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Abstract: Inflammatory bowel disease (IBD), which affects about 7 million people globally, 
is a chronic inflammatory condition of the gastrointestinal tract caused by gut microbiota 
alterations, immune dysregulation, and genetic and environmental factors. The association of 
microbial and immune molecules with mucin-type O-glycans has been increasingly noticed 
by researchers. Mucin is the main component of mucus, which forms a protective barrier 
between the microbiota and immune cells in the colon. Mucin-type O-glycans alter the 
diversity of gastrointestinal microorganisms, which in turn increases the level of 
O-glycosylation of host intestinal proteins via the utilization of glycans. Additionally, 
alterations in mucin-type O-glycans not only increase the activity and stability of immune 
cells but are also involved in the maintenance of intestinal mucosal immune tolerance. 
Although there is accumulating evidence indicating that mucin-type O-glycans play an 
important role in IBD, there is limited literature that integrates available data to present 
a complete picture of exactly how O-glycans affect IBD. This review emphasizes the roles of 
the mucin-type O-glycans in IBD. This seeks to provide a better understanding and 
encourages future studies on IBD glycosylation and the design of novel glycan-inspired 
therapies for IBD. 
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Introduction
IBD is a complex chronic inflammation of the gut, including Crohn’s disease (CD) and 
ulcerative colitis (UC). In recent years, IBD has become a crucial yet difficult field of 
study among digestive diseases because of high incidence, difficulty of complete 
remission, and high risk of developing cancer in patients with a long history of the 
disease.1 The etiological factor and pathogenesis of IBD are still unclear. However, its 
progression is associated with altered interactions between gut microbes and the 
intestinal immune system,2,3 where these factors result in an uncontrolled inflammatory 
response that ultimately culminates in irreversible tissue damage.

The body can protect itself from the threat of harmful microorganisms, auto-
immune disorders, and intestinal inflammation through a variety of mechanisms. 
An important factor in these mechanisms is the mucus layer covering the intestinal 
epithelium, which not only provides lubrication for food passage but also protects 
the epithelial cells beneath it from microorganisms, and establishing a physical 
barrier against invasion of pathogens, toxins, and other environmental irritants.4–6 

Defects in the structure of the mucus layer before disease progression have been 
reported in mouse models of IBD.7 Kirk et al redefined the colonic mucus system as 
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a biological system composed of a loosely “niche” layer, 
which provides symbiotic bacterial growth, and the tightly 
“inner” layer, which acts as a barrier between bacteria and 
intestinal epithelium.8 Johansson et al found that the 
mucus layer of dextran sulfate sodium(DSS)-induced coli-
tis mice allowed bacteria to pass through.9 In IL-10 −/− 

mice, a widely used mouse colitis model, it has been found 
that bacteria could pass through the mucus layer without 
reducing its thickness.10 These observations suggest that 
variation in the “inner” layer may be an initial event in the 
development of colitis.

The difference in the structure of the two mucus layers 
mainly lies in mucin, which is produced by surface goblet 
cells and is released steadily without any stimulation.11 

Mucins maintain a certain amount, mainly due to the 
special glycosylated-connectives on the surface,12 because 
the gut itself does not produce any enzymes that can break 
these connections.13 These specific glycosylated links are 
mucin-types O-glycans, which account for up to 80% of 
the mass of the mucin molecules. O-glycans in the “niche” 
layer are loosely arranged, providing potential binding 
sites to support the growth of symbiotic and pathogenic 

bacteria (Figure 1A).14,15 In addition, bacteria with muco-
lytic activity can release monosaccharides from mucin- 
O-glycans and metabolize them, thereby using O-glycans 
as a source of carbon and energy. The “inner” layer gen-
erated by the nets formed by O-glycans staggered on top 
of one another that adheres firmly to the cell and does not 
allow bacteria to penetrate keeps the commensal bacteria 
at bay, but when this first line of defense fails, bacteria 
come in contact with the epithelium.16,17 This event is 
likely the first in the inflammatory disease UC.10,18

