
TECHNOLOGY AND CODE
published: 15 November 2019
doi: 10.3389/fninf.2019.00069

Frontiers in Neuroinformatics | www.frontiersin.org 1 November 2019 | Volume 13 | Article 69

Edited by:

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

Reviewed by:

William W. Lytton,

SUNY Downstate Medical Center,

United States

Padraig Gleeson,

University College London,

United Kingdom

*Correspondence:

Joshua C. Crone

joshua.crone.civ@mail.mil

Received: 02 August 2019

Accepted: 30 October 2019

Published: 15 November 2019

Citation:

Crone JC, Vindiola MM, Yu AB,

Boothe DL, Beeman D, Oie KS and

Franaszczuk PJ (2019) Enabling

Large-Scale Simulations With the

GENESIS Neuronal Simulator.

Front. Neuroinform. 13:69.

doi: 10.3389/fninf.2019.00069

Enabling Large-Scale Simulations
With the GENESIS Neuronal
Simulator
Joshua C. Crone 1*, Manuel M. Vindiola 1, Alfred B. Yu 2, David L. Boothe 2, David Beeman 3,

Kelvin S. Oie 2 and Piotr J. Franaszczuk 2,4

1Computational and Information Sciences Directorate, Army Research Laboratory, Aberdeen Proving Ground, MD,

United States, 2Human Research and Engineering Directorate, Army Research Laboratory, Aberdeen Proving Ground, MD,

United States, 3Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO,

United States, 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States

In this paper, we evaluate the computational performance of the GEneral NEural

SImulation System (GENESIS) for large scale simulations of neural networks. While

many benchmark studies have been performed for large scale simulations with leaky

integrate-and-fire neurons or neuronal models with only a few compartments, this work

focuses on higher fidelity neuronal models represented by 50–74 compartments per

neuron. After making some modifications to the source code for GENESIS and its

parallel implementation, PGENESIS, particularly to improve memory usage, we find that

PGENESIS is able to efficiently scale on supercomputing resources to network sizes as

large as 9 × 106 neurons with 18 × 109 synapses and 2.2 × 106 neurons with 45 ×
109 synapses. The modifications to GENESIS that enabled these large scale simulations

have been incorporated into the May 2019 Official Release of PGENESIS 2.4 available

for download from the GENESIS web site (genesis-sim.org).

Keywords: large-scale simulation, spiking neuronal network, computational neuroscience, multi-compartment

neuron model, high performance computing, multiscale modeling

INTRODUCTION

Computational models of neurons and neural networks have become an increasingly critical tool
in neuroscience. Not only are they used as complementary tools to test theoretical hypotheses and
cross-validate experimental data, but they are often a primary mechanism for scientific discovery.
Modeling and simulation can be used to probe the fundamental mechanisms of neural networks
at spatial and temporal scales well-below current experimental capabilities. Moreover, given the
scale and complexity of brain-like neural networks, analytically tractable representations of the
network dynamics and functionality are unlikely, further motivating the need for simulation in
computational models.

As computational models have become more integrated into the study of the dynamics and
function of neural networks, the demand for larger and higher fidelity models has grown. Large
scale models containing millions to billions of neurons are necessary to capture the coordinated
interaction of multiple brain regions and to represent the respective densities of local and
long-range synaptic connections between neurons that are typically found in biological brains.
High fidelity neuronal models with complex morphologies are required to accurately represent
anatomical and functional variability in neuronal populations and also to portray interactions
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between local neuronal properties and neural activity at the
network level. Understanding the role of non-linear neuronal
properties such as intrinsic oscillations, resonance, bursting, and
rebounds requires realistic ionic-channel based neuronal models.
Likewise, studies of dendritic computation need morphologically
detailed neuron models. It is increasingly important to model
field potentials that are generated by cortical activity, as measured
by scalp or cortical surface electrodes. For this, one needs
multi-compartmental neuron models with enough realism in the
dendritic morphology and the location of synapses to properly
account for the location of themajor sinks and sources of currents
in the extracellular medium (Kudela et al., 2018).

The multiscale nature of large-scale, high-fidelity neuron
modeling, where spatial and temporal scale can vary by many
orders of magnitude, introduces a number of computational
challenges. These challenges have limited the simulation size,
fidelity, and time duration that is computationally tractable.
Computational models of single neurons can include hundreds
to thousands of coupled ordinary differential equations (ODEs)
to account for the complexity of their biology and behavior
(De Schutter and Bower, 1994). When combined to form large-
scale networks with millions of neurons, the number of ODEs
that must be simultaneously solved becomes daunting. Parallel
neuronal simulators have been developed (Hines and Carnevale,
1997; Bower and Beeman, 1998; Gewaltig and Diesmann, 2007)
that partition the neural network across multiple processing
elements (PEs) to speed up computation. However, the discrete
nature of neuronal spiking and the complex connectivity of
neural networks presents a unique challenge in achieving efficient
parallel scalability. In many non-neuronal systems, spatial cutoffs
or compact support can be enforced to limit the required
communication to PEs representing adjacent spatial regions of
the system. In many other systems where long-range interactions
are important, methods such as multipole expansion can be
employed to reduce both computation and communication costs
by exploiting the spatially decaying strength of the long-range
interactions (Carrier et al., 1988). However, such approximations
are not consistent with what we know about the biology of
neural systems. While on average, neurons make on the order
of 10,000 synaptic connections to other neurons, the number
any given neuron makes can vary from hundreds to hundreds
of thousands and are spread over a wide range of spatial scales.
This implies that large models of neural networks may require
communication between many, if not all, PEs. Furthermore, the
interaction between presynaptic and post-synaptic neurons is
discrete, as the interaction effects are “on” within some window
of the spiking of the presynaptic neuron and “off” otherwise.
Because of this discretization, the long-range interactions are not
spatially decaying and cannot be homogenized.

