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Abstract

Motivation: In recent years, cyclic peptide drugs have been receiving increasing attention because they can target
proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein
binding rate (%PPB) is a significant pharmacokinetic property of a compound in drug discovery and design.
However, due to structural differences, previous computational prediction methods developed for small-molecule
compounds cannot be successfully applied to cyclic peptides, and methods for predicting the PPB rate of cyclic pep-
tides with high accuracy are not yet available.

Results: Cyclic peptides are larger than small molecules, and their local structures have a considerable impact on
PPB; thus, molecular descriptors expressing residue-level local features of cyclic peptides, instead of those express-
ing the entire molecule, as well as the circularity of the cyclic peptides should be considered. Therefore, we
developed a prediction method named CycPeptPPB using deep learning that considers both factors. First, the
macrocycle ring of cyclic peptides was decomposed residue by residue. The residue-based descriptors were
arranged according to the sequence information of the cyclic peptide. Furthermore, the circular data augmentation
method was used, and the circular convolution method CyclicConv was devised to express the cyclic structure.
CycPeptPPB exhibited excellent performance, with mean absolute error (MAE) of 4.79% and correlation coefficient
(R) of 0.92 for the public drug dataset, compared to the prediction performance of the existing PPB rate prediction
software (MAE ¼ 15:08%; R ¼ 0:63).

Availability and implementation: The data underlying this article are available in the online supplementary material.
The source code of CycPeptPPB is available at https://github.com/akiyamalab/cycpeptppb.

Contact: akiyama@c.titech.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Conventional small-molecule drugs and antibody drugs cannot
interact with 75–80% of potential drug targets (Verdine and
Walensky, 2007). Under these circumstances, peptide drug discovery
is gaining attention because peptide drugs, unlike conventional
small-molecule drugs or antibody drugs, can interact with proteins
recruited in important protein–protein interactions (PPIs) (Cary
et al., 2017). However, limitations of conventional linear peptides,

such as lower stability against degrading enzymes, unsatisfactory se-
lectivity and cell membrane permeability, have not yet been resolved
(Cardote and Ciulli, 2016; Vinogradov et al., 2019). In contrast to
linear peptides, cyclic peptides have a macrocyclic structure.
Macrocyclization imparts a degree of conformational restraint and
functional group modification of the cyclized part and contributes
to stronger stability and more selective interaction with the target
protein (Vinogradov et al., 2019). Therefore, cyclic peptide drugs
are thought to improve many pharmacological properties of linear
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peptides and have favorable properties, such as high target specifi-
city and good potency (Bhat et al., 2015; Cary et al., 2017). Owing
to these advantages, more than 40 cyclic peptide drugs were clinical-
ly tested, in 2017, and one cyclic peptide drug has been launched to
the market per year on average (Zorzi et al., 2017).

However, there remains a challenge related to the pharmacoki-
netic properties of cyclic peptide drugs (Cary et al., 2017;
Vinogradov et al., 2019). Non-ideal pharmacokinetic properties
have accounted for about 40% of failures in the traditional drug dis-
covery process (Prentis et al., 1988). Hence, for drug development,
it is important to estimate the absorption, distribution, metabolism,
excretion and toxicity (ADME-Tox) of compounds at an early stage.
Plasma protein binding (PPB) is the reversible binding of compounds
to plasma proteins, including serum albumin, hemoglobin and a-
acid glycoproteins, and has a substantial effect on the compound
ADME-Tox. PPB strongly affects drug distribution and pharmacoki-
netic behavior with consequences in overall pharmacological action
(Lambrinidis et al., 2015). Thus, the rate of binding to plasma pro-
teins (%PPB) for a specific drug is a key indicator for lead optimiza-
tion. Since experimental determination of %PPB is time consuming,
fast computational PPB rate prediction methods are used in the early
stage of the drug discovery process for traditional small molecules
(Lambrinidis et al., 2015).

Previous PPB rate prediction methods for small molecules can be
categorized into the following three approaches: ligand-based meth-
ods (Ingle et al., 2016; Sun et al., 2018; Watanabe et al., 2018; Zhu
et al., 2013), structure-based methods (Gumede et al., 2012; Katrina
et al., 2014) and composite methods that use both ligand and
structure-based methods (Chen and Chen, 2012; Li et al., 2011;
Zsila et al., 2011). The ligand-based approach uses various molecu-
lar descriptors calculated from the ligand molecule structure to es-
tablish quantitative structure–activity relationship (QSAR) models.
The descriptors of the hydrophobicity index, such as the octanol–
water partition coefficient (LogP), are generally the most important
features for ligand-based methods (Lambrinidis et al., 2015). For in-
stance, Ingle et al. (2016) constructed several machine learning pre-
diction models using 1045 small-molecule drugs and validated 200
independent compounds and 406 environmentally relevant ToxCast
chemicals. The best model exhibits prediction accuracy with a mean
absolute error (MAE) of 13.3% and coefficient of determination
(R2) of 0.56.