O-Glycans as the First Line of 
Defense in the Colon
O-glycans of the gastrointestinal tract are the first line of 
defense against external stimuli. Since O-glycans have 
been linked to the development of inflammatory colitis, 
there is the need to pay closer attention to this knowledge 
in the light of further research exploration. Here, we dis-
cuss the functions of the O-glycans in IBD by focusing on 
the structure of O-glycans, as well as the synthesis of 
Mucin-type O-glycans.
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Figure 1 Interactions between mucin-type O-glycans and intestinal flora. (A) The glycan distribution of the outer mucus is loose, and the glycan of the inner mucus 
interweaves into a network to act as the mucous membrane barrier; (B) LabA interacts with a lacdiNAc structure (GalNAcβ1-4GlcNAc) present on the mucin MUC5AC in 
the gastric mucosal layer; (C) Bacteria decompose glycans into oligosaccharides under the action of glycosidase and use it; (D) the antimicrobial peptides (AMPs) in the 
mucus1 are distributed in step concentration and inhibit bacteria pathogens in the mucus.
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Synthesis of Mucin-Type O-Glycans
The synthesis of mucin-type O-glycans was shown to 
have significant associations with the glycosylation 
process, which is the most complex known post- 
translational modification of proteins. It has been dis-
covered that the change of intestinal mucus is related 
to the change of this post-translational modification of 
mucin rather than the expression of mucus.19 Defects 
in O-glycosylation can lead to impaired mucin expres-
sion and mucosal barrier destruction, which in turn 
leads to microbial activation of inflammasomes such 
as caspase 1, interleukin (IL)1β, and IL18, then drive 
inflammation and lead to severe spontaneous bacteria- 
dependent colitis.20,21 The glycosylation of proteins in 
mammals is mainly classified into three types: 
O-glycosylation, N-glycosylation, and glycosylpho-
sphatidylinositol (GPI) anchors. O-glycosylation is the 
main form of glycosylation characterized by the liga-
tion of oligosaccharides including mannose, xylose, 
and N-acetylgalactosamine (GalNAc) with hydroxyl 
groups of serine or threonine residues of polypeptide 
chains to form O-linked glycoproteins.22,23 O-linked 
N-acetylgalactosamine (O-GalNAc) glycan is particu-
larly associated with mucosal sites such as the respira-
tory tract, urogenital tract, and gastrointestinal 
tract.24,25

The first step of mucin-type O-glycosylation is to trans-
fer N-acetylgalactosamine (GalNAc) to the hydroxyl group 
of Ser or Thr in the peptide sequence under the action of 
polypeptide GalNAc transferases (ppGalNAcTs), forming 
the Tn antigen structure, which is the substrate of 
glycosyltransferase.26 Tn antigen can be extended to pro-
duce eight different core structures (Figure 2), and Core 1–4 
are the four main core structures. Core 1 structure is formed 
by adding galactose to the Tn antigen. The addition of an 
N-acetylglucosamine to the GalNAc of Core 1 structure 
forms Core 2 structure. Core 3 structure is produced by 
the addition of an N-acetylglucosamine (GlcNAc) to the 
Tn antigen. Core 3 structure can be extended by the addition 
of a branching GlcNAc at the C6 hydroxyl group of 
GalNAc to form core 4 structure. Core 1 and 3 structures 
eventually form most mucin-type O-glycans.27 The 
enzymes involved in core 1-derived O-glycans biosynthesis 
is core 1 β1,3-galactosyltransferase (C1GalT1, or 
T-synthase), and loss of C1GalT1 efficiently removes all 
core 1-derived O-glycans in intestinal epithelial cells. Mice 
with intestinal epithelial-specific defects of core 1-derived 

O-glycans show destruction of the inner mucus layer and 
develop spontaneous colitis, mainly in the distal colon.28 

These data indicate that the abnormal synthesis of mucosal 
O-glycan plays an important role in the pathogenesis of 
colitis, suggesting that it may be possible to treat inflamma-
tory enteritis by repairing glycosylated synthesis.