Another challenge to large-scale neural models with
biologically realistic neuronal models is the wide range of
timescales that are relevant to neural behavior, with processes
spanning frommicroseconds (µs) to hours or longer. Simulation
of very long timescale behaviors is generally limited by current
computational resources, but realistic models of brain behavior
at the timescales of organismic behavior—seconds to minutes—
require reproducing or otherwise accounting for the dynamics

of processes of molecular, cellular, and network processes that
operate on shorter timescales. While advanced time integration
methods have made significant progress in increasing the
required time step size without losing simulation fidelity,
capturing the dynamics across this range of timescales can
require hundreds of thousands to millions of computational
steps, and it is critical that each step is evaluated as efficiently
as possible.

To address the computational challenges of modeling neural
networks, numerous simulators have been developed over the
past two decades. Two of the most actively developed neuronal
simulators, NEURON (Hines and Carnevale, 1997) (www.
neuron.yale.edu/neuron/), and NEST (Gewaltig and Diesmann,
2007) (www.nest-simulator.org), have optimized for different
tradeoffs between fidelity and scale. NEURON is efficient in
modeling high-fidelity, biologically realistic neurons consisting
of thousands of compartments and has been used extensively
in many of the biggest research initiatives on detailed modeling
of the brain (Markram et al., 2015; Arkhipov et al., 2018).
Recently, NEURON has demonstrated the ability to model ∼8
× 105 neurons, represented by an average of 700 compartments
per neuron (Kumbhar et al., 2019). In this work NEURON
demonstrated excellent scalability on over 30,000 PEs. However,
it has not yet been demonstrated that NEURON can scale up
to modeling millions of neurons. NEST, on the other hand,
has demonstrated the ability to model hundreds of millions of
neurons with trillions of synapses while scaling to 10,000’s of
PEs (Jordan et al., 2018). However, NEST is unable to simulate
neurons with complex morphologies, limiting the biological
realism of its models. Both NEST and NEURON were recently
used for a large scale parallel model of cerebellar cortex with
96,734 cells of several types (Casali et al., 2019). The model was
run on parallel computers using the pyNEST and pyNEURON
simulators (Eppler et al., 2009; Hines et al., 2009). Both simulators
gave similar results and produced firing rates before, during, and
after stimulation that were nearly identical. However, the neurons
were represented as single-point leaky integrate-and-fire models.

The neuronal simulator, PGENESIS (Bower and Beeman,
1998) (genesis-sim.org), shares many of the benefits of both
NEURON and NEST. PGENESIS is a parallel implementation
of the GEneral NEural SImulation System (GENESIS). GENESIS
and NEURON use the same algorithms and numerical methods
for simulations. They have similar modeling capabilities and
performance on large, single-cell models (Bhalla et al., 1992;
Gleeson et al., 2010). However, we are not aware of any
benchmark comparisons for a large network model with multi-
compartmental neurons. In spite of these similarities, from the
outset, there were major differences in design that influenced the
way that the two simulators are used and the way that simulations
are created. From the beginning, GENESIS was designed to be
object-oriented, with precompiled simulation objects that are
linked in a high-level simulation language. This also provides
powerful scripting commands for creating and connecting large
networks of neurons. This design allows modelers to easily
extend the capabilities of the simulator, and to exchange, modify,
and reuse models or model components. These objects are
organized into libraries, with documentation provided for adding
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to these libraries or creating new ones. User extensibility is
provided at the basic level of writing functions in C to create
new objects or commands. This modularity has also made it
possible for users with a little programming expertise to easily
add new commands or objects to GENESIS. For this reason,
GENESIS development has always relied heavily on contributions
from users. The GENESIS script interpreter can interact with
a running simulation, pausing to make changes, including
addition or deletion of simulation elements or messages. This
allows interactive development of simulations without quitting to
recompile. GENESIS provides a variety of graphical visualization
objects that can be linked to other objects in simulation scripts
for a run-time display of results. However, most large PGENESIS
simulations are run in batch mode with simulation output
directed to files. PGENESIS provides parallel versions of objects
that can output any simulation variable to files at clocked
intervals. These are then analyzed or displayed with external
tools such as Matlab or the collection of Python network analysis
tools that are provided with GENESIS. Although it would not be
difficult to do, we are not aware of any efforts to develop a Python
interface for the GENESIS script interpreter. In NEURON, the
scripts are written in modified versions of the languages HOC
and MOD (NMODL), which are then compiled into C for
execution. Model parameters can be changed at run-time, but
not the model itself. New channels and other simulation objects
can be specified and compiled into a NEURON simulation
using NMODL. Extensions to NEURON itself are added by
the development team. The NEURON simulation code is not
object-oriented, although NEURON now has a Python interface
(Hines et al., 2009) that uses an object-oriented model in building
simulations, but not at the implementation level.

Another actively developed neuronal simulator for modeling
multicompartmental neurons is the Multiscale Object-Oriented
Simulation Environment (MOOSE) (https://moose.ncbs.res.in).
Currently, most applications are for modeling biochemical
reactions and single cell models, for which parallel support is
being developed.MOOSE has a robust Python scripting interface,
providing a Python-based interface for creating models. It
also inherits the GENESIS script parser, giving it backwards
compatibility with GENESIS for those objects and commands
that have been implemented in MOOSE. As parallel support
for network modeling in MOOSE improves, it may also
provide a means for providing Python scripting in parallel
PGENESIS simulations.

The modularity and multi-compartment solver efficiency
of GENESIS, coupled with the sophisticated algorithms of
PGENESIS for communicating spikes across PEs, makes
PGENESIS an appealing option for performing large-scale, high-
fidelity neural simulation. Therefore, it is the goal of this work
to assess the viability of PGENESIS for simulating large-scale
networks of high fidelity neurons on supercomputing resources.

In this report, we use a high fidelity neural network model
that includes structural characteristics of the thalamocortical
network (Traub et al., 2005; Kudela and Anderson, 2015; Boothe
et al., 2017) to benchmark the performance and scalability
of PGENESIS. We identify a number of bottlenecks limiting
scalability to large scale networks and present solutions to these

bottlenecks. Finally, we evaluate the parallel performance of our
modified PGENESIS framework while assessing the effects of
various simulation parameters that influence parallel scalability.
We demonstrate that PGENESIS is able to efficiently simulate
networks with millions of high fidelity model neurons with
thousands of connections per neuron.

