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Abstract
Background: During the last years, high throughput experimental methods have been developed
which generate large datasets of protein – protein interactions (PPIs). However, due to the
experimental methodologies these datasets contain errors mainly in terms of false positive data
sets and reducing therefore the quality of any derived information.

Typically these datasets can be modeled as graphs, where vertices represent proteins and edges
the pairwise PPIs, making it easy to apply automated clustering methods to detect protein
complexes or other biological significant functional groupings.

Methods: In this paper, a clustering tool, called GIBA (named by the first characters of its
developers' nicknames), is presented. GIBA implements a two step procedure to a given dataset of
protein-protein interaction data. First, a clustering algorithm is applied to the interaction data,
which is then followed by a filtering step to generate the final candidate list of predicted complexes.

Results: The efficiency of GIBA is demonstrated through the analysis of 6 different yeast protein
interaction datasets in comparison to four other available algorithms. We compared the results of
the different methods by applying five different performance measurement metrices.

Moreover, the parameters of the methods that constitute the filter have been checked on how they
affect the final results.

Conclusion: GIBA is an effective and easy to use tool for the detection of protein complexes out
of experimentally measured protein – protein interaction networks. The results show that GIBA
has superior prediction accuracy than previously published methods.
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Background
Proteomic data and more specifically PPIs data are of great
scientific interest through their connection with impor-
tant cellular functions such as extra and intra cellular sig-
naling, cell communication etc [1]. Moreover, multi
protein complexes reveal insights of the functional and
topological organization of the protein networks. In the
past years, new high throughput methods for identifying
pairwise PPIs have been developed that generate enor-
mous datasets. Depending on the method used, different
kinds of protein interactions are recorded. This is the rea-
son why there exist differences on the generated datasets
from different methods. The most popular ones are yeast
two hybrid systems [2], mass spectrometry [1], tandem
affinity purification [3], microarrays [4] and phage display
[5].

Each method has its strengths and weaknesses; however
every method has a certain error rate for the detection of a
protein-protein interaction. The main basic errors are
under-prediction and over-prediction (false positive) of
protein interactions [6]. Besides that, we currently don't
know the real "truth" in these datasets, due to the fact that
most of the protein complexes are experimentally not yet
determined [7].

Usually, the aggregation of the PPIs of an organism is
modeled as an undirected graph, symbolized as G = -(V,
E), where nodes (V) represent the proteins and edges (E)
the pairwise PPIs. The graph model makes it easy for
many computational methods derived from the graph
theory to be applied on these noisy datasets to extract
functional modules such as protein complexes. The goal
of those approaches is to detect highly connected sub-
graphs which are protein complex candidates.

Each algorithmic strategy relies on a very different
approach. The best known one is the Molecular complex
detection algorithm (Mcode) [8]. Another algorithm, that
has been characterized for its efficiency [9], is the MCL
(Markov Clustering) algorithm [10]. Besides that, King et
al suggested the RNSC algorithm [11] which uses a cost
local search algorithm based loosely on a tabu search
meta – heuristic. Another algorithm of the local search
approach is the Local Clique Merging Algorithm (LCMA)
[12] which first locates cliques in a graph and then tries to
expand them. Two algorithms that use the hierarchical
approach are the Highly Connected Subgraph method
(HCS) [13] and the SideS algorithm [14]. The main con-
cept of these methods is the use of numerous graph min
cuts until the stopping criterion of each algorithm is satis-
fied.