Mucin-Type O-Glycans Disruption and 
IBD
Most structural investigations on O-glycans have been 
carried out on mucin-type O-glycans, which have been 
shown to have a great impact on human health and 
disease, particularly in IBD. To date, 21 different mucins 
have been identified, many of which are expressed in the 
gastrointestinal tract and can be broadly classified into 
three categories: secretory gel-forming (MUC2, 
MUC5AC, MUC5B, MUC6), secretory non-gel-forming 
(MUC7), and membrane-bound (eg, MUC1, MUC3, 
MUC4, MUC12, MUC13, MUC17).26,29–31 Studies have 
shown different patterns of O-glycosylation profile of 
MUC2 mucins in patients with UC and controls. 
Patients with active colitis have a decrease in several 
complex glycans and an increase in a subset of the 
smaller glycans. Remarkably, patients with strong altera-
tions in the glycans pattern tended to have a more severe 
disease course.29,32–35 strikingly, MUC2 O-glycosylation 
distribution returns to normal after remission, demonstrat-
ing the potential of glycosylation profiling for predicting 
disease progression,21 Studies found that the loss of core 
1-derived O-glycans seriously impairs the formation of 
the mucus layer, leading to severe spontaneous colitis in 
mice after 2 weeks of birth, and with time, the severity of 
the disease is gradually aggravated.28,35,36 Importantly, 
mucus depletion was observed before the onset of colitis 
in mice, supporting the etiological role of core 1-derived 
O-glycosylation deficiency and mucus barrier function in 
the pathogenesis of IBD.

A similar deficiency in mucus layer function has 
recently been found in human UC tissues.9 Interestingly, 
the loss of core 3-derived O-glycans resulted in increased 
intestinal mucosal permeability, elevated bacterial levels 
in the colon, and susceptibility to IBD, but no sponta-
neous disease was observed in C3GnT knockout mice.37 

Like C1GalT1, C3GnT is the only enzyme catalyzing the 
biosynthesis of core 3-derived O glycan in humans.37 

Different from humans, the core 3-derived glycans 
account for only 1% of the total amount of MUC2 
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O-glycans in mice,38 which may explain why the mice 
did not develop the spontaneous disease in the absence or 
loss of core 3-derived O-glycans.21 Core 1 and 3 derived 

O-glycans in mucus have the same function, that is, to 
protect the gut from microbes and thus suppress 
inflammation.

Figure 2 O-glycans structure core 1–8. Core 1 and core 2 structures are the most abundant out of the eight identified mammalians core structures. Core 1 structure is 
composed of galactose and is attached to the base GalNAc. Core 2 structure utilizes the core 1 structure complex with an addition of GlcNAc. Core 3 structure is 
produced by the addition of a GlcNAc to the TN antigen. Core 3 structure can be extended by the addition of a branching GlcNAc at the C6 hydroxyl group of GalNAc to 
form core 4 structure. 
Abbreviations: GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine.
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Based on current studies, it is known that mucin-type 
O-glycans are the main factor that plays a protective role 
in the mucosal barrier; however, there are still many unan-
swered questions about how O-glycans interact with bac-
teria specifically to promote the integrity of the mucus 
barrier and intestinal flora homeostasis.

Interactions Between Mucin-Type 
O-Glycans and Microorganisms
Compared with healthy individuals, IBD patients have an 
unstable microbiota and develop significant bacterial mal-
nutrition. In other words, patients with IBD have fewer 
anti-inflammatory bacteria and more bacteria with pro- 
inflammatory properties.39 Remarkably, dysregulation of 
the microbiota is critical for IBD, because the intestinal 
habitat of the host can shape microbial community struc-
ture. In a study by John Rawls, the performance of reci-
procal microbiota transplantations in germ-free zebrafish 
and mice resulted in a different microbial community 
structure between the zebrafish and mice due to different 
selective pressures applied within the gut habitat of each 
host.40 Moreover, the differences between mice and human 
commensal bacteria support the idea that hosts can influ-
ence their bacteria population and diversity.41,42 Host fac-
tors significantly influence the selection of microbes in the 
gut. Therefore, the question that remains to be explored is 
how the host “dictates” the microbe’s population and 
diversity in the gut.