METHODOLOGY

Benchmark Model
The benchmark model used in this work was a previously
published model of the thalamocortical network (Traub et al.,
2005; Kudela and Anderson, 2015; Boothe et al., 2017). Source
code for the model used in the present study is available
on ModelDB (McDougal et al., 2017) at http://modeldb.yale.
edu/260267. The model contained 12 cell types (6 excitatory
and 6 inhibitory) organized into layers that correspond to
cortical layers two through six in the neocortex of the human
brain (Traub et al., 2005). Each cell was represented by 50–
74 compartments with each compartment containing up to 14
voltage gated channels. Groups of neurons were organized into
microcolumns containing 61 neurons with multiple instances
of some neurons. This microcolumnar unit was repeated in
the XY plane to generate larger networks. Synaptic connections
between neurons were determined by anatomically informed
probabilities. Connections between each compartment, neuron
type, and cortical layer were assigned a connection probability
based on published parameters (Traub et al., 2005). Gap junctions
were not included in our model, in contrast with the previously
published model, which included both synaptic connections and
gap junctions. Since we were simulating a contiguous section
of cortical gray matter, distances between neurons were short
and probabilities did not vary with distance. This network
connectivity scheme is believed to be a worst-case scenario from a
parallel communication standpoint, as neurons on each PE were
equally likely to be connected to neurons on every other PE.
To ensure that the number of synaptic connections per neuron
was constant as model size increased, connection probabilities
were scaled equally by a factor dependent on the total number
of neurons in the simulation.

Maintaining a constant number of connections per neuron
while increasing the total number of neurons leads to overall
sparser connectivity. Sparser connectivity may lead to a decrease
in the average spiking rate. Since communication between
neurons in neural simulators is driven by spiking, we also
aimed to fix the average spiking rate by driving neurons with
an independent Poisson distributed spike train with an average
rate of 10Hz and setting the synaptic weights between neurons
to a very low value (1 × 10−9 arb. unit). This maintained
the computation and communication costs associated with
the spiking neurons and ensured that the spiking rate was
independent of the network sparsity.

Simulation Procedures
Simulations were performedwith the 2014 Preliminary Release of
PGENESIS 2.4 (referred to throughout this paper as “PGENESIS
2.4−2014”) and with our modified version of PGENESIS
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2.4 which has been incorporated into the May 2019 Official
Release of PGENESIS 2.4 (referred to throughout this paper
as “PGENESIS 2.4−2019”). Our modifications were made to
increase the number of neurons that can be simulated using
PGENESIS and are discussed in detail in section Modifications
to PGENESIS. All simulations were performed on Thunder,
an SGI ICE X located at the Air Force Research Laboratory
(AFRL) DoD Supercomputing Resource Center (DSRC). This
machine contains 3,216 compute nodes connected through
4x FDR InfiniBand interconnects with the Enhanced LX
Hypercube topology. Each node contains 36 2.3 GHz Intel
E5-2699v3 cores that share 126 GB of accessible memory.
Both versions of PGENESIS were compiled with the SGI
Message Passing Toolkit (MPT) version 2.14 to communicate
between PEs.

Partitioning of the neural network across CPU cores was
performed by dividing up the microcolumns. Simulations
were performed with 1, 4, and 16 microcolumns per core,
corresponding to 61, 244, and 976 neurons per core, respectively.
To assess the effect of connectivity on computational cost
and parallel scalability, simulations were run with 2,000 and
20,000 synaptic connections per neuron. To assess the effect of
spiking rate on the computational cost and parallel scalability,
simulations were run with independent Poisson distributed
spike trains with average rates of 10 and 100Hz. Since each
input spike can lead to 0, 1, or multiple spikes, the actual
average spiking rates for all neurons in the simulated network
can vary significantly from the input spike train frequencies.
Across the network sizes modeled in this work, the average
spiking rate ranged from 11.6 to 11.77Hz for the 10Hz
Poisson input and 46.8–47.5Hz for the 100Hz Poisson input.
Time integration was performed using the implicit Crank-
Nicholson method, employing the Hines (hsolve) method
(Hines, 1984). A time step size of 25 µs was used for
all simulations.

Two measures were used for evaluating the performance and
scalability of PGENESIS: wall clock time (T) and weak scaling
efficiency (E). For weak scaling studies, the problem size per CPU
core was fixed and the number of cores was increased from a
minimum number, m. Weak scaling efficiency on n CPU cores
was then defined as

E (n) =
Tm

Tn
∀ n ≥ m (1)

where Tn is the wall clock time on n CPU cores and Tm is the
wall clock time on m CPU cores. In this work, m was chosen
such that the number of neurons in the system was on the order
of the number of connections per neuron. This was to prevent
simulations where each neuron was connected to every other
neuron numerous times, which is unrealistic. A weak scaling
efficiency of 1 corresponds to ideal performance and lower values
of E correspond to lower parallel efficiency.

Modifications to PGENESIS
Early in our evaluation of the scalability of PGENESIS, we
encountered three issues which inhibited our ability to complete
the assessment. In this section, we describe the issues, as well

as our modifications made to PGENESIS to address these
issues. These improvements have been merged into the May
2019 Official Release (PGENESIS 2.4−2019). The combined
GENESIS/PGENESIS 2.4 Official Release distribution may be
downloaded from the GENESIS web site (http://genesis-sim.org).

