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X-ray Laue diffraction is an important method for characterizing the local

crystallographic orientation and elastic strain in polycrystalline materials.

Existing analysis methods are designed mainly to index a single or a few Laue

diffraction pattern(s) recorded in a detector image. In this work, a novel method

called dictionary–branch–bound (DBB) is presented to determine the crystal-

lographic orientations of multiple crystals simultaneously illuminated by a

parallel X-ray incident beam, using only the spot positions in a detector image.

DBB is validated for simulated X-ray Laue diffraction data. In the simulation,

up to 100 crystals with random crystallographic orientations are simultaneously

illuminated. Fake spots are randomly added to the detector image to test the

robustness of DBB. Additionally, spots are randomly removed to test the

resilience of DBB against true spots that are undetected due to background

noise and/or spot overlap. Poisson noise is also added to test the sensitivity of

DBB to less accurate positions of detected spots. In all cases except the most

challenging one, a perfect indexing with a mean angular error below 0.08� is

obtained. To demonstrate the potential of DBB further, it is applied to

synchrotron microdiffraction data. Finally, guidelines for using DBB in

experimental data are provided.

1. Introduction

Laue diffraction occurs when a parallel broad-bandpass X-ray

beam illuminates a crystalline sample. Indexing a Laue

diffraction pattern allows the crystallographic orientation, and

in certain cases lattice elastic strains and defects of the sample,

to be determined (Sheremetyev et al., 1991; Marı́n & Diéguez,

1999; Maaß et al., 2006; Xu et al., 2017; Deillon et al., 2019).

With the development of Laue microdiffraction, which utilizes

a focused beam, nondestructive 3D characterization can be

achieved with submicrometre spatial resolution (Larson et al.,

2002; Larson & Levine, 2013; Hofmann et al., 2012; Cornelius

& Thomas, 2018; Örs et al., 2018; Altinkurt et al., 2018). As a

consequence, Laue microdiffraction is today a major tool

for materials characterization. Examples of established tech-

niques include methods based on both synchrotron and

laboratory source X-rays (Larson et al., 2002; Tamura et al.,

2003; Levine et al., 2006; Lynch, Stevenson et al., 2007; Lynch,

Tamura et al., 2007; Hofmann et al., 2012; Larson & Levine,

2013; Zhou et al., 2016; Cornelius & Thomas, 2018; Örs et al.,

2018; Altinkurt et al., 2018).

Several approaches have been developed to index Laue

diffraction patterns which contain multiple spots. Traditional

methods determine crystallographic orientations by matching

the angles between triplets of experimental diffraction vectors

and the theoretical ones (of an unstrained crystal) (Ohba et al.,
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1981; Chung & Ice, 1999; Tamura et al., 2003). Recently, a

routine to preselect detected spots has been proposed (Dejoie

& Tamura, 2020) to increase the robustness of the method for

indexing ‘small’-unit-cell samples (which can produce a ‘large’

number of diffraction spots). To increase the reliability of

these methods, a generalized Hough transform strategy has

also been proposed (Morawiec & Bieda, 2005). By converting

any possible matched sets (e.g. pairs or triplets) into points in

rotation space (Morawiec, 2020), or individual spots to lines

(Gevorkov et al., 2020), those that match or intersect in the

crystallographic orientation domain will accumulate and thus

indexing robustness will increase.

With the advancement of computing power, new indexing

methods based on forward simulations have recently been

developed. This type of method generates a large number of

Laue diffraction patterns based on dictionary crystallographic

orientations and then compares them with the experimental

one(s) using a correspondence measure (Gupta & Agnew,

2009). The main advantage of this approach is its robustness

against low-quality Laue diffraction patterns.

A key element for these dictionary-based approaches is

uniform sampling of the crystallographic orientation space

(Singh & De Graef, 2016; Larsen & Schmidt, 2017; Quey et al.,

2018). The dictionary crystallographic orientations must

match the targeted angular accuracy. In practice this leads to a

huge number of dictionary patterns, even when this number is

reduced by considering crystal symmetries. All the dictionary

patterns have to be checked against the experimental ones,

which means that this type of method is typically slow

compared with those using direct triplet matching (Singh &

De Graef, 2016).

In the present work, a novel route, called dictionary-based

branch and bound (DBB), is proposed to mitigate this issue.

This method is inspired by the branch-and-bound approach

(Yang et al., 2016) used to determine rigid-body rotation

between two point sets in computer vision. An appropriate

upper-bound criterion allows us to reach the finest angular

accuracy possible while using a coarser dictionary. Thus,

calculation time and memory requirements are reduced.

Another important motivation for developing DBB is to

enable indexing of superimposed diffraction patterns for many

crystals, which is very challenging using the triplet-matching

methods. In this paper it is demonstrated that DBB can readily

handle diffraction patterns from 100 crystals. Simulated data

are considered for the testing approach and for incorporating

typical experimental challenges: (i) spot overlap when the

number of illuminated crystals is large; (ii) fake spots added to

represent physical artefacts on the detector and/or over-

sensitive spot detection; (iii) true spots removed to simulate

true spots that are undetected due to insufficient brightness

compared with the noise; (iv) Poisson noise added on the

detector image. Finally, as a demonstration, DBB is also used

to process experimental synchrotron microdiffraction data.

2. Dictionary–branch–bound indexing

2.1. Overall route

A typical (micro-)diffraction setup for which DBB is

applicable is shown in Fig. 1. The broad-bandpass parallel

X-ray beam is incident on a polycrystalline sample and

diffracted onto the detector. The latter can be placed in any

position, including transmission (as in Fig. 1), 90� reflection

and back-reflection configurations.

