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 Immunoglobulin Use 
in Therapeutics and Historical 
Overview

Immunoglobulin therapy has been used for the 
prevention and treatment of infectious disease 
before the introduction of antimicrobial agents 
into the clinical practice. In the early 1890s, Emil 
von Behring and Shibasaburo Kitasato set the 
basis of “serum therapy” showing that antibody 
preparations derived from the serum of immu-
nized animals have the ability to protect against 

bacterial toxins [115]. Ehrlich’s subsequent work 
contributed to the conception of passive immu-
nity, demonstrating that increasing doses of bac-
terial toxins could provide immunity against 
lethal doses of toxin [68]. Cenci first used human 
serum in 1907 for the prevention of measles and 
thereafter for the prevention of pertussis and 
mumps [45]. Systemic administration of “serum 
therapy” was widely used in the 1930s for the 
treatment of bacterial and viral infections; how-
ever its use was often associated with adverse 
reactions due to administration of large amounts 
of animal proteins, ranging from fever and chills 
to “serum sickness,” a form of immune complex 
disease, characterized by rash, proteinuria, and 
arthralgias [45]. After improvements in antibody 
purification methods, which reduced serum tox-
icity, the role of “serum therapy” was further 
expanded. In the pre-antibiotic era, serum ther-
apy significantly reduced the mortality in some 
infectious outbreaks such as meningococcal and 
Haemophilus influenzae meningitis, pneumococ-
cal pneumonia, and diphtheria. The efficacy of 
serum therapy varied with the type and severity 
of the infections and the timing of treatment 
administration in relation to symptom onset [27, 
28, 43]. For some infections like whooping 
cough, anthrax, dysentery (Shigella dysenteriae), 
and gas gangrene, the efficacy of “serum ther-
apy” was uncertain, while for other pathogens 
like Staphylococcus, Mycobacterium, and 
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Salmonella species, no consistently effective sera 
were produced [28].

With the discovery of antibiotics in 1940s, the 
interest in “serum therapy” for the treatment of 
infectious disease waned. The initial interest in 
using combination therapies with antibiotics and 
serum was abandoned, as the potential benefits 
were marginal. Antimicrobial chemotherapy 
proved to be less toxic and more effective than 
serum therapy in the treatment of infections. 
However, Dr. Cohn’s discovery of purified anti-
bodies through cold ethanol fractionation of 
plasma during the Second World War revived the 
interest in antibody treatment especially for 
infections not able to be treated with antibiotics. 
The fractionation procedure stabilizes the prod-
uct, denatures most viruses, and assures a more 
uniform antibody content. Cohn fraction (IgG 
from plasma after cold alcohol fractionation) was 
initially used for prophylaxis against prevalent 
and life-threatening infections, such as measles. 
It was not until 1952 that Bruton reported for the 
first time the use of immunoglobulin preparation 
injected subcutaneously for the treatment of a 
young boy with agammaglobulinemia [21]. 
Thereafter, the use of immunoglobulin injected 
intramuscularly became established as the stan-
dard therapy for primary immunodeficiencies, 
lasting until the development of purer and safer 
intravenous immunoglobulin preparation in the 
early 1980s [86].

The advent of hybridoma technology, which 
allows continuous generation of large quantities 
of monoclonal antibodies specific to antigens of 
interest and the generation of humanized anti-
bodies, revolutionized antibody therapeutics 
[63]. Monoclonal antibody technology offers 
supply advantage, reduces the risks of adverse 
events, and decreases lot-to-lot variation. In the 
mid-1980s a monoclonal antibody (mAb) to CD3 
was introduced into clinical practice to prevent 
organ rejection. Almost a decade later, the 
humanized mAb palivizumab (Synagis®, a 
humanized mouse monoclonal antibody to pre-
vent RSV pulmonary infections in high-risk 
patients, especially infants) was licensed. 
Palivizumab was 50-fold more potent than the 
polyclonal product, resulting in reduced volume 

of administration and intramuscular use [45]. 
During the last three decades, 30 therapeutic 
mAbs have been licensed, mainly for treatment 
of malignancies and rheumatic or autoimmune 
diseases, but only two were licensed for infec-
tious diseases (palivizumab and raxibacumab: 
human mAb to anthrax toxin). Although the use 
of mAbs to treat infectious diseases does not 
depend on discrimination between self-antigen as 
there are large antigenic differences between the 
microorganism and the host, the pace of discov-
ery and development of new mAbs against infec-
tious disease is limited. Currently, the areas of 
mAbs development have been focused on viral 
diseases without available vaccines [HIV, Ebola, 
severe acute respiratory syndrome (SARS), 
Middle East respiratory syndrome, Marburg 
virus], viral disease with limited effective antivi-
ral drugs (influenza, rabies), and bacterial toxin- 
mediated disease (anthrax, Clostridium difficile 
colitis). In the clinical setting, therapeutic mAbs 
can be used when there are nosocomial/iatro-
genic outbreaks. For example, a new approach to 
the prevention of recurrent C. difficile infection is 
the administration of mAbs against C. difficile 
toxins (in addition to antibiotic therapy) as a form 
of passive immunity. Actoxumab and bezlotox-
umab are fully human monoclonal antibodies 
that bind and neutralize C. difficile toxins A and 
B, respectively. A double-blind randomized 
placebo- controlled phase 3 trial showed that a 
single intravenous dose of bezlotoxumab when 
given with standard-of-care antibiotics provided 
protection against recurrent C. difficile infection 
for up to 12 weeks that was superior to that pro-
vided by treatment with standard-of-care antibi-
otics alone [114]. Other therapeutic mAbs can be 
applied in drug resistance (Staphylococcus 
aureus, VRSA), pandemic outbreaks (Ebola 
virus), bioterrorism attacks (Bacillus anthracis), 
emerging infectious diseases (Nipah or Hendra 
virus), and use in high-risk host groups or in 
severe diseases (respiratory syncytial virus, cyto-
megalovirus retinitis in HIV patients, hepatitis C 
virus, influenza virus). Another application of 
therapeutic mAbs concerns their use as adjunct 
therapies that have anti-inflammatory or immune 
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modulatory roles (mAbs against TNF-α and other 
immune mediators) [45, 55].