Repeatable Connectivity
Repeatability is a critical property of computational algorithms
and tools. Without repeatability it is difficult, if not impossible, to
assess if changes to the system response are due to intentional
changes in the model or due to the inherent variability in the
assignment of synaptic connections. In PGENESIS 2.4−2014,
the standard way in which connections are made between
neurons on remote cores does not lead to repeatable network
connectivity. To demonstrate the effect of variable connectivity
on the simulation output, we performed repeated simulations
with identical input commands to generate the neural network
model and identical random seeds for the Poisson distributed
spike train input. Note that in these simulations we set the
synaptic weights to 1, rather than 1 × 10−9 as done in all
other simulations in this report. This caused the network to
be driven more by activity in the neurons as opposed to the
Poisson distributed spike train input. The variability is illustrated
in Figure 1, where the local field potentials (LFPs) from two
simulations with identical input are plotted in Figure 1A. Taking
the difference between LFPs in Figure 1B reveals that the
variability is on the same order as the LFP. And while these LFPs
look qualitatively similar in this case, the magnified view from
the insert in Figure 1A suggests that the spike timing between
runs may vary by up to 1ms. It has been shown that small
perturbations in the spike timings of individual neurons can
be amplified to large deviations in the macroscopic behavior
due to the complex, non-linear response of neural networks
(London et al., 2010).

The reason that network connectivity is not repeatable for
parallel simulations in PGENESIS is due to the way random
connections are made within the rvolumeconnect() function.
When a connection probability is provided to rvolumeconnect(),
the core containing the source neuron sends amessage to the core
containing the destination neuron. The destination core then
generates a random number and compares it to the connection
probability to determine if the connection should be made. This
leads to a race condition where even if rvolumeconnect() is
called in the same order every time, the destination cores will
process each potential connection pair in the order received,
which is not guaranteed to be consistent from one simulation
to the next. This will lead to different random numbers being
generated for each pair and, therefore, different connectivity. To
address this issue, we have changed rvolumeconnect() to generate
the random number on the source core, which ensures that
as long as rvolumeconnect() is called in the same order, the
resulting network connectivity will be identical. Figure 2 shows
that after modifying rvolumeconnect(), variations in LFPs are
on the order of machine precision. We note that repeatability
is only guaranteed for a fixed number of CPU cores and fixed
partitioning of the neural network.
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FIGURE 1 | Comparison of local field potentials (LFPs) between two

simulations with identical inputs on PGENESIS 2.4 – 2014. Model consists of

15,616 neurons partitioned on 256 CPU cores with a connection density of

2,000 synapses per neuron. (A) Raw LFP output measured ∼6µm above

cortical patch. The plot insert corresponds to a magnified view of the window

indicated by the gray box. (B) Difference in LFPs between simulations.

Memory Leaks
When attempting to scale PGENESIS 2.4−2014 to large
networks, memory quickly became the limiting factor. This is
demonstrated by the blue circles in Figure 3, which show the
memory usage per core with increasing network size while
maintaining 61 neurons per core and 2,000 connections per
neuron. Despite a fixed number of neurons and connections per
core, we observed a substantial increase in the memory usage
per core. This became a significant hindrance to scalability when
the memory usage per core surpassed the available memory
per core, which is 3.5 GB on Thunder and is indicated by the
dotted line in Figure 3. The crossover point for this benchmark
model was only ∼40,000 neurons. Beyond this network size, we
were forced to reduce the number of cores per node so that

FIGURE 2 | Comparison of LFPs between two simulations with identical

inputs after modifying the rvolumeconnect() function. Model consists of 15,616

neurons partitioned on 256 CPU cores with a connection density of 2,000

synapses per neuron. (A) Raw LFP output measured ∼6µm above cortical

patch. (B) Difference in LFPs between simulations.

each core could use a larger portion of the 126 GB of shared
memory. This significantly increased the computational cost.
For example, the 250,000 neuron simulation in Figure 3 was
partitioned onto 4,096 cores, but had a memory requirement of
almost 22 GB per core, limiting the number of active cores per
node to 5. With a limit of 5 cores per node, the 4,096 cores had
to be divided amongst 820 nodes, effectively requiring 29,520
cores. This discrepancy would only grow as the neural network
increased in size, requiring more memory per core. A linear
least-squares fit to the data is indicated by the solid blue line
in Figure 3. Assuming that the linear growth in memory usage
continues beyond 250,000 neurons, it is projected that by 1.4
million neurons, the memory usage per core would be too big to
run, even if limited to a single core per node. Due to the rapidly
growing memory usage, PGENESIS 2.4−2014 cannot efficiently
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FIGURE 3 | Memory usage per CPU core with and without the BDW-GC. The

symbols represents measurements from simulations. The solid lines represent

linear fits to the data. Dashed and dotted lines are the available memory on the

Thunder system.

run on high performance computing resources (HPC) at the
DSRC or many other supercomputing resource centers.

Memory profiling of PGENESIS 2.4−2014 suggested that
most of the increased memory usage was due to memory leaks,
rather than necessary increases in storage. An initial attempt to
fix the various memory leaks proved to be tremendously labor
intensive. To address the memory leaks more efficiently, we
integrated the Boehm-Demers-Weiser garbage collector (BDW-
GC) (www.hboehm.info/gc/) into PGENESIS. The BDW-GC
replaces standard memory allocation calls and automatically
recycles memory when found to be inaccessible. The red squares
in Figure 3 illustrate the significant reduction in memory cost
after integrating the BDW-GC. Without the garbage collector, a
simulation of 500,000 neurons was computationally intractable
due to the large memory requirement limiting the active CPU
cores per node to two. With the BDW-GC, the memory usage
is reduced by two orders of magnitude, enabling full use of each
node. A linear least-squares fit to the data is indicated by the solid
red line in Figure 3. The plot suggests that the memory usage still
grows linearly with increasing neural network size, however, the
rate of growth has decreased dramatically. Assuming the linear
scaling in memory usage with the number of neurons continues,
the memory per core limit would not be reached until ∼15
million neurons. Furthermore, the limiting system size at which
the memory requirements surpass 126 GB would increase to over
550 million neurons.

The added overhead with any garbage collector is always a
concern. To assess the added cost of the BDW-GC, we compared
the wall clock time for setup and to integrate 1 simulated second.

FIGURE 4 | Wall clock time for model setup and to integrate 1 s of simulation

time with and without the BDW-GC.