The overall route of DBB is summarized in Fig. 2. It is

assumed that the crystal structure of the sample, the X-ray

energy range of the broad-bandpass incident beam and the

detector geometry (position and pixel information) are

known. The incident beam is considered to be parallel. The
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Figure 1
The typical diffraction setup for which DBB is applicable. In this case, the
detector is placed in a transmission configuration. Arrows represent
diffracted X-ray beams.

Figure 2
A flowchart of the dictionary–branch–bound method.



distances between the centre of mass of each crystal in the

sample and the centre of the gauge volume are negligible

compared with the sample-to-detector distance. Finally, the

positions of detected diffraction spots are used to calculate

experimental unitary diffraction vectors (as the diffracted

photon wavelength is unknown).

DBB consists of three main steps:

(i) The crystallographic orientation space is subdivided into

chunks called branches whose coverage of the crystallographic

orientation space typically corresponds to a 2–4� misorien-

tation angle. For each branch, reflections which are expected

for the branch (i.e. would produce a spot on the detector) are

determined (Section 2.2, step 1 in Fig. 2).

(ii) For each branch, its expected reflections are matched

with detected spots to construct candidate crystallographic

orientations (Section 2.3, step 2 in Fig. 2).

(iii) Best-candidate crystallographic orientations are

selected iteratively to index as precisely as possible the (so far)

non-indexed detected spots, and then refined to constitute the

indexed crystallographic orientations (Section 2.4, step 3 in

Fig. 2).

2.2. Branch (step 1)

The fundamental region (considering crystal symmetry) of

the crystallographic orientation space is sampled by a

dictionary, and for each dictionary crystallographic orienta-

tion, a domain called a branch around it is defined such that

the union of branches contains the fundamental region of the

crystallographic orientation space. Dictionary crystallographic

orientations and their branches may be outside the funda-

mental region of the crystallographic orientation space and/or

branches may intersect, i.e. overlap each other, without

creating any issue.

An example of a crystallographic orientation dictionary and

its branches is shown in Fig. 3, where the dictionary is a regular

three-dimensional grid with 10� spacing, and the branches are

cubes of 10� edge length centred on the dictionary crystal-

lographic orientations along the macroscopic laboratory

directions.

For each branch, reflections which are expected to produce

spots on the detector for the given setup and incident photon

wavelength range are determined (Appendix A); these are

called expected reflections (ERs). Reflections leading to

identical unitary normal vectors are merged into one, though

the photon wavelength for Bragg diffraction of each reflection

is considered separately. Identical unitary normal vectors of

ERs for the dictionary crystallographic orientation of the

branch are called expected dictionary normal vectors

(EDNVs) and will be used for matching (Section 2.3).

2.3. Match (step 2)

In the match step, the following process is repeated for each

branch. First, each EDNV of the N + N* strongest ERs for the

branch is compared with each of the experimental normal

vectors to find potential matches (Section 2.3.1) under a

specific criterion. N is the number of ERs for the branch which

will be used to construct candidate crystallographic orienta-

tions. However, instead of testing only N ERs for the branch, it

is possible to test N* extra ones to render the match more

resilient to undetected true spots. Secondly, all possible

candidate combinations are constructed using N EDNVs for

the branch and their N sets of possible matches among the

N + N* tested ERs for the branch. Associated candidate

crystallographic orientations are calculated (Section 2.3.2).

2.3.1. Matching criterion. For each of the N + N* strongest

ERs of a branch, the EDNV nd½ðhklÞ;B� is compared with the

experimental normal vector ne(Se) of each detected spot Se to

check for a possible match using the following criterion:

ne Seð Þ � nd hklð Þ;B½ �
�� �� � �B þ�e Seð Þ; ð1Þ

where the upper bound on the right-hand side of equation (1)

is composed of the branch looseness distance �B and the

uncertainty distance �e(Se) on the experimental normal

vector ne(Se) of the detected spot Se (Fig. 4).

The branch looseness distance �B covers the difference

between the dictionary crystallographic orientation and any

crystallographic orientation in the branch. More rigorously,

�B is an upper bound for the norm of the variation of a unit

vector when rotating from the dictionary crystallographic

orientation to anywhere in the branch. The branch looseness

distance �B is calculated as

�B ¼ 2 sin
�B
2
; ð2Þ

where the branch looseness angle �B is an upper bound for the

angular deviation of any vector when rotating from the
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Figure 3
An example of a dictionary of 1300 crystallographic orientations (red
dots) defined as a regular three-dimensional grid with 10� spacing in the
axis–angle representation of rotations whose basis is defined from
macroscopic laboratory directions. The branches (not shown for
readability) are cubes centred on the dictionary crystallographic
orientation 10� edges along the macroscopic laboratory directions. Some
dictionary crystallographic orientations and branches are outside the
fundamental region of the m3m point group (grey domain). This is to
ensure that they cover the whole fundamental region of the m3m point
group.



dictionary crystallographic orientation to anywhere in the

branch. Hence �B depends on how the dictionary and bran-

ches are constructed, and can be derived by geometric

considerations.