 Immunoglobulins: Types 
and Characteristics

Immunoglobulins are glycoprotein molecules 
that are produced by plasma cells in response to 
antigens or immunogens and which function as 
antibodies. Serum contains a heterogeneous 
immunoglobulin pool that reflects the host 
response to endogenous microbiota and the 
immunological memory of the host for a variety 
of acquired microbial agents [26]. Different 
immunoglobulins can differ structurally; how-
ever, they are built from the same basic units.

There are five classes of immunoglobulin, 
classified according to the type of heavy chain 
they possess (Table  17.1) [70]. Each class of 

immunoglobulins has a specific function, and 
deficiency of each class leads to particular dys-
function of immune system. Serum IgM predom-
inates in the acute immune response to most 
antigens and is the most efficient complement- 
fixing immunoglobulin. Immunoglobulin class 
switching subsequently occurs, leading to a pre-
dominance of IgG, which is responsible for pro-
tection during the first infectious attack and 
long-term protection via memory B cells. 
Secretory IgA, due to its abundance in mucosal 
secretions, provides primary defense mechanism 
against some mucosal infections. IgE primarily 
defends against parasitic invasion [2].

Immunoglobulins together with T cells are the 
key mediators of adaptive immunity, and defi-
ciencies in either of these two arms of the adap-
tive immune system can result in higher host 
susceptibility to bacterial, fungal, or viral infec-
tions [76]. Immunoglobulins interact with the 

Table 17.1 Properties of human serum immunoglobulin isotypes

IgG
IgG1 IgG2 IgG3 IgG4 IgA IgM IgE IgD

Molecular 
weight (x1000)

146 146 170 146 320 900 73 70

Heavy chain γ1 γ2 γ3 γ4 α μ ε δ
In vivo serum 
half-life (days)

21–
23

20–
23

7–8 21–
23

6 5 2.5 3

Percent of total 
Ig

66% 23% 7% 4% 13% 6% 0.02% 0.2%

Activate 
classical 
complement 
pathway

+ +/− ++ − − +++ − −

Crosses 
placenta

+ +/− + + − − − −

Present on 
membrane of 
mature B cells

− − − − − + − +

Bind to Fc 
receptor of 
phagocytes

++ +/− ++ + − ? − −

Mucosal 
transport

− − − − ++ + − −

Distribution Intravascular and 
extravascular

Intravascular 
and secretions

Mostly 
intravascular

Basophils, mast 
cells in saliva 
and nasal 
secretions

Lymphocyte 
surface

Structure Monomeric Dimeric Pentameric Monomeric Monomeric

++, high; +, moderate; +/− minimal; ?, questionable
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cellular immune compartment at multiple levels 
aiming different cells, including dendritic cells, 
the monocyte/macrophage system, granulocytes, 
natural killer cells, and various subsets of T cells 
and B cells [38, 102]. Understanding the mecha-
nisms of interactions between immunoglobulins, 
immunomodulatory molecules, and cells of the 
immune system, both innate and adaptive, is the 
basis for understanding the future therapeutic 
perspectives of immunoglobulins [38].

Immunoglobulins, upon binding of a specific 
antigen, stimulate significant direct and indirect 
“effector functions.” Classically, in bacterial dis-
ease, immunoglobulins neutralize toxins, facili-
tate opsonization, and, with complement, 
promote bacteriolysis. In viral diseases, immuno-
globulins block viral entry into uninfected cells, 
promote antibody-directed cell-mediated cyto-
toxicity by natural killer cells, and neutralize 
virus alone or with the participation with the 
complement [62]. Furthermore, more recent 
studies have demonstrated the immunomodula-
tory functions of antibodies, including the poten-
tial for antibody therapy to reduce damage from 
the host inflammatory response to major infec-
tions [24, 25].

Notably, IgG can exert pro- and anti- 
inflammatory activities depending on its concen-
tration. Low dose of IgG has pro-inflammatory 
activity and requires complement activation or 
binding of the Fc fragment from IgG to IgG- 
specific receptors (FcγR) on innate immune 
effector cells. This results in receptor clustering, 
recruitment of secondary effector functions, and 
subsequent activation of signaling pathways, 
leading to an increase in intracellular calcium 
levels and cell activation. By comparison, high 
concentrations of IgG have anti-inflammatory 
properties. The mechanisms proposed for this 
mode of action are modulation of the expression 
and function of FcγRs, interference with activa-
tion of the complement cascade and the cytokine 
network, neutralization of autoantibodies, and 
regulation of cell proliferation [38].