The mechanism that influences or participates in select-
ing the host’s bacteria remains unknown but might involve 
mucin-type O-glycans. Mucin, especially intestinal mucin 
MUC2 O-glycans, is probably helpful in selecting colonic 
flora of a particular species.36 Additionally, specific struc-
tures on mucin-type O-glycans that bind to bacterial agglu-
tinin-like adhesins probably also influence the composition 
of intestinal colonies.43,44

Mucin-Type O-Glycans Regulate Microbial 
Composition
Intestinal flora disturbance can break the ecological bal-
ance between normal cells of the small intestine and var-
ious microorganisms, including probiotics and pathogenic 
bacteria, and is one of the leading causes of IBD. 
Microorganism species also change in mice with 
O-glycan modification, as shown in mice with Core-1 
glycan deficiency in the small intestine.45 These mice 
have higher levels of Bacteroidetes and lower levels of 

Firmicutes than wild-type mice. This suggests that 
O-glycans have become increasingly important in shaping 
the composition of the microbial community in the gut. 
This has been demonstrated in mice lacking β1, 
4-N-acetylgalactosamine transferase 2 (B4galnt2), which 
catalyzes GalNAc formation to SDA −/− Cad antigen.46 

Changes in intestinal bacterial community structure of 
B4galnt2-deficient mice were determined by 16S rRNA 
pyrosequencing.46 It is reasonable to speculate that 
O-glycans may shape intestinal microbiota by forming 
other structures that “control” intestinal microbiota 
through glycosyltransferases. It is noteworthy that, glycan- 
deficient mice exhibit loss of colonic mucosa-associated 
commensal microorganisms without affecting the compo-
sition of microbial communities in the small intestine, 
resulting in spontaneous colitis.47

O-glycans in mucus may affect the ability of 
Escherichia coli to thrive after they colonize.48 Direct 
antimicrobial activity has been demonstrated in the gastric 
mucosa. Studies have shown that the barrier layer of the 
gastric mucosa is mainly composed of MUC6. MUC6 has 
been shown to carry α1-4 linked N-acetylglucosamine 
(α1-4 GlcNAc), with residues attached to core 2 branched 
O-glycans.49 These glycans act as a natural antibiotic by 
inhibiting the growth of Helicobacter pylori via reducing 
the formation of cholesterol-α-D-glucopyranoside, an 
essential component of Helicobacter pylori cell wall.50 It 
is plausible that similar antimicrobial O-glycans can exist 
in the gut. These results suggest that subtle differences in 
the structure of O-glycans can influence the composition 
of microbial species, which may influence susceptibility to 
intestinal diseases.

A growing body of evidence suggests that mucin gly-
cosylation is critical to the biological and physical role in 
the gut through its regulation of the composition of mucus- 
associated microbiota.51 Interestingly, a recent publication 
by Bergstrom et al reports that mucus exhibits another 
functional aspect, showing that proximally derived 
O-glycosylated mucus encapsulates the fecal and micro-
biota to regulate the structure and function of the micro-
biota, as well as transcription in the colonic mucosa.52

As the main bearer of intestinal mucus biological func-
tion, MUC2 O-glycans may be important for the selection 
of typical bacterial composition.36 To this end, certain 
questions still linger: Does MUC2 glycan participate in 
the selection of symbiotic flora? How does the mucus 
lining of the colon relate to colitis and the human disease 
ulcerative colitis? All these queries require a more detailed 
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molecular exploration to enhance understanding of the 
structure and processing of MUC2 mucin and its related 
proteins that make up the colonic mucus layer.