The results in Figure 4 reveal that both setup time and simulation
time are slower for large networks with the BDW-GC. However,
the simulation time is only 40% slower for the 250,000 neuron
simulation, and is faster for network sizes up to 15,000 neurons.
The wall clock time for setup of the 250,000 neuron simulation
increased by a factor of 4 with the BDW-GC. Whether this
is an acceptable increase in time will depend on the user and
simulation parameters. For example, if simulating large networks
for fractions of a second, the setup time will dominate and the
cost of the BDW-GC will be significant. However, this effect
will be much smaller if simulating a large network for tens of
seconds. We view the added cost of the BDW-GC to be an
acceptable tradeoff given the savings achieved by utilizing all of
the cores on the node and by enabling simulations that could not
otherwise be performed, even if utilizing a single core per node.
However, the BDW-GC is easily deactivated at compile time
in PGENESIS 2.4−2019, simply by omitting the GCMALLOC
flags in the well-documented Makefile. This gives the user the
ability to decide if the benefits of the BDW-GC outweigh the
costs. We also emphasize that the benefits of the BDW-GC
demonstrated in Figure 3 could be achieved without the added
costs demonstrated in Figure 4 by individually correcting the
memory leaks in GENESIS and PGENESIS, though it appears
that this would be a labor intensive process.

Integer Overflows
Another issue encountered when trying to scale the PGENESIS
2.4−2014 simulator to larger network sizes was an integer
overflow error, which occurred when the number of remote
messages became too large. Within the simulation parameters
used in this work, the integer overflow error occurred when
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trying to model 244 neurons per core with 20,000 synaptic
connections per neuron, resulting in ∼4.9 million synaptic
connections per core. A systematic study would be required to
determine the exact parameter space in which this error occurs.
However, we did not observe this error when simulating up to 1.2
million connections per core. The integer overflow is located in
the buffer manager code, which contains variables of type short
that are responsible for tracking remote messages. By changing
the variables types to 32-bit integers, the overflow issue was
eliminated for all simulation parameters used in this work.

PERFORMANCE AND SCALABILITY
RESULTS

Using our modified version of PGENESIS, we investigated the
parallel performance for the benchmark thalamocortical model.
The baseline model parameters were 2,000 synaptic connections
per neuron and 10Hz Poisson distributed spike train input.
The performance of this baseline model is presented in section
Partitioning Across CPU Cores. In the subsequent sections, we
varied the connection density and spiking rate to explore the
effects of these parameter changes on the performance of the
modified version of PGENESIS.

Partitioning Across CPU Cores
Wall clock times to integrate 1 simulation second, and
corresponding weak scaling efficiencies, are presented in
Figures 5A,B, respectively, for multiple network decompositions
with varying number of neurons per core. For each
decomposition, the minimum network size is 976 neurons
which corresponds to a minimum number of CPU cores (m)
of 64, 16, and 1 for 61, 244, and 976 neurons/core, respectively.
For small network sizes up to ∼50,000 neurons, we observe that
partitioning the network onto more cores is advantageous, as the
wall clock time is significantly smaller for the 61 neurons/core
partitioning. At ∼50,000 neurons, the communications cost
begins to dominate and the wall clock time rises rapidly for the
61 neurons/core partitioning. For each partitioning, the weak
scaling efficiency drops significantly between 256 and 1,024
cores. However, even in this regime there are clear benefits to
further parallelization. Take, for example, the 244 neurons per
core partitioning; when scaling from ∼250,000 neurons (1,024
cores) to ∼2.25 million neurons (9,216 cores), the wall clock
time only increased by a factor of 2.5, despite a 9x increase in the
system size.

For this particular model and range of network sizes, we
observe an approximate O(

√
N) scaling of the minimum wall

time with respect to the partitioning of neurons per core, where
N is the total number of neurons in the system. This scaling
is illustrated by the black dashed line in Figure 5A. While
constant wall clock time would indicate ideal scalability, this is
unrealistic for large neural networks given the non-local nature of
synaptic connections. Yet, the benefits of parallelization are clear
when one considers the best possible scaling when increasing
the system size on a fixed number of core is O(N), indicated
by the black dotted line in Figure 5A. At that scaling rate,

FIGURE 5 | (A) Wall clock time for simulations of neural networks with 2,000

synapses per neuron. (B) Weak scaling efficiency, defined in Equation 1, for

the timings in (A).

simulations of millions to tens of millions of neurons would be
computationally intractable.

Synaptic Connection Density
To investigate the effect of connection density on the time
to simulate 1 s of neural activity, we increased the number
of synaptic connections per neuron from 2,000 to 20,000.
We emphasize that, despite the higher connection density,
the spiking rate remained fixed due to the negligible synaptic
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weights as described in section Methodology. Due to the
higher connection density, the minimum network size was
increased to 3,904 neurons. A comparison of wall clock times is
shown in Figure 6A and reveals that simulation times increased
significantly with a higher connection density. For partitions of
61 and 244 neurons/core, the wall clock time increased by a factor
of 2–4 for a 10x increase in the number of synaptic connections.
This increase is not surprising given the added cost associated
with routing each spike to more local and remote neurons at the
higher connection density.

The weak scaling efficiencies observed in Figure 6B show
an improvement in weak scaling efficiency with increasing
connectivity. It is reasonable to expect that a higher connection
density would lead to higher communication cost, reducing
parallel efficiency. However, even at 2,000 connections per
neuron, it is likely that neurons will need to communicate with
neurons on most remote CPU cores. Whether that spike must
be communicated to one neuron or 10 neurons on the remote
core has limited effects on the communication costs. It is likely
that in the dilute limit of connection density, a notable effect on
the parallel efficiency would be observed. Yet in the biologically
realistic regime of thousands to tens of thousands of synaptic
connections per neuron, we observe a significant effect on the
wall clock time, but not on parallel efficiency.