 Immunoglobulin Preparations

The immunoglobulin preparations used in pas-
sive immunization are the standard human serum 
immunoglobulin, which is available in three 
forms: immune globulin (IG) for intramuscular 
use (IMIG), intravenous use (IVIG), and subcuta-
neous use (SCIG). IMIG is used primarily for the 
prevention of certain infections, such as hepatitis 
A, measles, and rubella, and less commonly for 
the treatment of antibody immunodeficiencies. 
IVIG is used in the treatment of primary and sec-
ondary antibody deficiencies, many immunoreg-
ulatory disorders (e.g., immune thrombocytopenic 
purpura, Kawasaki disease), and neurologic dis-
orders (e.g., Guillain-Barré syndrome, peripheral 
neuritis). IGSC is used exclusively for the anti-
body deficiencies.

IVIG preparations comprise the pooled frac-
tion of serum from ~3000 to 60,000 donors, 
which is generated by a cold ethanol precipita-
tion, providing, thus, a broad spectrum of opsonic 
and neutralizing IgG antibodies. Opsonic and 
neutralizing IgG antibody content varies with 
each product batch, primarily due to differences 
in the local pathogen ecology of donor exposure. 
IgG and complement proteins are the principal 
classes of opsonins contributing to bacterial 
clearance. In addition to IgG, varying amounts of 
immunoglobulin isotypes, especially IgA, can be 
found in the IVIG preparation. Regarding the dif-
ferent human IgG subclasses (IgG1-IgG4), IVIG 
preparations reflect the hierarchy present in the 
serum, consisting mainly of IgG1 and IgG2 and 
containing much smaller amounts of the other 
IgG subclasses. Only the product Pentaglobin® 
(Biotest, Germany) is IgM-enriched [93]. The 
clinical use of IVIG can be distinguished by the 
infused amount [92]. The principal manufactur-
ing process in all current IgG preparations is cold 
ethanol fractionation with product-specific addi-
tional processes for manufacturing. The com-
monest processes for virus reduction include 
solvents/detergent, low pH (pH 4), incubation, 
nanofiltration, and chromatography [93]. Other 
major quality control practices in the production 
process, besides viral reduction, include the 
depletion of blood coagulation factors and the 
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removal of IgG aggregates, since these aggre-
gates could result in a cytokine release syndrome 
owing to the ubiquitous activation of innate 
immune effector cells via activating FcγRs. IgG 
aggregations are absent from the majority of 
IVIG preparation; however, depending on the 
provider and batch, up to 1–10% of IgG can be 
found in dimeric form in most IVIG preparations 
[92].

 Immunoglobulins and Clinical 
Indications

The two major indications for which immuno-
globulins are used are IgG replacement therapy 
and anti-inflammatory therapy in a variety of 
acute and chronic autoimmune diseases. Apart 
from immunoglobulin replacement therapy, cur-
rently licensed application of immunoglobulin 
(IVIG) administration includes Guillain-Barré 
syndrome, Kawasaki disease, and chronic inflam-
matory demyelinating polyneuropathy. Licensed 
indications, however, only account for approxi-
mately 40–50% of the worldwide immunoglobu-
lin sales, as most immunoglobulin administrations 
are “off-label” [76]. The use of immunoglobulins 
for infectious disease can involve the passive 
transfer of antibodies for pre-/postexposure pro-
phylaxis or for treatment. Passive immunization 
provides temporal immunity to unimmunized 
individuals either prophylactically or therapeuti-

cally. The different forms of passive immuno-
therapies are shown in Table 17.2 [96].

The technology of ethanol fractionation of 
plasma resulted in products used for the treat-
ment and prophylaxis of infectious diseases 
(Table  17.3). Human immune sera have fewer 
adverse effects, but there are concerns about 
availability, potency, and consistency.

Table 17.4 summarizes the adverse reactions 
of immunoglobulin used in the prevention and 
treatment of infectious diseases.

 Immunoglobulins to Prevent 
Infections in Immunodeficiencies

Administration of immunoglobulins is indicated 
for the majority of patients with primary immune 
deficiencies and for patients with combined 
immune deficiencies and for those with second-
ary immune deficiency with significant antibody 
deficiency. The benefits of replacement immuno-
globulin therapy for the prevention of infections 
in patients with antibody deficiencies are well 
established and pertain to the reduction of the 
incidence and the severity of infections and pre-
vention long-term deterioration in organ function 
[12, 13].