Nevertheless, since cyclic peptides have a relatively large struc-
ture, it is difficult to apply a prediction model for small-molecule
drugs directly. Another issue is the limited number of available stud-
ies of cyclic peptides. Thus, finding descriptors that can be used for
both cyclic peptides and small-molecule compounds has been a
major research direction for the computational prediction of the
PPB rate of cyclic peptides. Tajimi et al. (2018) constructed a predic-
tion model using 1211 experimental data of small molecules, which
were collected by Ingle et al. (2016), and made PPB rate predictions
for the 24 public DrugBank (Wishart et al., 2018) cyclic peptides
and 16 in-house cyclic peptides. Since the biophysical mechanism of
PPB can be expected to be similar for both small molecules and cyc-
lic peptides, their study focused on selecting descriptors with high
generalizability from small-molecule training data. However, the
method proposed by Tajimi et al. (2018) still has lower prediction
accuracy (MAE of 21.6%, correlation coefficient (R) of 0.46) than
that of the traditional prediction methods for small-molecule com-
pounds and is not accurate enough for practical use. A feasible way
to improve prediction accuracy is the consideration of a local struc-
ture, such as residue-level features of cyclic peptides. Schneider et al.
(2017) investigated the structure–activity relationship of daptomy-
cin and its derivatives and found a huge difference in PPB rates of
daptomycin and acetyl-daptomycin. This difference is attributed to
the tight hydrophobic contacts between the N-terminal fatty acyl
chain of daptomycin and human serum albumin (HSA), the main
component of the plasma proteins.

Recently, deep learning methods have greatly contributed to sev-
eral fields, such as speech recognition (Hinton et al., 2012), object
recognition (Eitel et al., 2015) and protein tertiary structure predic-
tion (Sato and Ishida, 2019). We thought the convolutional neural

network (CNN) model would be suitable for the prediction of the
PPB rate of cyclic peptides because it can express the number of resi-
dues, sequence information and partial features. In this study, we
developed a prediction method called CycPeptPPB based on 1D-
CNN that considers findings such as the influence of specific resi-
dues on the cyclic peptide PPB mechanism. Moreover, properties
such as sequence information and cyclicity of the cyclic peptide were
considered. To this end, first, the main chain was divided into resi-
dues to represent the partial structure. Using descriptors calculated
from these residues, we proposed a 1D-CNN input format that can
express the number of residues and sequence position information.
In addition, we proposed two methods for expression of the circu-
larity of the cyclic peptide, namely the circular convolution method
CyclicConv and data augmentation method.

2 Materials and methods

2.1 Experimental data
Studies investigating the PPB of cyclic peptides have not significantly
advanced the field, and there are less than 30 peptides available.
Our group spent a significant portion of our funding on synthesizing
16 cyclic peptides and conducting PPB rate measurement experi-
ments (Tajimi et al., 2018). However, the PPB rate of these peptides
was very low, making it difficult to convert them into actual drug
candidate compounds. Therefore, we collaborated with PeptiDream
Inc., a leading company in cyclic peptide drug discovery, to provide
us with many peptides with excellent PPB rates under a non-
disclosure agreement. This allowed us to build a prediction model
and to have a scientific discussion. In this study, private data con-
cerning 347 peptides were provided by PeptiDream Inc., and 16 syn-
thesized peptide data, and 17 approved peptide drug data with their
experimentally determined PPB rates were used. Figure 1 and
Supplementary Figure S1 show the distributions of the number of
residues and the experimentally determined PPB rate of each cyclic
peptide in each dataset. This section describes these three datasets
and how they were split into training and test data.

2.1.1 PeptiDream dataset

The PeptiDream (PD) dataset contained 347 cyclic peptides designed
and assayed by PeptiDream Inc. Details of their structural informa-
tion were confidential; however, many peptides have N-methylated
residues, reducing the number of hydrogen bond donors and increas-
ing lipophilicity. A desirable property for drug candidates is
%PPB � 80%, and higher lipophilicity tends to enhance PPB rate.
Therefore, peptides with %PPB � 80% occupied approximately
80% (272) of the whole dataset.