Spiking Rate
We increased the spiking rate from 11.7 to 47Hz by increasing
the average frequency of the Poisson distributed spike train input
to each neuron from 10 to 100Hz. The resulting wall clock
times to integrate 1 simulated second are shown in Figure 7.
We find that for network sizes up to ∼500,000 neurons, the
effect of spiking rate is negligible. Even for network sizes beyond
500,000 neurons, the wall clock time increased by <20% despite
a 4x increase in spiking rate. These results are surprising as
we expected that both the frequency of communication and
the amount of communicated data would increase, resulting
in longer walk clock times for simulations. A more thorough
investigation of the communication algorithms employed in
PGENESIS and networking configuration of the messaging
passing interface (MPI) implementation are required to explain
why the wall clock time is sensitive to connection density yet
relatively insensitive to spiking rate.

Setup Time
As illustrated in Figure 4, the setup time was insignificant for
small neural networks, but can dominate the computational
cost when scaling to large networks. The majority of this
cost was in establishing 108-109 synaptic connections between
neurons. In Figure 8, we plot the setup times for all network
sizes, decompositions, and connection densities presented in this
report. For all simulation parameters, the setup times scaled as
approximately O(N) with the number of neurons. As expected,
fewer neurons per core and higher connection densities led
to longer setup times, because more remote connections must
be established. For network sizes up to 100,000 neurons, the
setup time was on the order of 1 h or less, which should be
negligible for most simulation durations. However, when the

FIGURE 6 | (A) Wall clock time for simulations of neural networks with 2,000

and 20,000 synapses per neuron. (B) Weak scaling efficiency, defined in

Equation (1), for the timings in (A).

network size surpassed one million neurons, the setup time
became significant. As discussed in section Memory Leaks,
removing the garbage collector by individually eliminating
the memory leaks may significantly reduce the setup time.
However, it is unlikely to reduce the O(N) scaling. To improve
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FIGURE 7 | Effect of spiking rate on the wall clock time to integrate 1

simulation second. The solid lines correspond to the original 10Hz Poisson

distributed spike train inputs which cause an average spiking rate of 11.7Hz.

The dashed lines correspond to 100Hz Poisson distributed spike train inputs

which cause an average spiking rate of 47Hz.

FIGURE 8 | Wall clock time to perform model setup.

the scaling, more sophisticated algorithms are required for
initializing billions of synaptic connections across neurons on
all cores.

DISCUSSION

The use of multi-compartment neuronal models increases
the computational requirements per neuron, but provides
significantly higher biological fidelity than the integrate-and-
fire or single-compartment Hodgkin-Huxley neurons that have
been used in most other large-scale neural network models
(Lytton et al., 2016; Jordan et al., 2018). We are focused
on the simulation of large-scale models with higher neuronal
complexity for two related reasons. First, there has been an
increased acceptance that brain processes are the product of
distributed sub-networks (Sporns and Betzel, 2016) within a
large network of sparsely-connected, heterogeneous neurons.
That significant heterogeneity exists in the brain is self-evident.
Neurons vary in the details of their morphology; the number,
strength, targets, and spatial extent of their connections; and
in the neurochemistry that governs their synaptic interactions,
such that no two neurons, or their behavior, are ever likely
to be identical. Second, recent years have also witnessed the
expanded use of parallel, high-performance computing (HPC)
architectures to enable simulation of neural networks at scales
comparable to that of the biological brain, including the
human brain.

The impact of neuronal heterogeneity remains an open
question. Theoretical investigations have demonstrated both
increased and decreased synchronization when the heterogeneity
of nodes in small network models is varied. For example,
Zhang and colleagues examined small systems (N < 10) of
coupled oscillators with symmetric connectivity. They showed
analytically that some systems exist within this class where
heterogeneity in system nodes is necessary for stable synchronous
dynamics, which cannot be achieved when the nodes are
homogeneous (Zhang et al., 2017). Conversely, increasing the
heterogeneity of both the intrinsic frequency of neuron-like
oscillators (Tsodyks et al., 1993; N = 100) and neuronal
excitability (i.e., Ca2+ conductance) (Golomb and Rinzel, 1993;
N = 1,000) leads to asynchronous, rather than synchronous,
activity in the network. Similar results have been shown
with increasing heterogeneity of the number of connections
(Golomb and Hansel, 2000; N = 800) and connection weights
(Denker et al., 2004; N = 100). Lengler et al. have also
argued that variance in the reliability of synaptic transmission
not only diminishes synchronization in recurrently-connected
neural network models, but has important, if somewhat
counterintuitive, functional advantages, including improved
speed, sensitivity, and robustness (Lengler et al., 2013). Together,
the potentially large number of parameters across which neurons
vary and the decreasing analytic tractability of the brain as the
numbers of parameters and neurons increases points toward
the importance of large-scale simulation models with increasing
neuronal complexity.

High-performance computing resources have enabled many
large scale simulation of millions (Eliasmith et al., 2012) to
billions (Izhikevich and Edelman, 2008; Jordan et al., 2018)
of neurons. However, each neuron in these networks were
represented by simple, single compartment models. Among
the most extensive assessments of the current capabilities for
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large scale simulations of high fidelity neuronal models is
the recent work of Kumbhar et al. (2019). They optimized
the compute engine of NEURON for modern multi-core
computing architectures and examined the parallel scalability
for models of varying complexity. The largest model was of
the rat hippocampus and contained ∼8 × 105 neurons, an
average of 700 compartments per neuron, and 450 synapses per
neuron. It is difficult to make direct comparisons between the
simulation timings of that NEURON rat hippocampus model
and the GENESIS Traub thalamocortical model used in this
work. The number of compartments per neuron in the rat
hippocampus model was an order of magnitude larger than
the Traub model, while the number of synapses per neuron
was an order of magnitude smaller. Therefore, one would
expect the computational cost of the rat hippocampus model
to be significantly higher, but the communication costs to be
significantly lower. Despite these differences, it is still informative
to qualitatively compare the simulation timings of the two
models. Using 4,096 cores, NEURON was able to simulate 1
biological second in 4.5 h, which is 40% longer than the 3.25 h
required by GENESIS to simulate 1 million neurons of the
Traub network on the same number of cores. However, Kumbhar
et al. showed excellent scalability and were able to reduce that
time to under an hour on 32,768 cores. Increasing the number
of cores for GENESIS to simulate 1 million neurons beyond
4,096 cores resulted in an increased simulation time, suggesting
communication costs were dominating the computation. These
results are consistent with what would be expected given the
differences in model complexity discussed above. A more direct
comparison of simulation timings can be made with the original
Traub model (Traub et al., 2005), although our model does differ
from the original Traub model, particularly in the absence of gap
junctions. Traub found that it took 18.75–21.2 h to simulate 1 s at
a time step of 2 µs with a network of 3,560 neurons partitioned
across 14 cores. Due to the presence of gap junctions in their
model, they required a significantly smaller time step than the
25 µs used in this work. Normalizing their wall clock time by a
factor of 12.5 to account for the differences in time step size, we
can approximate the equivalent timing of the original work of
Traub to 1.5–1.7 h per simulated second. The closest comparison
in our work is a simulation of 3,904 neurons partitioned on
16 cores which required 1.14 h per simulated second which is
approximately a 30% reduction. The same model partitioned
across 64 cores required only 17min. For a detailed discussion
of several other large-scale simulation efforts, see also (De Garis
et al., 2010; Fan and Markram, 2019).