Primary immune deficiencies (PIDD) are one 
of the US Food and Drug Administration (FDA)-
approved indications for immunoglobulin ther-
apy. Over 80% of all PIDD involve 
antibody-mediated immunity; however, each 
individual disorder has a different immunopatho-
genesis in terms of the number of B cells in the 
blood and B-cell function. Moreover, any persist-
ing endogenous antibody production varies both 
between specific conditions and within individ-
ual disorders [10, 35, 97]. Table 17.5 describes 
the PIDD for which immunoglobulin replace-
ment is or may be efficacious. The recommenda-
tions for immunoglobulin replacement treatment 
in primary and secondary immune deficiencies 
are shown in Table 17.6 [32, 84, 97]. The main 
indications are primary antibody deficiencies 
including agammaglobulinemia (autosomal 
recessive or X-linked) and common variable 
immunodeficiency disorders. Rarely, other 

Table 17.2 Different forms of passive immunotherapy

Animal antisera and antitoxins (e.g., diphtheria 
antitoxin)
Human immune serum globulins for general use
  Immunoglobulins for intramuscular use (normal and 

specific immunoglobulins)
  Immunoglobulins for intravenous use (human and 

enriched immunoglobulins)
Special human immune serum globulins (e.g., hepatitis 
B immunoglobulin)
Humanized monoclonal antibodies

Modified from Annals of Internal Medicine 1987; 107: 
367–382. Intravenous Immunoglobulins as Therapeutic 
Agents & Biologicals 2012; 40: 196. “Role of passive 
immunotherapies in managing infectious outbreaks”
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 antibody deficiencies, such as IgG subclass defi-
ciency, may be managed by immunoglobulin 
replacement. In these immunodeficiencies, a trial 
of 12 months may be indicated if there is a sub-
stantial infection burden. On the contrary, for 
selective IgA deficiency, immunoglobulin 
replacement is not required or recommended, as 
anaphylactic reactions may occur during IVIG 
infusions. Combined immunodeficiencies with 
antibody deficiency also benefit from immuno-
globulin therapy until the defects in cell- mediated 
immunity are corrected by hematopoietic stem 
cell transplantation. However, B-cell function is 
not restored universally after transplantation, and 
immunoglobulin therapy may be continued [86]. 
It is important that each patient receives a thor-
ough evaluation before starting immunoglobulin 

therapy especially those with partial antibody 
defects.

The American Academy of Allergy, Asthma, 
and Immunology, based on a 2006 review of evi-
dence, recommends for PIDD the dose of 400–
600 mg/kg of IVIG every 4 weeks, titrating the 
dose and interval between infusions to achieve a 
trough IgG level at least greater than 500 mg/dl in 
agammaglobulinemic patients [84]. However, 
recent evidence suggests that the goal of IgG 
replacement therapy should be to reduce or pre-
vent serious or recurrent infections instead of 
aiming to achieve a specific IgG level. The clini-
cians should identify for each patient with PIDD 
an individual “biological” IgG level with which 
the patient achieves the best clinical outcome 
instead of trying to reach a specific IgG level [16, 
17].

The two modes of IgG replacement (IVIG and 
SCIG) have significant pharmacokinetic differ-
ences, which are important to know when choos-
ing the mode of IgG delivery or switching from 
IVIG to SCIG. SCIG causes sustained release of 
IgG and thus attains higher IgG trough levels; 
this mode of delivery may benefit the 10–15% of 
patients who show increased risk of infection 
during the 3rd and 4th weeks after receiving 
IVIG or who experience extreme lethargy during 
the same period. IVIG achieves higher peak lev-
els (160% higher than that obtained by SC infu-
sion), and this mode of delivery is usually initially 
preferred for patients with PIDD who are very 
symptomatic (present with pneumonia or other 
serious infectious such as sepsis) and who pres-
ent with pneumonia or for those with other medi-
cal problems such as sepsis [16].

IVIG has also been used in a number of dis-
eases that cause secondary humoral immunodefi-
ciency. While for the majority of secondary 
immunodeficiencies, the use of IVIG was sup-
ported only by anecdotal reports, and B-cell 
chronic lymphocytic leukemia (CLL) and pediat-
ric HIV infection are FDA-approved indications. 
For both, CLL and HIV, infections are the most 
common complications. IVIG has been shown to 
be a useful prophylactic therapy against infec-
tions in such patients [29, 53, 54, 72, 95, 110].

Table 17.4 Adverse effects due to immunoglobulin 
therapy

Adverse reaction Frequencya Severity
Infusion site pain, 
swelling, erythema

Up to 75% 
in SCIG

Usually 
mild

Anxiety 20–40%
Malaise, fatigue
Myalgia, arthralgia, back 
pain
Fever, chills, flushing
Tachycardia
Hypo-/hypertension
Headache Mild to 

moderate
Aseptic meningitis <5% Moderate
Hyponatremia Moderate
Neutropenia Mild/

transient
Hemolytic anemia Moderate 

to severe
Interference with vaccine 
effectiveness and/or 
immunodiagnosis

N/A

Eczema
Renal impairment
Anaphylactoid reaction <0.1%
Severe thrombosis
Blood-borne infectious 
diseases

Modified from: Peter and Chapel [86]
SCIG subcutaneous immunoglobulin, N/A not applicable
aFrequencies are for patients using long-term therapy
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Table 17.5 Primary immunodeficiencies and immunoglobulin replacement

Primary immunodeficiency Immunologic findings
Immunoglobulin 
replacement

Immunoglobulin 
cessation

Antibody deficiency
X-linked or autosomal 
agammaglobulinemia

<1% normal B cells, 
agammaglobulinemia, poor specific 
antibodies

Absolute indication, 
start immediately

Lifelong 
replacement

Common variable 
immunodeficiency 
disorders (CVID)