The uncertainty distance �e(Se) on the experimental

normal vector ne(Se) of the detected spot Se covers the

difference between the detected spot and the (unknown) true

spot. More precisely, for a detected spot, it is an upper bound

of the norm of the difference between the normal vectors

associated with the detected spot and the true spot. This

uncertainty distance �e(Se) can come from (i) the uncertainty

in detecting the spot position on the detector, which could

originate from elastic/plastic strain and/or noise in the

detector signal, (ii) the fact that the crystal has a physical size

within the sample which deviates from the hypothesis that all

diffracted beams come from its centre, and (iii) the divergence

of the non-perfectly parallel beam. The calculation of �e(Se) is

presented in Appendix B.

Here, distances are calculated as the norm of differences

(i.e. informally the distances between arrow tips) between

(unitary) vectors rather than angles. In this way, the triangular

inequality guarantees that the sum of �B and �e(Se) is an

adequate upper bound.

2.3.2. Construct candidate crystallographic orientations.
For each one of the N + N* tested EDNVs in the branch, there

can be several possible matches among the experimental

normal vectors (Fig. 5). Candidate crystallographic orienta-

tions are constructed by aligning N EDNVs out of the N + N*

tested ones and their possible matches among the experi-

mental normal vectors.

Let us first define Npm (�N + N*) as the number of EDNVs

(out of the N + N* tested ones) with at least one possible

match among the experimental normal vectors. If Npm < N, the

number Npm is insufficient to construct candidate combina-

tions, so this branch is not considered further. If Npm�N, then

all choices of N EDNVs among these Npm which each have at

least one possible match1 are considered to construct all

possible candidate combinations (Fig. 5).

For each candidate combination, the associated candidate

crystallographic orientation is calculated by aligning as

precisely as possible the N EDNVs to their corresponding N

experimental normal vectors. This is done by minimizing the

least-squared norms of the differences between vectors (i.e.

solving Wahba’s problem; Wahba, 1965) weighted by the

squared inverse of distance uncertainties through a singular

value decomposition (Markley, 1988) [similar to the procedure

used by Gupta & Agnew (2009)].

2.4. Select (step 3)

The best crystallographic orientations are selected among

the candidate ones and then refined, which results in the final

indexed crystallographic orientations.

The selection is done iteratively in three steps: (i) identify

the best remaining (i.e. non-selected) candidate crystal-

lographic orientation, (ii) check if it satisfies two criteria

(detailed below) and (iii) if it does, select it, i.e. append it to

the set of indexed crystallographic orientations. This process

stops when the best remaining candidate does not satisfy the

criteria, at which point DBB indexing also stops.
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Figure 4
A sketch showing the matching criterion between the expected dictionary
normal vector {red arrow, nd½ðhklÞ;B�} of an ER (hkl) in the branch B,
and the normal vector [blue vector, ne(Se)] of a detected spot Se . The
EDNV nd½ðhklÞ;B� belongs to the red semi-transparent domain delimited
by the branch looseness distance �B . The true (unknown) normal vector
belongs to the dark-blue semi-transparent domain delimited by the
uncertainty distance �e(Se) on the experimental normal vector ne(Se) of
the detected spot Se . In the figure nd½ðhklÞ;B� is a possible match for
ne(Se) in B.

Figure 5
A sketch showing the construction of candidate combinations from
possible matches between EDNVs and experimental normal vectors. In
the figure, N = 3, the three red arrows are the EDNVs of the three
strongest ERs in the branch and other coloured vectors are experimental
normal vectors. In total 2 � 2 � 1 = 4 candidate combinations can be
constructed for this branch.

1 So there are

Npm

N

� �
¼

Npm!

ðNpm � NÞ! N!

choices.



Intuitively, the best remaining candidate is the one which

best matches the so far non-indexed detected spots. To

implement this in practice, for any input set of crystallographic

orientations, a score s is associated with each detected spot Se ,

defined as

sðSeÞ ¼ max 1�
�ðSeÞ

�eðSeÞ

� �2

; 0

( )
; ð3Þ

where �(Se) is the norm of the difference between the

experimental normal vector of the detected spot Se and the

closest of the unitary normal vectors of all reflections (not only

the ones of the N + N* strongest ERs) for all crystallographic

orientations in the input set. The score of a detected spot Se ,

s(Se) , quantifies how well it is indexed by the input set of

crystallographic orientations; a detected spot is considered as

indexed if, and only if, its score is positive.

The best remaining candidate is then identified as follows.

The selected crystallographic orientations are considered as

the input set, and the detected spots which are not indexed

(i.e. whose score is zero) are determined and referred to as

‘currently not indexed’. Each remaining candidate is then

appended to the selected crystallographic orientations to form

the input set and the score of each currently not indexed

detected spot is calculated, before summation. The best

remaining candidate is the one which maximizes this sum,

hereafter denoted �S. The number �n of detected spots

newly indexed by the best remaining candidate is also calcu-

lated.

The best remaining candidate is selected if, and only if, it

satisfies both of the following criteria:

(i) �S is greater than a fraction fthr of the mean of the �S

values associated with previously selected crystallographic

orientations. The fraction fthr has been chosen empirically to

equal 1/4 as the best value, using simulations of X-ray Laue

diffraction.

(ii) �n is greater than a user-defined value �nthr .

Finally, each selected crystallographic orientation is refined,

taking diffraction spots associated with all ERs into account

(using the same method as for the creation of candidate

crystallographic orientations). Refined selected crystal-

lographic orientations are the indexed ones.

DBB has been implemented in MATLAB and uses the

open source MTEX toolbox (https://mtex-toolbox.github.io/)

for calculations involving rotations, crystallographic orienta-

tions and crystal symmetries. The code is available on request.