Together, the focus on large-scale neural networks with high
neuronal complexity and the increasing use and availability
of high performance computing resources for simulating such
systems points toward a need for usable frameworks to enable
modeling efforts. The use of common frameworks across such
efforts will be increasingly important, as reproducibility becomes
a larger focus (McDougal et al., 2016). We have shown that
by modifying PGENESIS, we were able to efficiently simulate
networks with millions of high fidelity model neurons with
thousands of connections per neuron: with a connection density
of 2,000 synapses/neuron, PGENESIS 2.4−2019 is able to

integrate 1 simulated second for 100,000 neurons in ∼1 h,
1 million neurons in ∼3 h, and 9 million neurons in ∼8 h.
This compares favorably to a runtime estimate reported in
Eliasmith et al. (2012) of 2.5 h processing time for 1 s of
simulated time.

Finally, several groups are developing neuromorphic
capabilities that are enabling models that surpass even the
human brain in scale and performance. For example, IBM
Research developed a simulator of its TrueNorth neuromorphic
processor, Compass, providing initial performance of a model
with 0.65 × 1011 neurons and 0.16 × 1014 connections running
on an IBM Blue Gene/Q supercomputer (Preissl et al., 2012).
The next year, those numbers had increased to 5.3 × 1011–over
five times the number of neurons in the human brain—with
an almost 10-fold increase to 1.37 × 1014 connections (Wong
et al., 2012). The European Union’s Human Brain Project has
developed the BrainScaleS system, a neuromorphic hardware
platform that utilizes analog circuits and has achieved execution
speeds that are 10,000 times faster than biological brains in
models with as many as 4 × 106 neurons and 109 synapses.
The emergence of such alternative computing platforms puts
an even greater premium on achieving better understandings
of the behavior of large-scale neural networks, and makes
the availability of computationally efficient frameworks for
simulating large-scale networks of complex, heterogeneous
elements increasingly urgent.

CONCLUSION

In this report, the viability of PGENESIS for performing
large-scale simulations of high fidelity neuronal models has
been evaluated. We discovered issues with the 2014 version
of PGENESIS 2.4, which prevented it from scaling to large
network sizes on HPC resources. By modifying PGENESIS to
address issues with repeatability, memory usage, and integer
overflows, we significantly increased the network size that is
computationally tractable with this simulation system.

Using our modified version of PGENESIS and a
thalamocortical network model as a benchmark, simulation
performance and scalability was evaluated. The benchmark
model contained 12 different types of neurons (e.g., pyramidal
cells, interneurons, etc.). Different neuron types had between
50 and 74 compartments. We demonstrate that with HPC
resources, we can tractably simulate high fidelity neural networks
with 9 × 106 neurons at 2,000 connections per neuron (18 ×
109 synapses) and 2.2 × 106 neurons at 20,000 connections per
neuron (45 × 109 synapses). These modifications are included
in the May 2019 Official Release of PGENESIS 2.4, available for
download from the GENESIS web site (genesis-sim.org).

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author. The GENESIS model scripts are also
available on ModelDB at: http://modeldb.yale.edu/260267.

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2019 | Volume 13 | Article 69

http://genesis-sim.org
http://modeldb.yale.edu/260267
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Crone et al. Large-Scale Simulations in GENESIS

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This work was sponsored, in part, by the US Army Research
Laboratory (ARL) and supported by a grant of computer
time from the US Department of Defense (DoD) High

Performance Computing Modernization Program at the Army
Research Laboratory DoD Supercomputing Resource Center
(ARL-DSRC) and the Air Force Research Laboratory DSRC
(AFRL-DSRC). The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the Army Research Laboratory or U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

REFERENCES

Arkhipov, A., Gouwens, N. W., Billeh, Y. N., Gratiy, S., Iyer, R., Wei, Z., et al.

(2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS Comput.

Biol. 14:e1006535. doi: 10.1371/journal.pcbi.1006535

Bhalla, U. S., Bilitch, D. H., and Bower, J. M. (1992). Rallpacks: A set

of benchmarks for neuronal simulator. Trends Neurosci. 15, 453–458.

doi: 10.1016/0166-2236(92)90009-W

Boothe, D. L., Yu, A. B., Kudela, P., Anderson, W. S., Vettel, J.

M., Franaszczuk, P. J. (2017). Impact of neuronal membrane

damage on the local field potential in large-scale simulation of

cerebral cortex. Front. Neurol. 8:236. doi: 10.3389/fneur.2017.

00236

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring

Realistic Neural Models with the GEneral NEural SImulation System. New

York: Springer/TELOS.

Carrier, J., Greengard, L., and Rokhlin, V. (1988). A fast adaptive multipole

algorithm for particle simulations. SIAM J. Sci. Statist. Comput. 9, 669–686.

doi: 10.1137/0909044

Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).

Reconstruction and simulation of a scaffold model of the cerebellar network.