Hypogammaglobulinemia, poor 
specific antibodies, variable T-cell 
abnormalities

Absolute indication, 
start immediately

Lifelong 
replacement

IgG subclass deficiency 
with IgA deficiency

IgG subclass deficiency (usually 
IgG2), absent IgA, poor specific 
antibodies

Replacement only in 
symptomatic patients 
(clinically significant 
infections)

Reassessment for 
efficacy after 
12-month treatment 
trial

Selective IgG subclass 
deficiency

Single IgG subclass deficiency, 
normal total IgG, poor specific 
antibodies

Replacement may not 
be necessary

Specific antibody 
deficiency with recurrent 
infections

Normal IgG, IgA, IgM, abnormal 
IgG antibody responses to protein 
and/or unconjugated polysaccharide 
vaccines

Consider replacement 
if patient has vaccine 
unresponsiveness and 
clinically significant 
infections

Reassessment for 
efficacy after 
12-month treatment 
trial, watch for 
development of 
more severe 
antibody failure

Transient 
hypogammaglobulinemia 
of infancy

Low serum IgG and IgA, poor 
specific antibodies

Preferable to use 
prophylactic 
antibiotics as 
deficiency is transient, 
some are given 
replacement for a 
period

Replacement 
stopped after some 
months to ascertain 
recovery

Combined immunodeficiencies
Severe combined 
immunodeficiencies 
(SCIDs)

Absent or severely reduced 
lymphocytes and no antibody 
production

Replacement is 
required prior to 
HSCT

If B-cell 
reconstitution fails, 
replacement may 
still be required 
after HSCT

NEMO deficiency Reduced IgG; IgA or IgM may be 
increased; B cells present

Replacement is 
required

Cessation 
inappropriate except 
after successful 
HSCT

X-linked 
lymphoproliferative 
syndromes

May have reduced B cells and low 
IgG and IgA levels post EBV 
infection

Consider replacement Cessation 
inappropriate unless 
HSCT is successful

Hyper-IgE syndromes IgE elevated, sometimes reduced 
class switching and low levels of IgA 
and IgG subclasses with poor 
antibody responses

Replacement in 
selected patients

Cessation 
inappropriate if 
antibody failure 
confirmed

Wiskott-Aldrich syndrome Decreased lymphocytes, variable 
defects in T-, B-, and NK-cell 
function, variable IgM, normal or 
elevated IgA, elevated IgG and IgE, 
often abnormal IgG antibody 
response to unconjugated 
polysaccharide vaccines

Consider replacement Cessation 
inappropriate if 
antibody failure 
confirmed until 
successful HSCT

(continued)
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Administration of IVIG in CLL patients with 
hypogammaglobulinemia has been shown to 
decrease the rate of bacterial infections; however, 
decision analysis modeling showed that this 
decrease might not improve the length or quality 
of treated patients’ lives, and, furthermore, it is 
extraordinarily expensive [110]. The prophylac-
tic administration of IVIG in CLL patients has 
not been studied extensively, and, thus, there are 
no guidelines to define the patient population that 
would benefit from this treatment; also the opti-
mal dosing and timing of IVIG administration 
remained to be defined. Some experts support the 

use of IVIG in selected cases, depending on the 
history of the patient and especially in patients 
that IVIG has been shown to work in the past.

IVIG therapy together with antiviral therapy 
was beneficial in infants and children with AIDS 
and hypogammaglobulinemia or two or more 
bacterial infections in the previous year. Other 
indications for IVIG therapy in HIV-infected 
patients include those with severe parvovirus 
B19 or measles infection [72, 95, 119]. However, 
it is important to note that these studies occurred 
before the era of highly active antiretroviral treat-
ment for HIV [84].

 Transplantation

IVIG has been utilized in allogeneic bone mar-
row transplantation (BMT) in an attempt to 
decrease the incidence of cytomegalovirus 
(CMV) infection, infections due to other patho-
gens, and graft-versus-host disease (GVHD). 
Immunoglobulin use in the setting of BMT is 
FDA approved. The rationale for using IVIG in 
transplantation is that the administration of 
 passive antibodies may prevent infections in 
these immunocompromised patients and espe-
cially infections caused by CMV [84]. Several 
randomized controlled trials provided the basis to 
recommend IVIG after allogeneic BMT [19, 31, 
46, 87, 98, 116, 117]. Meta-analysis of these tri-
als found significant reduction of fatal CMV 
infections, CMV pneumonia, non-CMV intersti-
tial pneumonia, and transplant-related mortality 

Table 17.5 (continued)

Primary immunodeficiency Immunologic findings
Immunoglobulin 
replacement

Immunoglobulin 
cessation

Ataxia-telangiectasia Partial antibody deficiency in some 
cases

Replacement in 
selected patients

Cessation 
inappropriate if 
antibody failure 
confirmed

Hyper-IgM syndromes Normal or elevated IgM, low or 
absent IgG, IgA and IgE, poor 
specific antibodies, variable T-cell 
abnormalities