3. Performance evaluation of DBB using simulated data

To illustrate the performance of DBB and understand the

influence of its settings, as well as to provide practical guide-

lines for their choice, DBB has been tested using simulated

diffraction data.

Several types of artefacts which may be caused by typical

experimental issues are considered, including (i) the point

spread function, (ii) fake spots due to detector noise, (iii)

undetected true spots due to low spot intensity and (iv)

background noise. In this way, the most important issues that

DBB will face when indexing real experimental data are

considered. The advantages of this simulation-based approach

over experiments include (i) the ground truth is known and

(ii) the effects of each experimental issue are separated from

other issues, which eases understanding.

3.1. Method

The diffraction setup shown in Fig. 1 was considered for the

simulations. The geometric ray-tracing approach was used to

simulate the path of the X-rays. Even though only the asso-

ciated normal vectors are used as input for DBB, the inten-

sities of the spots were also calculated because intensity may

affect spot detection. The sample was simulated as a set of

aluminium crystals, where (i) each crystal was a material point,

i.e. had no volume, (ii) all crystals were superimposed in the

same sample position and (iii) all crystals had a different

crystallographic orientation. This allowed us to model all

diffracted X-rays as emerging from one unique point in space.

A Gaussian convolution was applied to simulate the point

spread function of a typical detector and thus to mimic the

typical experimental signal of a spot in an experiment (for
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Figure 6
A detector image simulated by a geometric ray-tracing approach. Case 1
(ten crystals – see Table 1) is considered here. The magnified inset shows a
label displayed for each spot by the program, identifying the associated
crystal (by a number) and the reflection(s).



details, see Section S1 in the supporting information). An

example of a simulated detector image is shown in Fig. 6.

Three samples with ten, 50 and 100 crystals of random

crystallographic orientations were considered first to study the

influence of spot overlap. To mimic other experimental chal-

lenges, the detector image from the 100-crystal sample was

further processed by (i) adding fake spots (10% of the real

ones), each with an intensity equal to the minimum true spot

intensity, (ii) randomly removing 25% of the true spots and

(iii) adding Poisson noise (using the MATLAB imnoise

function), such that for each pixel the expected value of the

Poisson distribution was equal to the pixel signal value before

applying the Poisson noise. Hence, the noise level was

comparable to the true signal level.

Spots were detected by an automatic method based on

normalized cross correlation with a Gaussian template, where

local maxima above a certain threshold t in the interval [0; 1]

were kept as detected spots. For noise-free images, t = 0.05 was

used, whereas for noisy images higher thresholds t were

chosen (see Table 1) to eliminate bad spots coming only from

the noise.

For the indexing, the dictionary and branches were

constructed like in the example shown in Fig. 3 with a

dictionary resolution �dict of 4�. This construction of the

dictionary and branches allowed us to determine a valid �B as

a function of the dictionary resolution �dict [obtained from

lemma 1, i.e. inequations (6), in the work of Yang et al. (2016)],

�B ¼
31=2

2
�dict: ð4Þ

With this dictionary, the maximum misorientation angle

between any of the 100 crystallographic orientations and the

closest dictionary crystallographic orientation was 3.43�

(distribution in Fig. 7), which is below the upper bound of

3.46� determined by equation (4).

The distribution (Fig. 7) shows that 99% of the ground-truth

crystallographic orientations are misoriented by more than

0.5� from the dictionary ones. This constituted a critical test for

DBB, which had to retrieve the ground-truth crystallographic

orientations starting from a dictionary which was off by more

than 0.5� and up to 3.43� in terms of misorientation angle.

In total, 15 test cases were studied (Table 1). To quantify the

indexing quality for the test cases, several parameters were

defined, as follows.

(i) The angular uncertainty �e(Se) on the experimental

normal vector for a detected spot Se was determined on the

basis of (a) the 3/2 detector pixel diagonal used as the

uncertainty �d on detected spot position on the detector and

(b) the detector setup (Appendix B2). Note that �e(Se)

depends on the spot position on the detector, and is larger for

spots close to the centre of the transmitted beam.

(ii) The mean angular uncertainty on experimental normal

vectors �e was calculated as the mean over all detected spots.

Thus �e represents the typical angular uncertainty one may
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Table 1
Results of DBB indexing on simulated data run for 15 cases.

Case
No. of
crystals

No. of
spots

No. of fake added (+) or
true removed (�) spots

No. of
detected spots t N*

No. of
indexed crystals

No. of
FNs

No. of
FPs �err (�)

Calculation
time (min)

1 10 276 0 272 0.05 0 10 0 0 0.04 14
2 50 1373 0 1145 0.05 0 50 0 0 0.06 16
3 100 2715 0 1872 0.05 0 100 2 2 0.07 57
4 100 2715 0 1872 0.05 1 100 0 0 0.05 222
5 100 2715 +296 1946 0.05 0 100 2 2 0.07 56
6 100 2715 +296 1946 0.05 1 100 0 0 0.05 249
7 100 2715 �679 1543 0.05 0 108 16 24 0.12 28
8 100 2715 �679 1543 0.05 1 99 2 1 0.07 108
9 100 2715 �679 1543 0.05 2 100 1 1 0.06 300
10 100 2715 0 2302 0.2 0 153 7 60 0.08 72
11 100 2715 0 2302 0.2 1 152 3 55 0.07 365
12 100 2715 0 1806 0.3 0 115 4 19 0.08 34
13 100 2715 0 1806 0.3 1 114 0 14 0.07 145
14 100 2715 0 1462 0.4 0 106 7 13 0.08 18
15 100 2715 0 1462 0.4 1 100 0 0 0.08 60

Figure 7
The distribution of the misorientation angles for each of the 100 ground-
truth crystallographic orientations common to cases 3–15 (see Table 1) to
the closest dictionary crystallographic orientation.



expect for the setup and was used to evaluate the indexing

quality. A ground-truth crystallographic orientation is

correctly indexed if, and only if, there is an indexed crystal-

lographic orientation closer than �e in terms of misorientation

angle. A false negative (FN) is a ground-truth crystallographic

orientation which is not correctly indexed. A false positive

(FP) is an indexed crystallographic orientation for which there

is no ground-truth crystallographic orientation closer than �e

in terms of misorientation angle.