In this paper, we have developed a new clustering tool
called GIBA that offers the ability to detect important pro-

tein modules such as protein complexes. GIBA imple-
ments a two step strategy, where in the first one the whole
protein – protein interaction graph is divided into clusters
and in the second step these clusters are filtered and only
the ones considered important are kept. Extensive experi-
ments were performed on 6 different datasets of yeast
organism which are either derived from individual exper-
iments (Tong [15], Krogan [16] and Gavin [1,17]) or from
online databases (DIP [18] and MIPS [19]). These datasets
vary on the number of proteins as well as the number of
interactions composing either sparse (Tong dataset) or rel-
atively dense (MIPS and DIP datasets) graphs. Moreover,
by using the recorded yeast protein complexes of the MIPS
database, we compared the results obtained from GIBA
with 4 other algorithms: Mcode, HCS, SideS and RNSC
and examined the derived results based on 5 different
metrics. Selecting appropriate combinations between
clustering algorithms and filtering methods, GIBA proved
its superiority compared to the remaining methods. The
undertaken experiments and their results are presented in
detail in the Results and Discussion section. Finally, an
evaluation of the filter methods has been performed to
test how these methods affect the final results and to
decide, as accurately as possible, the most effective set of
filter parameters that produce the best results.

The remaining of the paper is organized as follows: in the
next section, we present the algorithms and the filter
methods that are hosted in GIBA tool. In Methods section,
the properties of GIBA are presented and the evaluation
procedure is presented. In Results and Discussion section
we performed extensive experiments on datasets with dif-
ferent properties. Results and Discussion section also con-
tains a discussion about the parameters and the methods
that compose the filter of GIBA tool and how these
approaches affect the final results. Finally, the conclusions
of our work are quoted and the main directions for future
work are suggested.

Methods
To identify accurate protein complexes given a protein-
protein interaction network, we built a workflow consist-
ing of a two step procedure [20]. Initially, a protein – pro-
tein interaction network is clustered by the MCL or the
RNSC algorithm and in the second step the results are fil-
tered based either on individual or on a combination of 4
different methods. These are: a) density, b) haircut opera-
tion, c) best neighbour and d) cutting edge. This two step
approach maintains only those clusters that have high
probability to be real biological complexes. A real biolog-
ical complex can be defined as a set of proteins that are
commonly involved in a biological process [21]. A brief
description of the algorithms of the first step (MCL and
RNSC) and the methods used for the filtering process is
given below.
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Description of the MCL algorithm
The MCL algorithm [10] is a fast and scalable unsuper-
vised clustering algorithm based on simulation of stochas-
tic flow in graphs. The MCL algorithm can detect cluster
structures in graphs by a mathematical bootstrapping pro-
cedure. The process deterministically computes the prob-
abilities of random walks through a graph, and uses two
operators transforming one set of probabilities into
another. It does so by using the language of stochastic
matrices (also called Markov matrices), which capture the
mathematical concept of random walks on a graph.

Description of the RNSC algorithm
The RNSC algorithm [11] searches for a low cost cluster-
ing by composing first an initial random clustering, then
iteratively moving one node from one cluster to another
in a randomized fashion to improve the clustering cost. In
order to avoid local minima, RNSC makes diversification
moves and performs multiple experiments. Furthermore,
it maintains a tabu list that prevents cycling back to a pre-
viously explored partitioning. Due to the randomness of
the algorithm, different runs on the same input data pro-
duce different outputs.

Description of the cluster density method
Protein complexes correspond to dense subgraphs or even
cliques in protein interaction graphs [22]. Therefore, clus-
ters of high density are more likely to correspond to
known protein complexes. The density of a subgraph is
calculated by the formula below:

where |E| is the number of edges and |V| the number of
vertices of the subgraph.

Description of the haircut operation method
Haircut operation is a method that detects and excludes
vertices with low degree of connectivity from the potential
cluster that these nodes belong to. Proportionally, the
lower the connectivity of a node is, the lower the proba-
bility for this node to belong to a protein complex is. In
such a way, the deletion of such nodes that add noise to
the cluster leads to protein complexes that are more likely
to be present in nature.