2.1.2 Tajimi dataset

Tajimi et al. (2018) designed 16 cyclic peptides composed only of
natural amino acids and conducted %PPB measurement experi-
ments using the equilibrium dialysis method. In this study, these 16
cyclic peptides were used as the Tajimi dataset (Supplementary
Table S1). All these cyclic peptides were cyclized by disulfide bonds

(A) (B)

Fig. 1. Distributions of experimental data. (A) Number of residues. (B) Objective

variable %PPB50�95. Data of � 50% is included in the leftmost bar, and data of

� 95% is included in the rightmost bar. Blue, orange and green bars indicate PD

(PeptiDream), Tajimi and DrugBank datasets, respectively (distribution of the ori-

ginal %PPB is also shown in Supplementary Fig. S1)

CycPeptPPB: plasma protein binding prediction for cyclic peptides 1111

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab726#supplementary-data


between the N-terminal and C-terminal cysteine residues. Unlike the
PD dataset, the peptides in the Tajimi dataset have not been opti-
mized for enhanced lipophilicity, such as N-methylation. Therefore,
these compounds had extremely low %PPB; no compound had
more than 90%, and only two compounds had more than 80%.

2.1.3 DrugBank dataset

Tajimi et al. (2018) collected 24 cyclic peptide PPB data from the
FDA-approved drug public database DrugBank (Wishart et al.,
2018). From these data, we extracted 17 cases that were relatively
similar in structure to the other two datasets (containing one ring
and composed of five residues or more). These 17 public drug data
were used as the DrugBank dataset in this study (Supplementary
Table S2). The range of %PPB was wide, eight compounds exceeded
80%. Unlike other datasets, some of these cyclic peptides contained
fatty acid side chains; such peptides could exhibit high PPB rates
even with low lipophilicity. Thus, the dataset was suitable for verify-
ing the generalization performance of the prediction model and was
used as external test data.

2.1.4 Splitting training and internal test data

Since the peptides of the DrugBank dataset are structurally diverse
and those of the PD and Tajimi datasets were relatively similar in
structure, PD and Tajimi datasets were mixed and split into training
and internal test data. The Kennard–Stone (KS) algorithm is a
method for constructing a subset, which aims to uniformly cover a
multidimensional space by maximizing the Euclidean distance be-
tween the vectors of the selected sample (Galvao et al., 2005). We
utilized the KS algorithm (Algorithm S1) to extract 10% data from
the PD and Tajimi datasets (363 in total) as internal test data (37).
The remaining data of PD and Tajimi datasets were used as training
data (326).

2.1.5 Objective variable

The objective variables used in PPB prediction studies for conven-
tional small-molecule compounds can be broadly divided into two
types: the type where the binding ratio is used as it is (Ingle et al.,
2016; Sun et al., 2018; Watanabe et al., 2018) and the type where it
is used after logarithmic conversion (Li et al., 2011; Zhu et al.,
2013). In the case of conventional small-molecule compounds, the
PPB rate tends to be extremely high. Thus, logarithmic conversion,
which has high resolution in the region of %PPB > 90%, is consid-
ered suitable for prediction. However, the PPB rate of cyclic peptides
is generally lower than that of small-molecule compounds. The pre-
diction method for cyclic peptides should practically focus on pepti-
des with %PPB ranging from 50% to 95%, and logarithmic
conversion is not so effective in the range. Cyclic peptides with
%PPB less than 50% are very unlikely to be effective as drugs, and
there is no need to precisely quantify %PPB less than 50%.
Therefore, in this study, an experimentally measured value of %PPB
less than 50% was rounded to 50%, and %PPB higher than 95%
was rounded to 95% (%PPB50�95, Fig. 1B).