Start replacement at 
the time of diagnosis 
until successful HSCT

Cessation 
inappropriate

Modified from Peter and Chapel, Immunotherapy 2014; 6: 853–869, Albin and Cunningham-Rundles, Immunotherapy 
2014; 6: 1113–1126
EBV Epstein-Barr virus, HSCT human stem cell transplantation, NEMO NF-κΒ essential modulator

Table 17.6 Recommendations for the use of immuno-
globulins in immune deficiencies

Benefit Disease
Definitely 
beneficial

Primary immune defects with absent B 
cells
Primary immune defects with 
hypogammaglobulinemia and impaired 
specific antibody production

Probably 
beneficial

Chronic lymphocytic leukemia with 
reduced IgG and history of infections
Prevention of bacterial infections in 
HIV-infected children
Primary immune defects with 
normo-gammaglobulinemia and 
impaired specific antibody production

Unlikely to 
be 
beneficial

Isolated IgA deficiency
Isolated IgG4 deficiency

The recommendations for immunoglobulin indications 
according to the Primary Immunodeficiencies Committee 
of the American Academy of Allergy, Asthma, and 
Immunology; 2006
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among patients receiving prophylactic IVIG [11]. 
While an improvement in survival was reported 
in some studies [46, 49, 118], a more recent 
meta-analysis showed that IVIG or hyperimmune 
CMV-IVIG had no effect on the reduction of all-
cause mortality [90]. Collectively, the data 
regarding the benefit of prophylactic administra-
tion of IVIG after BMT remain controversial and 
contradictory. In addition, until currently, there is 
no consensus on the type, schedule, dose, and 
patients benefiting from IVIG. Subsequent stud-
ies suggested that double prophylaxis consisting 
of high-dose IVIG and ganciclovir was more suc-
cessful than either treatment alone in reversing 
CMV pneumonia in patients after BMT [39, 69].

The American Society for Blood and Marrow 
Transplantation does not recommend the routine 
use of IVIG to hematopoietic cell transplant 
recipients for prophylaxis for CMV disease or for 
bacterial infections within the first 100 days after 
transplantation. For patients with severe hypo-
gammaglobulinemia (IgG <400  mg/dl), IVIG 
prophylaxis of bacterial infections may be con-
sidered. IVIG dose and frequency for these 
patients should be individualized to maintain 
trough serum IgG concentrations >400  mg/dl 
[103]. Routine use of IVIG appears to offer little 
benefit to patients with malignancies undergoing 
HLA-identical sibling BMT [84]. Given that the 
landscape of patients receiving BMT is evolving, 
it is likely that the available data are outdated, 
and more updated randomized trials are war-
ranted to inform clinical practice.

GVHD and infection are major complications 
of allogeneic BMT. In vitro and in vivo experi-
mental models showed that the prevention of 
acute GVHD by IVIG is mediated by the induc-
tion of apoptosis of activated alloreactive CD4+ 
expressing CD134+ donor T cells and reducing 
the amount of IFN-γ produced by donor T cells 
[22]. IVIG was shown to decrease the severity of 
acute GVHD in recipients of allogeneic BMT 
[98, 116, 117]. On the contrary, administration of 
IVIG prophylaxis has no effect on the incidence 
or mortality of chronic GVHD on BMT [99]. 
While there is no consensus on the optimal dose 
of IVIG, it appears that the incidence of acute 
GVHD is less in patients receiving higher doses 

of IVIG. The benefits of IVIG appear to correlate 
with IgG trough levels where acute GVHD was 
less frequent among patients achieving maxi-
mum serum IgG levels ≥3000  mg/dl after the 
administration of IVIG. Trough serum IgG levels 
>1200  mg/dl were associated with less severe 
acute GVHD [1, 33, 40].

Over the last decade, IVIG usage in solid 
organ transplantation has increased significantly. 
There are encouraging data on the role of IVIG 
for the treatment of antibody-mediated rejection, 
desensitization to HLA and/or ABO antigens, as 
well as prevention and treatment of infectious 
complications for patients undergoing solid 
organ transplantation [74, 94]. There is also some 
evidence that IVIG may be useful for the treat-
ment of autoimmune cytopenias after solid organ 
transplantation [91]. Dosing of IVIG is empiric 
although higher than those for replacement ther-
apy. Especially for the treatment of antibody- 
mediated rejection, the dose is 1–2  gm/kg [23, 
38, 58, 60, 61, 76]. The use of higher doses of 
IVIG is related to higher rates of adverse events. 
These include aseptic meningitis thrombotic 
events and bronchospasm [59].

 Immunoglobulin Therapy for Sepsis 
and Septic Shock

Sepsis is the systemic inflammatory response of 
the host to an infectious insult. Severe sepsis is 
characterized by acute organ dysfunction, while 
septic shock is characterized by hypotension, 
which is refractory to fluid replacement, or by 
hyperlactatemia [9]. Severe sepsis and septic 
shock represent one of the oldest and most press-
ing problems in medicine. Care of patients with 
sepsis has improved over the last decades; 
 however, the incidence of sepsis is increasing 
along with morbidity and mortality rates espe-
cially in critically ill adults. Worldwide, the 
annual incidence of severe sepsis lies between 
100 and 300 cases per 100,000 population, and 
mortality for severe sepsis and septic shock 
reaches 30% and 50%, respectively [8, 56, 73, 
109]. While our understanding of the underlying 
biologic features of sepsis has made significant 
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progress, the clinical assessment of several new 
strategies for implementation for sepsis treatment 
has led to disappointing results [3, 7, 15, 18, 
108]. There have been more than 100 randomized 
clinical trials of strategies to modify the systemic 
inflammatory response during sepsis; however, 
no strategy showed to improve dramatically the 
survival of patients with sepsis [71].