Description of the best neighbour method
In contrast with haircut operation method, best neigh-
bour method tends to detect and enrich the clusters with
candidate vertices that are considered as good "neigh-
bours". Such a node is the one where the proportion of its
edges adjacent to the cluster divided by the total degree of
the vertex is above a threshold defined by the user:

The best neighbor method is mostly suitable to detect
larger protein complexes that offer extra information
about protein complexes included in a protein interaction
dataset. Another advantage of using best neighbor
method is that a protein can be assigned to more than one
protein complex as it is known that there are shared com-
ponents between protein complexes.

Description of the cutting edge method
Analyzing the structure of a protein-protein interaction
network, molecular modules are densely connected
within themselves but are sparsely connected to the rest of
the network [23]. To address these cases, a filtering crite-
rion was applied, called cutting edge and is defined as:

where |inside edges| is the number of edges inside a cluster
and |total edges| is the number of edges that are adjacent
to at least one vertex of the cluster. The clusters in which
the cutting edge metric is below a user defined threshold
are discarded from the filter of our method.

Evaluation procedure
In order to test the efficiency of GIBA, we have compared
it with 4 other algorithmic methods: the Mcode, the HCS,
the SideS and the RNSC algorithm as it was presented in
[11]. The benchmark that we have used to evaluate the
algorithms tested consists of known yeast protein com-
plexes retrieved from the MIPS database. MIPS protein
complexes composed from smaller ones, also recorded in
MIPS database, were removed to avoid redundancy. The
final evaluation dataset comprises 220 complexes.

In addition to the collection of MIPS protein complexes,
we have also used the same evaluation metric adopted in
[8], called geometric similarity index. This method con-

siders a predicted complex as valid if  where I is

the number of common proteins, A the number of pro-
teins in the predicted complex and B the number of pro-
teins in the recorded complex. In our measurements, we
have calculated the mean geometric similarity index of the
valid predicted complexes called mean score.

Furthermore, 4 different matching statistic metrics, that
were presented in [9], were used in the evaluation process
of the algorithms tested. These are sensitivity (Sn), Positive
Predictive Value (PPV) and Geometrical Accuracy (Acc_g).
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These metrics are typically used to measure the corre-
spondence between the result of a classification and a ref-
erence. Sensitivity is defined as the fraction of proteins of
a recorded protein complex in MIPS database that are
found in a cluster. Positive predictive value is the propor-
tion of members of a cluster which belong to a recorded
complex, relative to the same number of members found
in all recorded complexes. The geometrical accuracy is
measured through the geometrical mean of the sensitivity
and the positive predictive value. It has the advantage that
gives a more "objective" picture of the quality of the
results as it obtains high values only if the values of sensi-
tivity and of positive predictive value metrics are high.

Datasets
To demonstrate the use of our methodology, we have used
six datasets derived from various small scale and high-
throughput methods. The multifaceted nature of the data-
sets enables us to perform a more "objective" comparison
of the algorithms tested. In this section, we give a short
description of the datasets that were used.

Tong dataset
This network consists of 7430 edges and 2262 vertices
[15]. A genetic interaction network was mapped by cross-
ing mutations in several genes into a set of viable gene
yeast deletion mutants scoring the double mutant prog-
eny for fitness defects. The interactions of this network
were produced by predicting the functions of the interac-
tive elements often produced by bringing together func-
tionally related genes or components or elements that
belong to the same pathway. The genetic network exhib-
ited dense local neighbourhoods; our method aims to go
one step further by predicting these neighbourhoods but
also by splitting them in smaller groups that are function-
ally more significant.

Krogan dataset
This dataset consists of 7088 edges and 2675 vertices and
contains different tagged proteins of the yeast Saccharomy-
ces cerevisiae. In a previous analysis [16], the MCL algo-
rithm was used to cluster and organize the proteins into
several groups so that about half of them were absent
from the MIPS database. We observed that a small
amount of noise was added to these data and therefore we
have applied our method to detect and filter the groups
detected by MCL.