2.2 Descriptor design
2.2.1 Division of the main chain of a cyclic peptide into residues

The specific local structure of a cyclic peptide has great influence on
the PPB rate (Schneider et al., 2017). Thus, we expressed local struc-
tural information by dividing the main chain of a cyclic peptide into
units of residues (strictly speaking, it may not match the residue;
thus, it is referred to as the substructure hereafter). The division was
applied for peptide bonds and disulfide bonds. However, if the pep-
tide bond was simply hydrolyzed, a new hydrogen bond donor may
be generated, and the original physicochemical properties of the cyc-
lic peptide may not be expressed. Hence, the selection of the capping
functional group is important. When calculating 2D descriptors of
the substructures, the cleaved amide group and carboxyl group were
methylated (add CH3) and converted to an aldehyde group (add H),
respectively. On the other hand, when calculating 3D descriptors of
them, the cleaved amide group and carboxyl group were capped

with ACE (acetyl group) and NME (N-methyl group). This was
called ACE-NME protein capping, which is often used for structural
stability of the protein during molecular dynamics (MD) simulations

(Isegawa et al., 2013; Zuo et al., 2014). When dividing the disulfide
bond, hydrogen atoms were added to both sulfur atoms. In addition,

to completely express the properties of the local structure, amide
bonds existing anywhere other than the macrocycle was not subject
to division.

2.2.2 Calculation of descriptors

A total of 323 descriptors consisting of 206 2D descriptors and 117
3D descriptors were calculated by the MOE software (version

2019.01) (Chemical Computing Group Inc., 2019). The details of
the 3D descriptors calculation are described in Supplementary Text
S1. Descriptors calculated from both the whole peptide (whole-pep-

tide descriptors) and each substructure (substructure descriptors)
were standardized using Z-score as zi ¼ xi�l

r (l is the average value

of whole-peptide descriptor x, and r is the standard deviation of x).
In the case of substructure descriptors, each descriptor value for a
specific substructure is weighted based on its appearance frequency

within the experimental data used (Supplementary Fig. S2). Whole-
peptide predictors were used to select descriptors and construct

comparison models, and substructure descriptors were used to con-
struct baseline and CycPeptPPB models.

2.3 Descriptor selection
2.3.1 Preprocessing of whole-peptide descriptors

To remove the meaningless descriptors for PPB prediction, prepro-

cessing based on whole-peptide descriptors was performed.

1. Whole-peptide descriptors with values that were constant among

all cyclic peptides were removed (323 ! 294 descriptors).

2. For whole-peptide descriptor pairs with an absolute value of the

correlation coefficient of 0.95 or more, the one with a lower cor-

relation with the objective variable %PPB50�95 was removed

(294 ! 147 descriptors).

These 147 whole-peptide descriptors are listed in the
Supplementary Data.

2.3.2 Selection of highly interpretable descriptors

The number of descriptors was still large, and further selection of

feasible descriptors was needed. Bolasso (Bach, 2008) is a feature se-
lection method that incorporates the bootstrap method into Lasso

(Tibshirani, 1996) and can extract highly important feature sets.
Thus, whole-peptide descriptors were selected using a method like
Bolasso. The feature selection algorithm is described in Algorithm

S2. Three descriptors, logP(o/w), PEOE_VSA–1 and logS, were
selected as a result. The changes in the selected descriptors due to

the Lasso hyperparameters a are discussed in Section 4. The same
three substructure descriptors were selected to construct baseline
and CycPeptPPB models.

2.4 Designing prediction techniques suitable for cyclic

peptides
2.4.1 Construction of 1D-CNN input feature map by substructure

descriptors

First, the main chain of the cyclic peptide was cut at the cyclized

position. Next, the substructure descriptors were arranged in the
center of the input layer as shown in Supplementary Figure S3 based
on the sequence information, to generate the input feature map of

the 1D-CNN model. This input method can express the number of
substructures and sequence position information of the
substructures.
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2.4.2 Proposed convolution method (CyclicConv)

The conventional 1D-CNN cannot express circularity. To overcome
this limitation, we proposed a new convolution method that supple-
mented adjacent substructures at both ends of an input peptide se-

quence (CyclicConv, Fig. 2A).

2.4.3 Augmentation for input feature map

In addition to CyclicConv, we proposed data augmentation as a
method to express cyclical structure. As shown in Figure 2B, data

augmentation was performed based on the rotation and translation
of the input peptide sequence. The peptide with the largest number

of substructures in the experimental data was composed of 15
substructures, and augmentation yields n� ðMaxlengthð¼
15Þ � nþ 1Þ feature map replicas from the cyclic peptide with n sub-

structures (363 peptides! 18 999 replicas). In addition, augmenta-
tion can express cyclic information of cyclic peptides to some extent.

Moreover, predictions can be performed based on relative position
information rather than absolute position information of a se-
quence, leading to improved generalization performance and robust-

ness of the prediction model.