The development of highly purified human 
plasma-derived polyclonal IVIGs presented a 
very compelling therapy for severe infections 
including sepsis and septic shock. IVIGs have 
broad and potent activity against microorgan-
isms, their extracellular products, and potent 
immunomodulatory effects [78]. IVIG prepara-
tions, in particular IgM-enriched preparations, 
contain antibodies against lipopolysaccharides of 
Escherichia coli, Pseudomonas aeruginosa, and 
Klebsiella spp. [104]. The effects of IVIGs on the 
sepsis-induced host response seem to be pleo-
tropic, not yet completely clarified, and are likely 
to be secondary to both suppression of synthesis 
and direct scavenging of upstream and down-
stream mediators of the host response and com-
plex immunomodulatory effects [93].

The cellular effects of immunoglobulins are 
mediated through the IgG constant fragment 
(Fc). Immunoglobulin acts as an adaptor between 
the innate and adaptive immune system by inter-
acting with Fc, which mediate both pro- and anti- 
inflammatory signals. IVIGs have direct 
antibacterial effects through pathogen recogni-
tion and increased clearance. IVIGs also have 
anti-inflammatory properties mediated by the 
scavenging of bacterial toxins and pro- 
inflammatory cytokines, by immune cell deple-
tion, by the blockade of activating receptors, and 
by modulating FcγR expression, dendritic cell 
activity, and T-cell expansion [77, 92, 93].

The challenging pathobiology of sepsis is 
associated with acquired hypogammaglobu-
linemia, which seems to prevent optimal patho-
gen clearance and pathogen toxin scavenging 
[100, 107, 113]. Furthermore, sepsis, by causing 
endothelial dysfunction and capillary leak 
together with the iatrogenic fluid resuscitation- 
related increase in extravascular volume, eventu-
ally causes an alteration in the distribution of 

immunoglobulins [93]. Consequently, it is logi-
cal to predict that the administration of IVIG dur-
ing sepsis would be of benefit.

In the clinical setting, the role of IVIG as an 
adjunctive treatment in sepsis has been contro-
versial for years. A number of randomized 
placebo- controlled clinical trials in adult critical 
care patients evaluating standard polyclonal 
IVIG- or IgM-enriched polyclonal adjunctive 
therapy in severe sepsis as well as the meta- 
analyses of these trials have been published [5, 
65, 67, 75, 88, 105]. Positive findings of con-
trolled trials and anecdotal reports have been 
criticized for methodological weakness including 
the small number of the patients and adequacy of 
blinding. The more recent studies, which were 
more meticulously designed, have shown much 
less effect of IVIG than older, smaller, and less 
well-designed studies [50]. Of note, the studies 
that used albumin as control showed less benefit 
of IVIG than those that did not [41]. The Score- 
Based Immunoglobulin G Treatment in Sepsis 
(SBITS) study, one carefully designed, large 
study representing almost half of all the adults 
studied to date, showed no reduction in mortality 
by IVIG in patients with score-defined sepsis and 
sepsis-induced multi-organ failure [113].

The first clinical trial, which evaluated the 
effect of IgMA-enriched immunoglobulin prepa-
ration (7.8  g IgM, 7.8  g IgA, and 49.4  g IgG), 
which have shown to contain superior antibody 
content against bacterial lipopolysaccharides, in 
an appreciable number of neutropenic patients 
with hematologic malignancies and sepsis or sep-
tic shock, showed that immunoglobulins had no 
beneficial effects [51]. However, as the editor 
comments, the study, with a high evidence level, 
demonstrates that neutropenic patients with 
malignancies and low-grade sepsis with no or 
only one organ failure will not benefit from 
adjunctive IVIG treatment [111].

The prophylaxis and treatment of neonatal 
sepsis has been a major global priority, and large 
international trials have been carried out testing 
IVIG ( [57, 79–83]; Group et al. 2011). Mortality 
during hospital stay in infants with clinically sus-
pected infection at trial entry was not signifi-
cantly different after IVIG treatment [81]. The 
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results of the International Neonatal 
Immunotherapy Study (INIS) and recent meta- 
analyses showed that IVIG did not reduce mor-
tality during hospital stay or major disability at 
2  years of age in infants with sepsis [48, 83]. 
Based on the results of the INIS trial (3493 sub-
jects), routine administration of IVIG to prevent 
mortality in infants with sepsis is not currently 
recommended [48].