Mucin-Type O-Glycans Promote Bacterial 
Adhesion
Pathogenic microorganisms breaking through the intestinal 
mucus barrier and adhering to the intestinal epithelium is 
considered to be the first step of pathogenic bacterial infec-
tion leading to inflammatory enteritis. Therefore, adhesion is 
closely related to the biological function of intestinal mucus. 
It has been shown that C1GalT1 deficient mice cause the loss 
of core 1-derived O-glycans to disrupt the attachment site of 
the intestinal flora and alter the composition of the 
microbiota.53 Mucus serves a dual purpose for the micro-
biota. On one hand, it can encapsulate the gut microbes, 
limiting bacterial invasion to the deep intestinal mucosa. 
On the other hand, the carbohydrate structure of mucins, 
O-glycans, can also provide an initial site of attachment for 
bacteria including specific pathogens (Figure 1B).54 Studies 
have shown that MUC1, a glycoprotein found in human 
breast milk, can be attached to some bacteria, such as 
Campylobacter and enterotoxigenic Escherichia coli 
(ETEC), and interferes with the colonization of these patho-
gens in the gut of infants.55,56 Glycans may play a major role 
in the increased ability of pathogenic bacteria to adhere to the 
intestine. Lectins that mediate the binding of bacteria to host 
cells are proteins that not only bind glycans on the cell sur-
face but also bind free carbohydrates. Campylobacter jejuni 
can bind MUC2 through carbohydrate-lectin.57,58 Thus, it 
can be hypothesized that the binding site of Campylobacter 
to mucin may be O-glycans. In addition to Campylobacter 
jejuni, Escherichia coli can also bind MUC2.59 Moreover, 
mucin-type O-glycans have been shown to inhibit EHEC 
adhesion to epithelial cells.60 There are few studies on the 
specific sites of bacterial-binding mucosa, but some studies 
have emphasized the importance of O-glycans in bacterial 
adhesion. The 16S rDNA of colonic bacteria in mice defi-
cient in core 3-derived O-glycans was found to be 
increased,37 suggesting that the bacteria may increase muco-
sal adhesion and transfer through core 3-derived O-glycans.

Unlike pathogenic bacteria, commensal bacteria adopt 
a different strategy to adhere to mucus. Adherence of com-
mensal bacteria to the intestinal mucus layer and occupation 
of the area can reduce the likelihood of adhesion of patho-
genic microorganisms. Interestingly, studies have shown that 
the associated mucins are resistant to adhesion on the cell 

surface. Sumiyoshi et al used chemical primers benzyl-α- 
GalNAc to disrupt mucin O-glycosylation and observed 
enhanced adhesion properties on the surface of differentiated 
corneal epithelial cells.61,62 Current studies have shown that 
symbiotic bacteria mainly promote their adhesion by secret-
ing mucus-binding proteins.15 The specific mechanism of 
mucus-binding proteins is still unclear. It can be speculated 
that this process may be related to O-glycans.

Mucin-Type O-Glycans Inhibit the 
Virulence of Bacterial
Mucus simultaneously hosts trillions of microbes, but 
these microbes rarely cause infection in healthy mucus, 
suggesting that there is a mechanism in the mucus layer 
that regulates virulence. Changes in the glycosylation pat-
tern of mucin in disease can trigger changes in bacterial 
phenotypes and alter the binding properties of mucin to 
microorganisms and their protective functions.63 In addi-
tion to acting as a carbon source, mucin-type O-glycans 
can affect the expression of different genes involved in 
pathogenicity.64 Recently, a study has shown that mucin- 
type O-glycans attenuate the virulence of Pseudomonas 
aeruginosa in infection by inhibiting the expression of 
virulence genes in Pseudomonas aeruginosa.65

Similar observations were seen in Campylobacter jejuni, 
which can also use MUC2 as a signal to regulate the expres-
sion of genes associated with motility, adhesion, invasiveness, 
and toxin formation.66 Furthermore, in the gastrointestinal 
tract, O-glycans downregulate the Hcp secretion island 
I-encoded type VI secretion system (H1-T6SS), which is 
associated with Pseudomonas aeruginosa chronic 
infections.67 These studies provide new and exciting insights 
into the role of mucus and its derived O-glycans as a promising 
prophylaxis factor against bacterial virulence. Thus, mucin- 
type O-glycans are an effective host signal that can reduce the 
harm of microorganisms to the host by regulating its toxicity. 
These studies also demonstrate the potential of mucin-type 
O-glycan to regulate microbial virulence and provided 
a theoretical basis for further studies on the prevention of 
inflammatory enteritis by mucin-type O-glycans.