2.5 Architecture of prediction models
2.5.1 Baseline model and three CycPeptPPB models

Using the input format of the 1D-CNN model described earlier, we
constructed four CNN prediction models (a baseline model and the

CycPeptPPB models 1, 2 and 3) based on substructure descriptors.
These models were built with the Chainer framework (version

7.1.0) (Tokui et al., 2015). The model using the ordinary convolu-
tional method was used as the baseline model, and the model using
CyclicConv was used as CycPeptPPB model 1. Furthermore, to as-

sess the effect of augmentation, we devised CycPeptPPB model 2,
which combines augmentation and the ordinary convolution

method and CycPeptPPB model 3 that combines augmentation and
CyclicConv. Figure 3 shows the basic architecture of these CNN
models and differences among them.

Several efficient hyperparameter search methods based on
Bayesian optimization have been widely used (Ban et al., 2017). In

this study, we used Optuna (version 2.2.0) (Akiba et al., 2019) to
optimize hyperparameters, including the number of convolutional
layers and CyclicConv layers for each CNN model. The search range

of target hyperparameters and their search results are shown in
Supplementary Tables S3 and S4.

2.5.2 Comparison with conventional methods

We also compared CycPeptPPB models with three conventional
methods to assess the importance of using the substructure descrip-
tor. ADMET Predictor (version 10.0) (Simulations Plus Inc., 2020)
is an integrated suite of cheminformatics that examines how the mo-
lecular structure of a compound is related to the ADME-Tox prop-
erties. To compare the CycPeptPPB model with the existing PPB rate
prediction software, we used ADMET Predictor as the comparison
model 1. Additionally, an SVM model (comparison model 2) and
RF model (comparison model 3) based on three selected whole-
peptide descriptors were constructed. The hyperparameters of these
two models were determined by grid search. The search range and
optimal hyperparameters are shown in Supplementary Table S5.

2.6 Evaluation method
Supplementary Figure S4 shows the overall flow of the model pre-
diction accuracy evaluation. When using the data augmentation
technique to increase the amount of experimental data, not only
training but also test data input was augmented, and the average
predicted value of all replicas was used as the final predicted value.
MAE (%) and R were used as evaluation indices in this study. If the
predicted value was less than 50%, it was rounded to 50%, and if it
exceeded 95%, it was rounded to 95%. The definitions of these in-
dices are shown in Equations (1) and (2). Here, yi is the experimen-
tal value of the ith data, and y is the average value of the
experimental value. ŷi is the predicted value of the ith data, and ŷ is
the average value of the predicted values.

MAE ¼

Pn
i¼1

jyi � ŷij

n
(1)

R ¼

Pn
i¼1

ðŷi � ŷ Þðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðŷi � ŷ Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

ðyi � yÞ2
s (2)

From the viewpoint of compound screening, whether the PPB
rate exceeded 80% was an important consideration for drug devel-
opment. In addition, drugs with a high binding rate may differ sig-
nificantly from drugs with a low binding rate in terms of tissue
penetration and half-life (Scheife, 1989). Therefore, to select a better
compound, it is important to evaluate whether the PPB rate in the
region exceeds 80%. In this study, in addition to the prediction ac-
curacy of %PPB from 50% to 95% (%PPB50�95), the prediction ac-
curacy of 80–95% was evaluated (%PPB80�95). In the latter case,
cyclic peptides with experimental values of 80% or more were

(A)

(B)

Fig. 2. (A) Comparison of the conventional convolution method (1D-CNN) and the

proposed convolution method (CyclicConv). In the case of kernel size of 3, substruc-

ture C is supplemented to the left of A and substructure A is supplemented to the

right of C. By this operation, the information of CAB and BCA can be correctly

acquired as a result of the CyclicConv. (B) Augmentation (rotation and translation)

based on the sequence information

Fig. 3. Architecture of the baseline model and CycPeptPPB models 1, 2 and 3. The

structure of the pooling layer and the fully connected layer was the same for all four

models. In addition, all convolutional layers and fully connected layers used batch

normalization
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selected as calculation targets from test data. The evaluation indices
were calculated from these predicted values. Similarly, if the pre-
dicted value exceeded 95%, it was rounded to 95%.

2.7 Analysis of prediction results by Saliency Score
Cyclic peptides composed of natural amino acids of x residues have
20x combinations, and it is computationally impossible to perform a
trial-and-error-based search of the entire space for a better PPB rate.
Therefore, from the perspective of efficient design and optimization
for the development of cyclic peptide drugs, determining which sub-
structure enhances %PPB and which has no effect on %PPB is neces-
sary. We analyzed the importance of each substructure using the
Saliency Score defined with the Saliency Map and calculated the
contribution of the partial substructure to the PPB rate prediction.