Gavin_2002–2006 datasets
In this case, we have used two networks, the first consist-
ing of 3210 edges and 1352 vertices and the second con-
sisting of 6531 edges and 1430 vertices [1,17]. In the first
dataset, large-scale tandem affinity purification and mass
spectrometry were used to characterize multiprotein com-
plexes in Saccharomyces cerevisiae. Extending this informa-

tion to human genome, this dataset provides an outline of
the eukaryotic proteome as a network of protein com-
plexes. Using the whole network, we try to see how suc-
cessfully our method isolates the network complexes. The
second dataset comes with the first genome-wide screen
for complexes in yeast.

DIP dataset
The Database of Interacting Proteins (DIP) is a database
that documents experimentally determined protein-pro-
tein interactions [18]. We have used this database to iso-
late a network consisting of 17491 edges and 4934
vertices. One of the reasons why we have included this
source data for our experiments is that beyond cataloging
details of protein-protein interactions, the DIP database
helps us not only to understand protein functions but also
the value of protein-protein relationships as well. The
used DIP dataset version in our experiments was the one
of 04/03/2007.

MIPS dataset
The Munich Information Center for Protein Sequences
provides resources mainly related to genome information
[19]. Most of the databases that contain information
about a variety of genomes of different organisms are
manually curated. Furthermore 400 genomes that were
automatically annotated are also included. One of the
aims of this database is to provide information related to
interactions such as PPIs. In this study case, we have iso-
lated a network consisting of 12526 edges and 4554 verti-
ces given by the MIPS database. The used MIPS dataset in
our experiments was created on 05/18/2006.

Implementation
The GIBA tool is a java application, while the RNSC, MCL
and the methods used in the filtering process are imple-
mented in C language. Three out of the four algorithms
that were used in our experiments (SideS, RNSC and HCS)
were implemented in C language too. The Mcode algo-
rithm is implemented as a java plugin for Cytoscape [24].
All the experiments were performed using an Intel Double
Core 2.13 GHz processor, with 2 GB of RAM and Micro-
soft windows XP. Loop edges were not taken into account.

The filter we have used for the results of the RNSC algo-
rithm was composed by two out of three parameters as
they are presented in [11] (size and density). We did not
use the third parameter (functional homogeneity) as this
kind of information was not available for all datasets so
that the comparison with the other algorithms, which did
not use this kind of information, would not be biased.
The SideS and HCS algorithms do not take any parame-
ters, whereas for the use of Mcode and MCL algorithms we
used the optimal parameters for accuracy as they are
defined in [9].
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Results and discussion
The GIBA tool
GIBA provides an extremely user-friendly environment.
Users without informatics background could perform
clustering without any difficulties. Figure 1 shows the
main window of the GIBA tool.

The workflow of the tool is straightforward. Initially, the
user loads a tab delimited file that contains a simple
weighted list of the protein – protein interactions. Then,
the user can choose either the MCL or the RNSC algorithm
and define their parameters to cluster the protein interac-
tion network. Initially, the parameters of each algorithm
have default values which offer the maximum accuracy
according to [9]. In the third step, the user chooses which
methods will constitute the filter and defines the neces-
sary parameters. Depending on the selections of the algo-
rithm and methods, the corresponding parameters are set
to active state, while all the others are set to inactive state.
Moreover, there are pop up error messages that inform the
user for potentially wrong parameter values. Finally, the
user can press the "Run Workflow" button and start the
clustering process. The Help Panel of GIBA is also provid-
ing explanations about the algorithms incorporated and
their parameters.

After a successful run, GIBA generates various outputs: The
"File loaded" tag shows the contents of the input file that
is the protein – protein interactions. The proteins that
constitute the clusters which derived from the first step
clustering (the MCL or RNSC algorithm results) are

shown in the "Clustering results" tag, while the interac-
tions into each cluster are presented in the "Intermediate
results" tag. Every file is stored locally on the hard disk so
the user can reuse the intermediate results by skipping the
time consuming run of MCL or RNSC algorithm. The final
results, after the filtering, are presented on the "Final
results" tag, where the number and the labels of the pro-
teins that constitute the final clusters are shown. In addi-
tion, the number of interactions for each final cluster is
also presented. This file is also stored on the local hard
disk drive.