Bacteria Degrade Glycans as a Source of 
Nutrients
The permanent renewal of the mucus layer in the gut 
represents an important ecological niche that is rich in 
nutrients and provides a particularly beneficial environ-
ment for commensal bacteria. Commensal bacteria are 
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typically characterized by abundant glycosylating 
enzymes, such as glycosidases. When dietary glycans 
are scarce, bacteria with mucolytic activity can degrade 
mucin-type O-glycans and metabolize them 
(Figure 1C),68 thus this greatly increases the energy 
extracted from the food. Moreover, these sugars can also 
be used by nearby bacteria.15 By analyzing the mucin- 
type O-glycans in the feces of patients with UC, research-
ers found that the ratio of mucin-type O-glycans in the 
feces of patients with UC was significantly higher than 
that of healthy people, suggesting that the utilization of 
O-glycans by intestinal flora in patients with UC was 
impaired,69 Indeed, various anaerobic bacteria species of 
gut microbiota, such as Akkermansia muciniphila,70,71 

Bacteroides thetaiotaomicron,72,73 Bifidobacterium 
bifidum,74–76 Bacteroides fragilis,77–79 Ruminococcus 
gnavus,74,80 and Ruminococcus torquesare now known 
as mucin-degrading specialists (Table 1).74 Bacteroidetes 
are one of the most abundant symbiotic genera in the 
human colon.81 Bacteroides play an important role in 
the balance of intestinal flora in inflammatory enteritis, 
colorectal cancer, and other intestinal diseases.82,83 The 
monosaccharides released during the degradation of 
mucin-type O-glycans can also serve as chemical cues 
to help pathogens sense their environment and adapt 
accordingly.

Bacteria recognize dense mucin O-glycans structures and 
degrade individual glycan to produce short-chain fatty acids 
(SCFA), which diffuse through the internal mucus layer and 
provide an energy source for intestinal epithelial cells.84 The 
harvesting of degraded glycans for their metabolism pro-
vides colonization advantages for bacteria. At the same time, 
this glycan degradation allows oligosaccharides to be pro-
vided to non-mucin-degrading bacteria as part of the micro-
bial food chain, thus sustaining the entire intestinal flora.85,86

Bacteria Promote O-Glycans Synthesis 
and Influence Its Composition
The symbiotic bacteria can affect the composition of gob-
let cells in the small intestine and their secreted product 
mucin, thereby increasing the resistance of Intestinal to 
pathogenic bacteria. Transcriptions of glycosyltransferases 
involved in core 2 O-glycan biosynthesis were observed 
during experimental mycobacterium tuberculosis 
infection.87 A further notice of the regulatory role of 
glycosyltransferases in bacterial infection highlights the 
importance of glycans and its biosynthetic pathway as 
a possible new target for the regulation of IBD. A study 
has shown that differences in mucin composition are also 
influenced by the presence or absence of microbial flora in 
the intestine.88 B. thetaiotaomicron metabolizes acetate 
and enhances goblet cell differentiation, resulting in 

Table 1 Glycan-Degrading Bacteria Colonizing the Human GI Tract

Bacterial Species Mucin Tested Enzymatic Activities

Akkermansia muciniphila70,71 pPGM type III α-Galactosidase; β-galactosidase; α-L-fucosidase; β-glucosidase; α-mannosidase; α- 

galactosidase; β-D-fucosidase; α-N-acetylgalactosaminidase; β- 

N-acetylgalactosaminidase; β-N-acetylglucosaminidase

Bacteroides thetaiotaomicron74– 

76

Purified O-glycans 

from PGM type III

α-L-fucosidase; endo-β-N-acetylglucosaminidase; endo-β-galactosidase; α-mannosidase

Bifidobacterium bifidum75–77 PGM type III Endo-α-N-acetylgalactosaminidase; α1,2-L-fucosidase

pPGM* Blood group H-degrading activity; sialidase; β-galactosidase; β-N-acetylgalactosaminidase; 

β-N-acetylglucosaminidase; sialate 

O-acetylesterase; glycosulfatase

Bacteroides fragilis77–79 PGM type III endo-α-N-acetylgalactosaminidase; α1,2-L-fucosidase