(iii) The mean angular error �err is defined as the mean, over

all correctly indexed ground-truth crystallographic orienta-

tions, of the misorientation angle of each one with its closest

indexed crystallographic orientation. It was determined to

evaluate the angular accuracy of the indexed crystallographic

orientations. Thus �e indicates an upper bound for an accep-

table �err between input and indexed crystallographic orien-

tations.

The indexing setting N was set to 3, N* to different values

(0, 1 and 2) (see Table 1) and �nthr to 4.

All computations (simulation of the detector images and

DBB indexing) were performed on a Hewlett Packard

Prodesk 600G5 Small Form Factor personal computer

equipped with an Intel Core i9 9700 central processing unit

and 64 GB of random access memory.

3.2. Results and discussion

The detected spots differed between cases (details of the

spot detection are presented in Section S2 in the supporting

information). High numbers of detected spots tended to

reduce the differences in �e between the different cases

(Table 1). For each case, the mean angular uncertainty on

experimental normal vectors was �e = 0.60�. Among all

detected spots over all cases, the lowest and highest �e(Se)

were 0.17 and 3.40�, respectively.

When the number of crystals in the sample increases, the

average number of detected spots per crystal decreases as a

result of spot overlap. As shown in Table 1, for case 3 only

1872 spots out of the 2715 true ones (i.e. 69%) were detected.

This induced a larger spot shift (Fig. S1 in the supporting

information).

For cases 1 and 2 with less severe spot overlap compared

with case 3, DBB indexing is fully satisfactory (Fig. 8): no FNs

or FPs are deduced, but the mean angular error �err increases

from case 1 to case 2 because of more spot overlap. For case 3

(with 100 crystals), DBB indexing resulted in two FNs and two

FPs. This is because spot overlap led to inaccurate detected

spot positions on the detector, i.e. the detected spot positions

were further away from the true spot positions than the chosen

�d value of the 3/2 detector pixel diagonal. Thus some

detected spots were not captured as possible matches for the

N ERs, and the two associated correct candidates were not

created, leading to the two FNs. They were replaced by two

other candidates to index the ‘orphan’ (which should have

been indexed by the two FNs) detected spots, leading to two

FPs.

The problem could be overcome by increasing the DBB

setting N* from 0 (case 3) to 1 (case 4), where a fully satis-

factory indexing of the 100 ground-truth crystallographic

orientations was obtained, though with a four times longer

calculation (see Table 1). The mean angular error �err

decreases as N* increases. This is because the correct matches

are obtained when N* is increased.

When 296 fake spots were added (cases 5 and 6), the total

number of detected spots increased by only 74 (compared with

cases 3 and 4), which did not overlap with any true spots.

Compared with cases 3 and 4, the results from cases 5 and 6

show that the indexing quality was not affected by the fake

spots.

After random removal of one-quarter of the true spots

(cases 7–9), some of them corresponding to the N + N*

strongest ERs were eliminated and thus not captured as

possible matches. Therefore, the associated correct candidates

corresponding to ground-truth crystallographic orientations

were not constructed, leading directly to FNs. This problem

could be remedied by increasing N*. With N* = 2 (case 9) only

one FP and one FN remained. Setting N* = 3 led to excessive

memory requirements. However, it is believed that all the

ground-truth crystallographic orientations can be correctly

indexed by increasing N*, since there were on average still

more than 15 spots per crystal.

The mean angular errors �err in cases 7 and 8 were higher

than in cases 3 and 4, respectively. This is because fewer

candidates were created due to the removal of true spots,

which eliminated some which were indexed in cases 3 and 4

and were closer to the ground-truth crystallographic orienta-

tions.

For cases with Poisson noise added (cases 10–15), the

expected value of the noise for each pixel was proportional to

the level of the true signal of the pixel, and hence the signal

was only locally degraded around the true spots (Fig. S1 in the
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Figure 8
An axis–angle representation of the input (green rings) and indexed (red
circles) crystallographic orientations for case 2 (50 crystals). The grey
domain is the fundamental region of the point group m3m of the
aluminium crystal structure.



supporting information). Even when setting the spot detection

threshold t as high as 0.2, the detected spots were more

numerous in the presence of noise (2302, case 10) than in the

absence of noise (1872, case 3). This implies that for some

detected spots in case 3 without noise (each one being

necessarily on a true spot) more than one neighbouring shifted

detected spot was present in case 10 with noise (red arrows in

Fig. S1). Detecting more neighbouring shifted spots near a

true spot can perturb the indexing when calculating scores.

Indeed, if for different true spots different numbers of (noise-

induced) neighbouring shifted detected spots exist, they will

contribute unevenly to the score. This can degrade the overall

evaluation of candidates, their selection and the indexing

result.