The Saliency Map was originally defined as a heatmap that esti-
mates the parts of a visual image to which people pay attention
when viewing it. Many methods have been reported to calculate the
Salience Map of deep learning models (Garcia-Diaz et al., 2012;
Kümmerer et al., 2014), and VanillaGrad (Baehrens et al., 2010) is
one of the simplest methods. We applied it to calculate Saliency
Score si ¼ ðsijÞ for peptides i based on the input (feature map) xi ¼
ðxijÞ and output (predicted value) ŷi as sij ¼ j@ŷi=@xijj.

3 Results

3.1 PPB rate prediction results
The prediction accuracy for internal test data and external test
(DrugBank) data by all seven models is shown in Tables 1 and 2, re-
spectively. In addition, the experimental %PPB and predicted %PPB
for comparison model 1 (ADMET Predictor), CycPeptPPB model 1
(CyclicConv) and CycPeptPPB model 2 (augmentation) are plotted
in Figure 4, whereas the results for the other four models are plotted
in Supplementary Figure S5. According to the prediction results
shown in Table 1 (internal test data), comparison model 1
(ADMET Predictor) exhibited the worst prediction accuracy for test
data (R ¼ 0:60 in 50–95%). This result showed that the convention-
al method cannot accurately predict %PPB of cyclic peptides.
Comparison model 2 (SVM) and comparison model 3 (RF), using
the whole-peptide descriptors calculated from the entire cyclic pep-
tide (R ¼ 0:79 through 0.81 in 50–95%), exhibited higher predic-
tion accuracy than the comparison model 1. The results indicated
that the proposed whole-peptide descriptor selection method
worked correctly and that the three descriptors, logP(o/w),
PEOE_VSA-1 and logS, were appropriate for prediction. The base-
line model and CycPeptPPB model 1 (CyclicConv), using substruc-
ture descriptors, obtained higher prediction accuracy than any of the
comparison models (R ¼ 0:88 through 0.89 in 50–95%). Both mod-
els exhibited similar prediction accuracies, and CyclicConv did not
notably improve prediction accuracy compared to the baseline
model. CycPeptPPB model 2 (augmentation) and CycPeptPPB model
3 (CyclicConv and augmentation) further improved prediction ac-
curacy compared to the baseline model and CycPeptPPB model 1
(MAE ¼ 3:99% through 4.06%, R ¼ 0:90 in 50–95%).

For the external test data, in contrast to the internal test data, all
comparison models exhibited comparable accuracy in the range of
50–95%, as shown in Table 2. However, since comparison model 1
(ADMET Predictor) tended to predict high PPB rates for most cyclic
peptides (about 70% or more, Fig. 4C), the prediction accuracy was
higher than comparison model 2 and 3 (SVM and RF, respectively)

in the range of 80–95%. As CycPeptPPB model 1 (CyclicConv) also
tended to predict high PPB rates for external test data, the MAE was
the best among the models in the range of 80–95% (Fig. 4A),
whereas there was no correlation in the range of 80–95%. Overall,
due to the difficulty in predicting PPB rates of peptides with fatty
large side chains in the external test data, the prediction accuracy in
the range of 80–95% was inferior to that in 50–95% for all seven
prediction models (more detailed discussion was summarized in
Supplementary Text S2). CycPeptPPB model 2 (augmentation)
exhibited the best performance for the external test data (Fig. 4B,
R ¼ 0:92 in 50–95%). CycPeptPPB model 3 (CyclicConv and aug-
mentation) was not better than CycPeptPPB model 2. Accordingly,
the CycPeptPPB model 2 was used as the representative model of
this study.