Many screen shots of the use of GIBA as well as informa-
tion about GIBA algorithms and methods are given in
Additional File 1.

Comparison with other algorithms
We have compared GIBA results with those derived from
4 different algorithms: Mcode, SideS, HCS and RNSC as it
has been presented in [11]. All the results of our experi-
ments are presented in Additional File 2.

GIBA produces better results than the aforementioned
methods either by selecting the MCL or the RNSC algo-
rithm. These results prove the efficiency of the second
algorithmic step followed by GIBA as they are even better
from those obtained from the filter process used in RNSC
in [11]. In order to obtain and compare these results, we
have applied the same filter options on both algorithms
used in the first step of GIBA function in our experiments
(MCL and RNSC). In figure 2, the percentage of successful
predictions of every algorithm on each dataset is pre-
sented. In the first dataset (Tong) the algorithms tested
could not identify many real protein complexes as these
datasets are extremely sparse and full of noise. However,
even on this dataset, the algorithmic strategies offered by

The percentage of successful predictions in respect to the MIPS recorded complexes of the algorithms testedFigure 2
The percentage of successful predictions in respect 
to the MIPS recorded complexes of the algorithms 
tested.

The main window of the GIBA toolFigure 1
The main window of the GIBA tool.
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GIBA obtain the higher accuracy. When GIBA uses RNSC
as a first step, it achieves exceptionally good results for the
online databases datasets (MIPS and DIP dataset). This
happens due to the fact that very few clusters are produced
in those cases. Nevertheless, when GIBA uses MCL, it may
produce fewer clusters. However the difference between
the absolute number of clusters produced by GIBA and
the other algorithms tested is not so big.

In figure 3, the performance of the algorithms is presented
concerning the geometrical accuracy metric. As we men-
tioned before, geometrical accuracy offers a better insight
about the quality of the results of each algorithm. Even
with small differences as it can be seen in Additional File
2, the GIBA algorithmic approaches achieve better results.
In most of the cases, GIBA with the use of MCL algorithm
produces better quality results than those produced by the
use of RNSC algorithm. On the other hand, GIBA with
RNSC has achieved better rate of successful predictions of
protein complexes. Moreover, the mean score of the valid
predicted complexes shows that GIBA results in much bet-
ter approximations of the recorded protein complexes.
The older version of RNSC algorithm produces good
approximations too, but comparing to GIBA approaches,
it achieves poorer results on the geometrical accuracy and
on the percentage of successful predictions.

The use of the methods that compose the filtering process
was in each case different and dependent on the nature of
the input protein – protein interaction graph. We tried to
achieve good prediction rate without minimizing the
number of the final GIBA clusters that will pass the filter-
ing process. In sparse graphs, better results were obtained
without the need of the methods of best neighbor and cut-
ting edge, while the methods of density and haircut oper-
ation affect vastly the final results. Table 1 shows the
methods and their parameters used in the filtering process
in each case.

Analysis of GIBA filtering methods
As it was proved, the GIBA results are sensitive to the
methods and their parameters that were used in the filter-
ing process. Therefore, we have tested the possible combi-
nations of the 4 methods that compose the filtering

process in order to see how they affect the final results and
how the function of one method affects the others.

We have chosen specific range of values for each method
parameter:

• for the density parameter: [0.55, 0.8]

• for the haircut operation parameter: 2 or 3

• for the best neighbor parameter: [0.6, 0.75] and

• for the cutting edge parameter: [0.6, 0.75].

Choosing a parameter value out of the proposed range
would be meaningless because the parameter method
would become either too rigorous and it would produce
very few clusters (if it was higher than the proposed max-
imum) or would add noise to the final data (if it was
lower than the proposed minimum).