This situation could be remedied by increasing the

threshold t and increasing N*. Increasing the threshold t

eliminated spots produced only by the noise (red arrows in

Fig. S1), which thus eliminated incorrect possible matches and

FPs, as well as FNs by selecting correct candidates (cases 10, 12

and 14 in Table 1). Increasing N* helped to capture possible

correct matches despite excessive spot shifts due to noise and

thus helped to construct correct candidates. A perfect

indexing was reached with t = 0.4 and N* = 1 within a

reasonable time frame (case 15). Note that the number of

detected spots in case 15 was only 1462, which is even fewer

than for cases 7–9. This is because increasing the threshold t

actually eliminated both poorly shaped fake spots induced by

noise and faint true spots from the weakest reflections. Losing

the latter ones was not problematic to DBB because they

came from the weakest reflections and thus were less likely to

be tested when looking for possible matches and hence of less

impact for the indexing. Nevertheless, noise increased the spot

shift and thus led to a higher mean angular error �err for case

15 than for case 4.

The results of these test cases show that the resilience of

DBB indexing may be further improved by three approaches:

(i) supplying more accurately detected spots as inputs to DBB

(this is related to the spot detection rather than to DBB itself),

(ii) increasing the chosen uncertainty �d on the detected spot

position on the detector to better handle higher shifts of

detected spots (due to true spot overlap and/or noise) and (iii)

increasing the value of N*, which is the most polyvalent

approach, as it helps to handle both the shift of detected spots

(due to true spot overlap and/or noise) and undetected true

spots (due to noise).

The results show that both the number of detected spots

and the setting N* affect the computational time. Theoreti-

cally, this time and the memory requirements are dominated

by and proportional to the number of candidate crystal-

lographic orientations constructed, which itself can be esti-

mated as proportional to the time factor f as a function of the

number of detected spots n (supplied as input to DBB) and

the settings N and N*,

computation time & memory requirements

/ f ¼ nN ðN þ N	Þ!

N! N	!
: ð5Þ

An explanation of equation (5) is detailed in Section S3 in the

supporting information.

In practice, by considering a normalized time factor f / f3 , i.e.

the time factor divided by the time factor of case 3 (as refer-

ence), Fig. 9 shows that equation (5) predicts well the (rela-

tive) computational time for all cases. This enables the

calculation of time frames for different data sets (changing the

number of spots n) and/or settings (changing N and/or N*).

4. Application of dictionary–branch–bound to
experimental data

To demonstrate further the power of DBB, it is applied to

synchrotron Laue microdiffraction data. To evaluate the

indexing results, depth-resolved patterns were obtained using

a differential aperture and indexed using the LaueGo software

package (https://www-stg.aps.anl.gov/Science/Scientific-Software/

LaueGo).

4.1. Methods

Synchrotron Laue microdiffraction data were acquired on

beamline 34-ID-E at the Advanced Photon Source, Argonne

National Laboratory, USA (Larson et al., 2002; Yang et al.,

2004). The incident beam was a parallel beam with a

Lorentzian profile and a full width at half-maximum of 300 nm

defined by a set of non-dispersive Kirkpatrick–Baez mirrors.

The sample was spark-plasma-sintered aluminium with a mean

crystal size of 5 mm (Zhang et al., 2020). It was mounted at an

inclination angle of 45� to the incident beam. A Perkin–Elmer

square flat-panel detector was placed horizontally 511 mm

above the sample (hence in a 90� reflection configuration) with

one edge along the incident beam. The detector presents

2048 � 2048 pixels and a pixel edge length of 200 mm. One

randomly chosen position of the sample was considered for

the present testing. A platinum knife-edge wire was used as a
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Figure 9
The normalized time factor f / f3 (red crosses) [theoretical, calculated from
equation (5)] and the normalized calculation time (blue squares,
experimental) for cases 1–15. Normalized refers to division by the value
for case 3.



differential aperture for resolving depth information. The

aperture was scanned in a plane parallel to the sample surface

at a distance of 250 mm, on which basis 193 individual depth-

resolved detector images from the sample surface to a depth of

193 mm below the sample surface along the incident beam

were obtained.

These 193 depth-resolved detector images were each

indexed using the LaueGo software package, associating each

image with the best possible indexed crystallographic orien-

tation (though the indexing can lead to several indexed

crystallographic orientations), leading to 193 LaueGo crys-

tallographic orientations. Duplicates were removed using a

misorientation angle threshold of 0.2�, leading to 53 LaueGo

crystallographic orientations.

The 193 depth-resolved detector images were then summed

into a single detector image (termed ‘merged’) which was

indexed by DBB, leading to what are hereafter called DBB

crystallographic orientations.

The spots were detected from the merged detector image

using the same method as for the simulated data (Section 3.1),

selecting local maxima of normalized cross correlation

between the detector image and a Gaussian template which

were greater than the chosen threshold t = 0.32.

For DBB indexing, the following settings were used: �dict =

1�, �nthr = 4, �d = 1.5 pixel edge lengths and N = 3, and values

from 0 to 3 were tested for N*. In this configuration, a

dictionary resolution �dict of 4� led to capturing too many

possible matches and the construction of too many candidates,

resulting in a lack of memory to store them. Note that,

compared with the simulated case (Section 3), the larger

sample-to-detector distance refines the achievable angular

accuracy, quantified by the mean angular uncertainty on

experimental normal vectors �e of 0.0049� for the detected

spots.