3.2 Important substructures contributing to PPB rate

prediction
The top 10 substructures (represented by original #IDs defined in
this study) with the highest contributions calculated from the
Saliency Score were 100ð10Þ; 24ð1Þ; 54ð1Þ; 103ð1Þ; 114ð1Þ; 125ð1Þ;
121ð1Þ; 90ð11Þ; 118ð1Þ and 41ð14Þ (numbers in the parentheses indicate
the number of cyclic peptides with the corresponding substructure).
Among these substructures, 103; 114; 125;121; and 118 were relatively
large substructures (Molecular Weight: 221 through 876) from the
DrugBank dataset (these structures are shown in Supplementary Fig. S6).
Many of the important substructures had alkyl chains and aromatic rings,
while the number of hydrogen bond donors and acceptors were small,
indicating that there were many hydrophobic structures. In fact, the stand-
ardized logP(o/w) of these substructures, indicating extreme hydrophobi-
city compared with other substructures (e.g. alanine was –0.48), such as
2.54 for 118 and 1.26 for 125. In contrast, hydrophilic substructures had
lower Saliency Scores (e.g. arginine ranked 78 out of all 126 substructures).
These results suggest that the presence of the hydrophobic side chain is the
primary factor that enhanced the PPB rate. Indeed, HSA, which is most
abundant in plasma proteins, has a hydrophobic binding pocket
(Lambrinidis et al., 2015). A high binding rate with HSA may be obtained
in the presence of a structure that can bind to the hydrophobic binding
pocket, such as fatty acids (Schmidt et al., 2013), which is in accordance
with our results.

4 Discussion

4.1 Selected descriptors
In descriptor selection, the hyperparameter a of Lasso was changed
by 0.2 steps in the range of 0.5 through 4.9. Supplementary Table
S6 shows the top seven frequently selected descriptors with varying
a. Descriptors for lipophilicity (logP(o/w), SlogP etc.), hydrophilicity
(logS) and partial charge (PEOE_VSA-1, PEOE_VSA_FPNEG) were
often selected regardless of the value of a. Lipophilicity-related
descriptors are important for PPB rate prediction (Ingle et al., 2016;
Lambrinidis et al., 2015). Among them, logP(o/w), the logarithm of
the water-octanol partition coefficient, is moderately correlated
with the PPB rate (R with %PPB50�95 is 0.68). Hydrophobic com-
pounds with a negative charge tend to bind to HSA well. Therefore,
partial charge-related descriptors that depend on the ionization state
of the peptide, in addition to lipophilicity descriptors, may enhance
prediction performance. The relationship between ionization states
and prediction accuracy is discussed further in Supplementary Text

Table 1. Prediction accuracy of internal test data

%PPB

range

Evaluation

index

Baseline

model

CycPeptPPB

model 1

CycPeptPPB

model 2

CycPeptPPB

model 3

Comparison

model 1

Comparison

model 2

Comparison

model 3

50–95% MAE (%) 5.09 5.50 3:99 4.06 11.17 6.83 7.86

R 0.89 0.88 0:90 0:90 0.60 0.81 0.79

80–95% MAE (%) 4.64 3.85 2.65 2:00 6.10 3.65 6.13

R 0:94 0.85 0.93 0.83 0.37 0.59 0.66

Note: The best result for each evaluation index is indicated in bold.
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S3. Most 3D descriptors calculated by MOE were related to poten-
tial energy, polar surface area, etc., and no 3D descriptors appeared
among the top seven in any hyperparameter a. Cyclic peptides in the
PD dataset and Tajimi dataset might be described only with 2D
descriptors that do not use any 3D structural information.

With respect to learning time and overfitting, it is desirable to
use minimal number of descriptors. Accordingly, three descriptors
(logP(o/w), PEOE_VSA-1, logS) consistently selected with the range
of a ¼ 4:3 through 4.9 were used. The extraction of descriptors
facilitated the training of prediction models, although the training
data were less extensive than that of general deep learning models.
The distribution of the selected whole-peptide descriptors and that

of the objective variable are shown in Figure 5, while the distribu-
tion of substructure descriptors is shown in Supplementary Figure
S7. All three whole-peptide descriptors had a correlation with the
objective variable (jRj ¼ 0:61 through 0.68). Peptides of the external
test data were widely distributed with reference to logP(o/w) but
were biased with reference to the other two descriptors. Therefore,
it is considered difficult to predict the PPB rate of the external test
data with a single descriptor alone.

4.2 Principal component analysis revealed the

effectiveness of the descriptor selection
To compare the property distributions of internal and external test
data relative to the training data, principal component analysis (PCA)
was performed. The internal and external test data were converted
using the eigenvectors obtained from the training data. From the results
shown in Figure 6A, various cyclic peptides spreading in the principal
component space were selected as the test data by the KS algorithm.
However, the summed contribution rate of both PC1 and PC2 was ap-
proximately 40%, and it was difficult to distinguish whether the PPB
rate was over 80% or not, based on these two components. Some cyc-
lic peptides from the external test data seemed dissimilar to all peptides
of the training data. In contrast, the PCA space with three selected
descriptors (Fig. 6B) showed that the external test data were almost in
the same range as the training data, despite the unique structures of the
cyclic peptides in the external test data. The results indicated that the
PPB rate of the external test data can be predicted using selected
descriptors. Though it is difficult to distinguish between the high
%PPB and low %PPB of external test data with PC1 only, it is possible
to distinguish internal test data to some extent. If the PC1 value was
less than 0.0, the PPB rate tended to be 80% or higher for training and
internal test data. When the value of PC1 exceeded 2.0, the PPB rate
tended to be less than 80% for training and internal test data. Thus,
the appropriate whole-peptide descriptors were successfully selected by
the proposed descriptor selection procedure.

