize the pattern 
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of P. guyannensis in comparison with WR. Important aspects 
of the sleep-wakefulness cycle were significantly different 
between the light and dark period in P. guyannensis animals 
such as time of sleep and wakefulness, latency to PS, awak-
enings in PS (Figure 6(a)–(d)).

Another important difference between the animal spe-
cies used in this study relates to the behavior during sleep. 
While the WR presents ventroflexion of the head towards 
the trunk, P. guyannensis remains lying on the belly with 
stretched head.

Figure 1.  Electrographic recordings of sleep-wakefulness cycle in (a–c) Proechimys guyannensis and (d–f) Wistar rat. (a and d) Alertness 
with desynchronized recordings and increased muscle tone, (b and e) slow waves sleep with delta waves and paradoxical sleep with 
cortical and hippocampal desynchronization and (c and f) suppressed muscle activity.
ECoG: electrocorticography; HPC: hippocampus; EMG: muscle activity.

Figure 2.  Hypnogram showing the polyphasic pattern obtained during the light period in (a) Proechimys guyannensis and (b) Wistar rat.
W: wakefulness; PS: paradoxical sleep and SWS: slow wave sleep.
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Discussion

The pattern of sleep-wakefulness cycle in the Neotropical 
rodent P. guyannensis as in the WRs is polyphasic.18,19 

Besides, our data showed that P. guyannensis compared to 
WR, sleep less, which results in more and longer lasting 
periods of wakefulness during the entire cycle.

The first hypothesis that could be used to explain the dif-
ferences found in the pattern of sleep–wake cycle of the P. 
guyannensis in relation to WR is related to the fact that these 
animals belong to phylogenetically distant branches. While 
this hypothesis may not be readily discarded, several authors 
have considered this shortening of the sleep period as a 
necessity for survival in the wild. It is very likely that this 
adaptation in response to the presence of predators is already 
incorporated into the molecular and genetic pattern of these 
species.5,20 However, one cannot rule out, as reported by 
some authors, that these changes, predominantly those 
related to the dark period, as being related to environmental 
exploration, searching for food, social interaction, procrea-
tion and so on.4,6,8,10,21,22

The methodology used in this study does not allow a 
more detailed discussion of the mechanisms underlying 
the differences in the sleep patterns presented by P. guy-
annensis compared to WRs. Furthermore, this study was 
conducted in female animals and any more accurate 
digression could only be made if these findings are 

Figure 3.  Percentage of the sleeping time during the light and the 
dark periods of the cycle in the Proechimys guyannensis and Wistar rat.

Figure 4.  (a–f) Stage parameters in the light period of sleep-wakefulness cycle in Proechimys guyannensis and Wistar rat. **p < 0.001; 
***p < 0.0001.
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confirmed for male animals. However, this study, taken 
together with other already conducted by our group in the 
Neotropical rodent P. guyannensis, may contribute for the 
understanding of the important morphological and physi-
ological differences present in the brain of this species 
when compared to other species commonly used in 
laboratory.
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