Finally, the LaueGo and DBB crystallographic orientations

were compared using a misorientation angle threshold of

0.0049� + arctan (193 mm/511 mm) + 0.2� = 0.23�, i.e. if they do

not deviate by more than 0.23� then they are considered

identical.

4.2. Results

There are 1558 detected spots in the merged detector image

(Fig. 10).

The DBB indexing results are presented in Table 2. If the 53

LaueGo crystallographic orientations can be considered as the

ground truth, then the successfully indexed crystallographic

orientations and their mean angular error �err , false negatives

and false positives are as reported in Table 2. As already

observed for simulated data (Section 3), increasing N* leads to

more successfully indexed crystallographic orientations, and

the number of indexed detected spots increases accordingly.

The associated mean angular error �err is, as expected, less

than the 0.23� angle chosen for matching, but it is greater than

the 0.0049� mean angular uncertainty on experimental normal

vectors taking only the uncertainty on the detected spot

positions into account, which suggests that both the crystal

position within the sample and the heterogeneities of crys-

tallographic orientations within one grain have an impact on

the angular accuracy. For the case N* = 3, 46 out of the 53

LaueGo-merged crystallographic orientations are successfully

indexed by DBB, i.e. there are seven FNs. This is considered a

very promising result. However, there are 103 FPs.

The proportion of FPs is surprisingly high. This may be

caused by spots becoming visible when summing the indivi-

dual depth-resolved detector images into the merged detector

image, which increases the signal-to-noise ratio, i.e. some of

these ‘false’ positives are actually true crystallographic

orientations successfully indexed by DBB. It may also be

related to the experimental noise, like cases 10 and 11 in

Section 3. Since the present LaueGo results do not constitute a

guaranteed ground truth, more work is needed to verify the

DBB indexing results. Nevertheless, it is encouraging that such

a high fraction of the LaueGo crystallographic orientations

can be indexed by DBB when only one single merged detector

image is used.
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Table 2
Results of DBB indexing on depth-resolved detector image.

N*

No. of
indexed
crystals

No. of
detected
spots
indexed

No. of successfully
indexed LaueGo-
merged crystallographic
orientations �err (�)

No. of
FNs

No. of
FPs

0 94 752 36 0.038 17 58
1 128 1017 44 0.036 9 83
2 144 1170 44 0.033 9 99
3 150 1230 46 0.032 7 103

Figure 10
A merged detector image with the 1558 detected spots marked by red
rings.



5. Summary

A method, called dictionary–branch–bound, has been devel-

oped to determine the crystallographic orientation of multiple

(at least up to 100) crystals simultaneously illuminated by a

parallel broad-bandpass X-ray beam, using only the spot

positions as input.

DBB has been tested on simulated data considering a

typical experimental setup. Several (ten to 100) aluminium

crystals with randomly selected crystallographic orientations

were illuminated by a broad-bandpass X-ray beam and the

detector images were simulated. Spots were detected by an in-

house detection method and their positions were supplied as

input to DBB. Additional cases were considered to mimic

experimental difficulties: fake spots added to test the resi-

lience of DBB against detector artefacts and/or an over-

sensitive spot detection, true spots randomly removed to test

the resilience of DBB against undetected true spots due to

spot overlap and/or background noise, and Poisson noise

added to the detector image. With proper parameters, DBB

can determine all the crystallographic orientations. The coarse

dictionary resolution (typically 4�) allows faster calculations

than the ordinary dictionary methods while maintaining the

desired angular accuracy (typically 0.05�). DBB was also

tested on experimental synchrotron microdiffraction data and

notably indexed 46 out of the 53 crystals detected by LaueGo

with a deviation of less than 0.04�.

The robustness of DBB comes from its combination of (i)

the guarantee of a geometrically derived upper bound to

detect a possible match between an expected reflection and a

detected spot, (ii) the fact that spots are not eliminated on the

fly if found as a possible match for a reflection, but instead are

kept during the whole process of matching with reflections,

(iii) the construction of all possible candidate crystallographic

orientations, and (iv) the score strategy which makes DBB

robust against fake spots.

Guidelines in the choice of DBB settings have also been

obtained on the basis of the tests: setting N to 3 works well in

practice, and increasing N* is a helpful and polyvalent

approach both to capture more true crystallographic orien-

tations and to improve their angular accuracy, as it helps to

deal with both shifted and undetected true spots.

6. Related literature

For further literature related to the supporting information,

see Dectris (2021), Online Dictionary of Crystallography

(2021) and Wolfram Research (2021).

APPENDIX A
Assessing whether a reflection is expected for a branch

To check whether a reflection is expected for a branch, i.e.

whether a crystal with a crystallographic orientation in this

branch may produce a spot from this reflection on the

detector, two conditions must be satisfied simultaneously for

any crystallographic orientation in the branch: (i) the

diffracted beam hits the detector and (ii) the photon energy

for diffraction is in the range of the incident beam. This

assessment is based on the dictionary resolution �dict , and the

geometric reasoning is detailed below.

The starting point is to consider �B , which by definition

bounds the angular deviation of any vector when rotating

from the dictionary crystallographic orientation to anywhere

in the branch. As shown in Fig. 11, �B defines a ‘normal

direction cone’ of half the aperture angle �B (green dashed

cone in Fig. 11) around the unitary normal vector of the

reflection for the dictionary crystallographic orientation. It is

then converted into an angular bound 2�B on the direction of

the diffracted beam (dark blue in Fig. 11), which defines a cone

of half the aperture angle 2�B (dark-magenta dashed cone in

Fig. 11) around the direction of the diffracted beam.