Front. Neuroinform. 13, 37. doi: 10.3389/fninf.2019.00037

De Garis, H., Shuo, C., Goertzel, B., and Ruiting, L. (2010). A world survey of

artificial brain projects, Part I: large-scale brain simulations. Neurocomputing

74, 3–29. doi: 10.1016/j.neucom.2010.08.004

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the

cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.

71, 375–400. doi: 10.1152/jn.1994.71.1.375

Denker, M., Timme, M., Diesmann, M., Wolf, F., and Geisel, T. (2004). Breaking

synchrony by heterogeneity in complex networks. Phys. Rev. Lett. 92:074103.

doi: 10.1103/PhysRevLett.92.074103

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fan, X., andMarkram, H. (2019). A brief history of simulation neuroscience. Front.

Neuroinform. 13:32. doi: 10.3389/fninf.2019.00032

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Golomb, D., and Hansel, D. (2000). The number of synaptic inputs and the

synchrony of large, sparse, neuronal networks. Neural Comput. 12, 1095–1139.

doi: 10.1162/089976600300015529

Golomb, D., and Rinzel, J. (1993). Dynamics of globally coupled inhibitory neurons

with heterogeneity. Phys. Rev. E 48:4810. doi: 10.1103/PhysRevE.48.4810

Hines, M. (1984). Efficient computation of branched nerve equations.

Int. J. Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)

90008-4

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl Acad. Sci. U.S.A. 105, 3593–3598.

doi: 10.1073/pnas.0712231105

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops to

exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Kudela, P., and Anderson, W. S. (2015). Computational modeling of subdural

cortical stimulation: a quantitative spatiotemporal analysis of action potential

initiation in a high-density multicompartment model. Neuromodulation 18,

552–565. doi: 10.1111/ner.12327

Kudela, P., Boatman-Reich, D., Beeman, D., and Anderson, W. S. (2018).

Modeling neural adapation in auditory cortex. Front. Neural Circuits. 12:72.

doi: 10.3389/fncir.2018.00072

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,

et al. (2019). CoreNEURON: an optimized compute engine for the NEURON

simulator. arXiv:1901.10975v1 [Preprint]. doi: 10.3389/fninf.2019.00063

Lengler, J., Jug, F., and Steger, A. (2013). Reliable neuronal systems: the

importance of heterogeneity. PLoS ONE 8:e80694. doi: 10.1371/journal.pone.0

080694

London, M., Roth, A., Beeren, L., Hausser, M., and Latham, P. E. (2010).

Sensitivity to perturbations in vivo implies high noise and suggests

rate coding in cortex. Nature 466, 123–127. doi: 10.1038/nature

09086

Lytton, W. W., Seidenstain, A. H., Dura-Bernal, S., and McDougal, R.

A. (2016). Simulation neurotechnologies for advancing brain research:

parallelizing large networks in NEURON. Neural Comput. 28, 2063–2090.

doi: 10.1162/NECO_a_00876

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility

in computational neuroscience models and simulations. IEEE

Trans. Biomed. Eng. 63, 2021–2035. doi: 10.1109/TBME.2016.2

539602

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang,

R., Migliore, M., et al. (2017). Twenty years of ModelDB and

beyond: building essential modeling tools for the future of

neuroscience. J. Comput. Neurosci. 42, 1–10. doi: 10.1007/s10827-016-

0623-7

Preissl, R., Wong, T. M., Datta, P., Flickner, M., Singh, R., Esser, S. K., et al. (2012).

“Compass: a scalable simulator for an architecture for cognitive computing,” in

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC12) (Salt Lake City, UT). doi: 10.1109/SC.2012.34

Sporns, O., and Betzel, R. F. (2016). Modular brain networks. Annu.

Rev. Psychol. 67, 613–640. doi: 10.1146/annurev-psych-122414-

033634

Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau,

F. E., Roopun, A., et al. (2005). Single-column thalamocortical

network model exhibiting gamma oscillations, sleep spindles, and

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2019 | Volume 13 | Article 69

https://doi.org/10.1371/journal.pcbi.1006535
https://doi.org/10.1016/0166-2236(92)90009-W
https://doi.org/10.3389/fneur.2017.00236
https://doi.org/10.1137/0909044
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1016/j.neucom.2010.08.004
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.1103/PhysRevLett.92.074103
https://doi.org/10.1126/science.1225266
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.3389/fninf.2019.00032
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1162/089976600300015529
https://doi.org/10.1103/PhysRevE.48.4810
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1111/ner.12327
https://doi.org/10.3389/fncir.2018.00072
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1371/journal.pone.0080694
https://doi.org/10.1038/nature09086
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1109/SC.2012.34
https://doi.org/10.1146/annurev-psych-122414-033634
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Crone et al. Large-Scale Simulations in GENESIS

epileptogenic bursts. J. Neurophysiol. 93, 2194–2232. doi: 10.1152/jn.00983.

2004

Tsodyks, M., Mitkov, I., and Sompolinsky, H. (1993). Pattern of

synchrony in inhomogeneous networks of oscillators with pulse

interactions. Phys. Rev. Lett. 71, 1280. doi: 10.1103/PhysRevLett.

71.1280

Wong, T. M., Preissl, R., Datta, P., Flickner, M., Singh, R., Esser, S. K., et al. (2012).

1014. IBM Research Report. San Jose, CA: IBM Research Division.

Zhang, Y., Nishikawa, T., and Motter, A. E. (2017). Asymmetry-induced

synchronization in oscillator networks. Phys. Rev. E 95:062215.

doi: 10.1103/PhysRevE.95.062215

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Crone, Vindiola, Yu, Boothe, Beeman, Oie and Franaszczuk.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2019 | Volume 13 | Article 69

https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1103/PhysRevLett.71.1280
https://doi.org/10.1103/PhysRevE.95.062215
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator
	Introduction
	Methodology
	Benchmark Model
	Simulation Procedures
	Modifications to PGENESIS
	Repeatable Connectivity
	Memory Leaks
	Integer Overflows

	Performance and Scalability Results
	Partitioning Across CPU Cores
	Synaptic Connection Density
	Spiking Rate
	Setup Time

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