When considering the administration of IVIG 
during sepsis, important aspects that should be 
taken into account are the dose, the type, the tim-
ing, and pharmacokinetics of IVIG [6, 50]. While 
dose-ranging studies have not been completed, 
studies that used high (>1  g/kg body weight) 
doses of IVIG demonstrated better effects. This 
seems plausible given the clinical observations in 
other inflammatory conditions, such as Kawasaki 
disease, where greater effect was noted with 
higher doses [52]. The type of IVIG may have an 
important effect, possibly in favor of a greater 
pooled effect of IgMA-enriched compared with 
standard preparations of IVIG.  IgMA-enriched 
preparations are associated with greater comple-
ment inactivation and improvement in microvas-
cular perfusion in experimental models [112]. 
However, collectively, the results from animal 
models and in vitro experiments show contradic-
tory results and do not allow for a definite conclu-
sion regarding the superiority of one specific 
immunoglobulin preparation in patients with sep-
sis. In an efficacy study, administration of poly-
valent IgG versus IgMA in selected patients at 
high risk for sepsis was associated with a compa-
rable improvement in disease severity [89].

Regarding the timing of IVIG administration 
during sepsis, there is probably a “window of 
opportunity” in the first days that follow clinical 
presentation of sepsis [14]. If this window is 
missed, probabilities of success could be greatly 
diminished [6]. Pharmacokinetic studies of IVIG 
in sepsis have not been performed yet. Data for 
dosage selection in current practice are primarily 
derived from studies in volunteers and in patients 
with primary immune deficiencies and other indi-
cations for immunomodulation. Existing phar-
macokinetic studies also do not address 
immunoglobulin clearance or area under the 

curve parameters and target serum immunoglob-
ulin concentrations [64]. In addition, it is still 
unknown whether the main goal of IVIG in sep-
sis is to refill low levels of endogenous immuno-
globulins or alternatively whether IVIG could 
exert a beneficial effect regardless of these levels 
[6].

Most studies evaluating the use of IVIG for 
sepsis are small; some have methodological flaws 
and high-quality, large studies showed no effect 
[48, 113]. Given immunoglobulin high-cost, lim-
ited supply and the lack of strong evidence to 
support their beneficial effect, widely used guide-
lines either neglect or grade as a weak recom-
mendation the use of polyclonal IVIG in sepsis 
[36]. While clinical judgment may guide immu-
noglobulin use in individual cases, particularly 
those due to Gram-negative etiologies or strepto-
coccal toxic shock syndrome, these practices are 
based largely on theoretical rationale, anecdotal, 
and retrospective clinical observations [50, 66, 
106].

The effect of monoclonal antibodies against 
tumor necrosis factor (TNF)-α has been evalu-
ated in a series of trials on different anti-TNF-α- 
directed therapies [4, 30, 37, 42]. The 
long-anticipated sepsis trial (MONARCS 
[Monoclonal Anti-TNF, A Randomized 
Controlled Sepsis trial]) reported that afeli-
momab, which is made up of the Fab component 
of a monoclonal antibody against TNF-α, in 
patients with severe sepsis and elevated IL-6 lev-
els decreased mortality and had a safety profile 
similar to placebo [85]. However, combining the 
results of these studies, a small improvement in 
mortality can be detected [34, 47]. As sepsis is 
increasingly being considered as an exaggerated, 
poorly regulated innate immune response to 
microbial products, by the time of diagnosis, an 
entire network of cytokines has already been acti-
vated. In this regard, the results of the previous 
studies would have been anticipated, as it seems 
unlikely that therapy aimed at only one cytokine 
would by itself have the highly significantly 
impact on sepsis mortality [34].
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 Future Directions

Immunoglobulins have been used widely in med-
icine for a variety of diseases including infectious 
diseases. While the two major indications for 
immunoglobulin use are as replacement and anti- 
inflammatory therapy in a variety of acute and 
chronic autoimmune diseases, their use in the 
prevention and treatment of infectious diseases is 
emerging as an attractive option especially in the 
era of multi-antibiotic resistance. Many aspects 
of immunoglobulin therapy remain controversial 
and contradictory. Consequently, immunoglobu-
lin use is sometimes determined by clinical judg-
ment or expert opinion, which is based largely on 
theoretical rationale, anecdotal, and retrospective 
clinical observations. Gaps of knowledge that 
need to be addressed are certain categories of 
patient populations that would benefit from 
immunoglobulin treatment or prophylaxis, the 
optimal immunoglobulin dosing, and duration, as 
well as timing of administration.

Monoclonal antibody technology has opened 
a new era in antibody therapy. On many occa-
sions, human monoclonal antibodies have better 
therapeutic properties than immunoglobulins 
including low toxicity, longer protective immu-
nity, higher than natural protection, and high 
specificity. Several antibodies for the treatment 
of bacterial and viral infections have been devel-
oped [101]. However, some challenges need to be 
overcome before they become preferred agents 
for the treatment and prophylaxis against infec-
tious diseases.

Biofilms are now acknowledged to contribute 
to a plethora of chronic and recurrent infections. 
While treatment or eradication of biofilm-related 
infections is still challenging, there are sufficient 
in vitro and preclinical data to support the use of 
antibodies directed against extracellular DNA- 
binding proteins entrapped into the extracellular 
biofilm polymeric substance [20, 44]. While still 
an area of ongoing preclinical and clinical 
research, this use of antibodies constitutes a 
novel therapeutic approach for treatment of 
biofilm- related infections.
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