Let us denote as G the position on the detector plane of the

spot position for the dictionary crystallographic orientation of

the branch (Fig. 11). Note that G is necessarily inside the

detector area, otherwise the reflection would already be

known as not expected for the branch. Geometrically, for a

constant angular deviation 2�B around the direction of the

diffracted beam, the spot position will deviate most from G to

another position G 0 when the deviated direction of the

diffracted beam is such that PG and GG0 are collinear and in

the same direction, where P is the orthogonal projection on

the detector plane of the centre E of the volume of the crystal

emitting the diffracted beam in the gauge volume. The upper

bound on the displacement from G can be calculated in

practice as

GG0
�� �� ¼ tan ff EP;EGð Þ þ 2 ��½ � � tan ff EP;EGð Þ½ �

� �
EPk k;

ð6Þ
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Figure 11
The determination of whether or not the spot position of a reflection is
guaranteed to remain on the detector as the crystallographic orientation
may take any value in a branch. The normal-direction angular bound �B is
notably converted to an upper bound kGG0k on the deviation of the spot
position on the detector.



where /(EP, EG) is the (non-oriented, i.e. always positive)

angle between EP and EG. Then kGG0k is compared with the

distance between G and the closest border of the detector to

check the first condition.

The second condition is checked by verifying whether the

wavelength interval for diffraction of the reflection [max{0,

2dsin(� ���)}; 2dsin(� + ��)] (when the angular uncertainty

�B is considered) is fully included in the wavelength range of

the incident beam.

Note that a coarser dictionary resolution leads to a larger

upper bound on the deviation of the spot position on the

detector kGG0k and a larger wavelength interval [max{0,

2dsin(� � ��)}; 2dsin(� + ��)], and thus fewer ERs for a

branch. The dictionary resolution must then be chosen to be

sufficiently fine to obtain enough, i.e. at least N + N*, ERs for

each branch for a given setup.

APPENDIX B
Uncertainty on the experimental normal vector of a
detected spot

When a detected spot position deviates from its true spot

position, due for example to detector background noise, or

elastic or plastic strain, such a deviation will propagate to the

experimental normal vector of this detected spot. Thus an

upper bound �d for the difference between the detected and

true spot positions on the detector is chosen, and an upper

bound �e(Se) on the associated norm of the variation of the

experimental normal vector is derived.

B1. Uncertainty on the experimental unitary vector of the
diffracted beam

As shown in Fig. 12, the centre E of the volume of the

crystal emitting the diffracted beam is approximated as the

centre of the gauge volume, which is then projected onto the

detector plane to supply the point P. The uncertainty (thick

magenta line in Fig. 12) �d on the detected spot position on

the detector is considered at P because it is the location

maximizing the angular uncertainty induced on the diffracted

beam. As shown in Fig. 12, the angular uncertainty on the

experimental unitary vector of the diffracted beam �	e is an

upper bound on the angular deviation of the diffracted beam

from the true one to the experimental one, which can be

defined as follows:

�	e ¼ arctan
�d

EPk k

� �
: ð7Þ

Then the distance uncertainty on the experimental unitary

vector of the diffracted beam �	e is an upper bound on the

norm of the variation in the unitary vector of the diffracted

beam from the true one to the experimental one, which can

defined as follows:

�	e ¼ 2 sin
�	e
2

� �
: ð8Þ

B2. Uncertainty on the experimental normal vector

The distance uncertainty �	e, applied initially at the arrow

tip of the experimental unitary vector of the diffracted beam

dde(Se), is ‘translated’ (by�i, the unitary vector of the incident

beam) to the tip of the experimental unnormalized normal

vector dde(Se) � i (Fig. 13). The distance uncertainty �	e then

allows us to define an uncertainty ball (green circle in Fig. 13)

to which ‘belongs’ the arrow tip of the experimental unnor-

malized normal vector dde(Se) � i, enabling study of the

uncertainty on the normal direction. An angular uncertainty

on the normal direction is attained if (i) the true normal

direction deviates as much as possible from the calculated

unnormalized normal vector while (ii) still intersecting the

uncertainty ball. This configuration arises if the true normal

direction is tangential to the ball. The upper bound of the

angular deviation of the normal direction from the true one to

the experimental one, also called the angular uncertainty on

the experimental normal vector and denoted �e(Se), can be

expressed as

�eðSeÞ ¼ arcsin
�	e

ddeðSeÞ � i
�� ��
" #

: ð9Þ

The angular uncertainty on the experimental normal vector

�e(Se) is then translated in terms of distance. This supplies an

upper bound on the norm of the difference between the true

normal vector and the experimental one, which is called the

distance uncertainty on the experimental normal vector,

denoted �e(Se) and expressed as

�eðSeÞ ¼ 2 sin
�eðSeÞ

2

� �
; ð10Þ
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Figure 12
The angular uncertainty on the experimental unitary vector of the
diffracted beam �	e calculated by considering both (i) the distance kEPk
from the emission point E in the sample to the detector and (ii) the
uncertainty �d in the detected spot position on the detector assuming
that the true spot position is in the pixel window centred on the pixel
where the detected spot position lies.



which is used in the matching criterion [Section 2.3.1,

equation (1)].
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Figure 13
The angular uncertainty on the experimental normal vector �e calculated
using the experimental unitary vector of the diffracted beam dde(Se) and
its angular uncertainty �	e.
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