We have examined all possible combinations, using a
parameter step of 0.5, in three datasets with different
properties: 2 online database dataset (MIPS and DIP) and
a dataset from individual experiment (Gavin_2006). So
we have run 192 different filter combinations for each
dataset.

Table 1: The methods used in the filtering process.

Dataset Filter

Tong Density = 0.75, Haircut = 2
Krogan Cutting_Edge = 0.55, Density = 0.7, Haircut = 3

Gavin_2002 Cutting_Edge = 0.5, Density = 0.6, Haircut = 2
Gavin_2006 Cutting_Edge = 0.75, Density = 0.6, Haircut = 2, Best_neighbor = 0,6

DIP Cutting_Edge = 0.5, Density = 0.6, Haircut = 3
MIPS Cutting_Edge = 0.5, Density = 0.7, Haircut = 2, Best_neighbor = 0,75

The performance of the algorithms concerning Acc_g metricFigure 3
The performance of the algorithms concerning 
Acc_g metric.
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From our experiments it was shown that the most impor-
tant method affecting most the final results is the density
method. In figure 4, we present the impact of density and
haircut operation to the produced number of GIBA clus-
ters. For each density parameter value, we calculate the
mean number of clusters, produced by 16 different
parameter combinations (regarding the best neighbor and
cutting edge parameter). As it can easily be seen, the
number of the final cluster is reduced when the value of
density or haircut operation parameter rises. More specif-
ically, in Gavin_2006 dataset, no clusters are produced
when haircut operation parameter has value equal to 3
and density parameter is equal to 0.7 or more.

However, the increase of density parameter improves the
quality of the identification of protein complexes. As it
can be seen in figure 5, there is a slight improvement on
the mean score due to the increase of the density parame-
ter. Moreover, the increase of the haircut operation
parameter does not offer any benefits.

Although, the increase of density causes positive effect on
mean score metric, we could not claim the same thing for
the geometrical accuracy metric. In figure 6, it is shown
that this metric is slightly reduced when density or haircut
operation parameter increases. Because of the high values
of density parameter, smaller clusters are produced at the
end of the procedure. The proteins that constitute a cluster
may be reduced even more if the haircut operation param-
eter has also a high value. Small clusters can not achieve
high scores in sensitivity and positive predictive value
metric because of the definition of these metrics. Further
research is needed, using intelligent techniques in order to
predict the optimal value of the other parameters.

Conclusion and future work
In this paper, we have introduced the GIBA tool in order
to identify protein complexes from pairwise protein – pro-
tein interaction datasets. GIBA workflow splits in a two
step process: initially, it clusters the whole input protein
network and afterwards it applies a filtering process to
obtain the final clusters. In addition, GIBA is user friendly
and can also provide intermediate results for every step
that can be useful for further use. With our experiments
we proved the efficiency of GIBA comparing to 4 other
methods.

The main issue of our future work will be the appliance of
machine learning methods to detect how the properties of
the initial protein – protein interaction dataset can take
advantage of the filtering process in order to achieve better
results. This could lead to the development of a new algo-
rithmic approach with adaptive behavior relative to the
initial protein network.
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1. Project name: GIBA: A clustering tool for detecting
protein complexes
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Impact of density and haircut operation parameters 
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Impact of density and haircut operation parameters 
to the produced number of clusters.

Impact of density and haircut operation parameters to the mean score of valid predicted complexesFigure 5
Impact of density and haircut operation parameters 
to the mean score of valid predicted complexes.
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Additional file 1
Guide to use GIBA tool.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S6-S11-S1.doc]

Additional file 2
Summary of experimental results. The percentage of successful predic-
tions is shown in the first column; the absolute number of valid predicted 
complexes is shown in the second column as well as the total number of 
predicted complexes. The mean score of the valid predicted complexes is 
shown in the third column. The last three columns present the Sensitivity 
(Sn), the Positive Predictive Value (PPV) and the geometric Accuracy 
(Acc_g) respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S6-S11-S2.xls]
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