4.3 Analysis of acetyl-daptomycin and daptomycin

predictions with similar main structures
The external test (DrugBank) data contained some structurally simi-
lar pairs. We analyzed the prediction results of acetyl-daptomycin
and daptomycin (Fig. 7) among them, which differed only in the

Table 2. Prediction accuracy of external test data (DrugBank dataset)

%PPB

range

Evaluation

index

Baseline

model

CycPeptPPB

model 1

CycPeptPPB

model 2

CycPeptPPB

model 3

Comparison

model 1

Comparison

model 2

Comparison

model 3

50–95% MAE (%) 6.55 15.60 4:79 8.97 15.08 13.31 12.55

R 0.89 0.66 0:92 0.87 0.63 0.42 0.50

80–95% MAE (%) 7.69 4:22 6.17 7.61 9.64 22.92 20.53

R 0.17 0.13 0:43 0.14 –0.41 –0.56 –0.50

Note: The best result for each evaluation index is indicated in bold.

(A) (B) (C)

Fig. 4. Prediction results of CycPeptPPB model 1 (A), model 2 (B) and comparison model 1 (C), for internal test data (red) and external test data (green). The horizontal axis is

experimental %PPB, the vertical axis is predicted %PPB of each method, and the dark background color shows the range over 80%

Fig. 5. Distribution of three selected whole-peptide descriptors and objective varia-

bles. Cyclic peptides in training data, internal test data and external test data

(DrugBank dataset) are shown as blue, red and green dots, respectively
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fatty acid side chain corresponding to the substructures 124 and
125. According to the results of Schneider et al. (2017), the N-ter-
minal fatty acid side chain of daptomycin (substructure 125) specif-
ically binds to HSA by deeply piercing the binding pocket Site 1,
resulting in the high PPB rate (92%). In contrast, acetyl-daptomycin
does not have the fatty acid side chain, resulting in the low PPB rate
(12%). These differences, however, were hardly reflected to whole-
peptide descriptors; thus, Tajimi et al. (2018) reported that it was
difficult to distinguish them (predicted %PPB value by Tajimi of
acetyl-daptomycin: 18%; daptomycin: 49%). The same tendency
was obtained with our whole-peptide descriptor-based models (com-
parison models 2 and 3, predicted %PPB50�95 value of acetyl-
daptomycin: 51% through 56%; daptomycin: 53% through 57%).

However, our CycPeptPPB model, which is based on substruc-
ture descriptors, correctly predicted their PPB rates. From the heat
map of Salience Score shown in Figure 7, both 124 and 125
attracted the most attention from the prediction model, and the
model distinguished the structural change even though these two
structures were not utilized in model training. The prediction values
and analysis suggested that the proposed method with substructure
descriptors was effective. It also revealed that the Saliency Score
could detect important side chains.

5 Conclusion

In this study, a high-performance PPB rate prediction model,
CycPeptPPB, for cyclic peptides based on deep learning techniques

was proposed. CycPeptPPB model 2, utilizing data augmentation,
succeeded in obtaining excellent prediction accuracy (MAE of
4.79%, R of 0.92) for external test data. This model was able to dis-
tinguish between the PPB of acetyl-daptomycin and daptomycin,
which are similar in structure but differ with respect to PPB rate.
Furthermore, we proposed the use of Salience Score as a method for
identifying the substructures that are important for predicting PPB
rate. The Salience Score can provide insight into actual drug devel-
opment and support lead compound optimization. Although we
provided 3D descriptors as well as 2D descriptors, no 3D descriptor
was selected. Future improvements on the usage of 3D conformation
information might contribute to better prediction performance. The
proposed prediction method allows the selection and design of cyclic
peptides with a high PPB rate, which reduces the failure rate in clin-
ical tests and accelerates the development of cyclic peptide drugs.
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