Ruminococcus gnavus74,80 pPGM type III 

pPGM*

α-L-fucosidase; α2,3-sialidase 

Blood group B-degrading activity; blood group H-degrading activity; sialidase; β- 

galactosidase; sialate 
O-acetylesterase

Ruminococcus torques74 pPGM* Unknown

Abbreviations: PGM, pig gastric mucin; PGM*, pig gastric mucin; pPGM, purified PGM, purified according to Miller and Hoskins’ method (Miller and Hoskins, 1981).
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increased goblet cell number and mucin gene expression 
in rat colon. In addition, mucin glycosylation is substan-
tially changed after colonization by B. thetaiotaomicron, 
that is, the content of N-acetylglucosamine modified gly-
can decreased.73 It can be hypothesized that there is 
a mechanism by which the bacterium may require low 
levels of N-acetylglucosamine modified glycosylation to 
attach and colonize the gut. F. prausnitzii consumes the 
acetate produced by B. thetaiotaomicron to produce 
butyrate.73 SCFA, especially butyrate, has an inducer 
effect on mucin synthesis in vitro.89–91 Bacteria not only 
indirectly affect mucin-type O-glycans by affecting goblet 
cell secretion and mucin synthesis but can also directly 
change the diversity and abundance of O-glycans. 
Gastritis induced by Helicobacter pylori is accompanied 
by a sharp but transient decrease in the diversity and 
relative abundance of O-glycans in the mucosa of rhesus 
monkeys.92 Porcine dysenteric spirochete infection can 
regulate mucin glycosylation and induce increased Core 
2-derived O-glycans expression in the porcine colon. In 
addition, one of the prominent glycosylation changes 
observed in pigs infected with Pterospira dysenteriae 
was an increase in the abundance of shorter glycans.93 

Patients with active UC also show elevated levels of 
small glycan subsets, which are thought to be associated 
with inflammation and disease severity.21 These results 
suggest that gut bacteria not only sense the composition 
of mucus and passively adapt to it but also modify mucin- 
type O-glycans to make the gut more suitable for their 
own survival.

Mucin-Type O-Glycans and Immune 
Response
People with immune deficiency or abnormalities have 
a higher incidence of IBD and higher levels of intestinal 
inflammation.94 Both the innate and adaptive immune 
responses play an indispensable role in the immune 
mechanism of intestinal inflammation caused by 
O-glycan abnormalities. Intestinal mucus is the first line 
of defense against pathogens and plays an important role 
in regulating the homeostasis of microbial flora, clarifying 
pathogens, and maintaining immune tolerance to foreign 
food antigens.95,96 Mucus is a complex fluid that is rich in 
mucin glycoproteins, which work together with antimicro-
bial epithelial AMPs to create a gradient of antimicrobial 
mucus that prevents bacteria from reaching the epithelial 
cells (Figure 1D).

The glycans are also inseparable from the host’s second 
line of defense against pathogens, which is the immune 
cells in the intestinal mucosa that recognize “good” and 
“bad” bacteria. Mucin-type O-glycans can bind to micro-
organisms, and the structure and negative charge of gly-
coproteins are conducive to encapsulating bacteria, thus 
enhancing host interaction as observed in the early stages 
of IBD.97,98 This indicates that O-glycans can affect the 
intestinal immune system’s recognition of intestinal “non- 
self” substances. In addition to encapsulating bacteria, 
mucinous O-glycans also play an important role in the 
recognition of microorganisms by host immune cells. 
This is confirmed in a study of MUC1, where an increase 
in glycosylated MUC1 could lead to continuous activation 
and accumulation of various cells in the innate immune 
system, resulting in chronic inflammation.99 M cells in the 
small intestine, specialized cells that recognize antigens, 
are characterized by a mucin-free layer and a thin glyco-
calyx. O-glycans play an indirect role in the interaction 
between M cells and intestinal antigen by regulating the 
volume of glycocalyx.100 Low glycosylated MUC1 not 
only provides neoantigen determinants to B cells but also 
can be processed and presented to T cells more efficiently. 
This may promote the movement of adaptive immune cells 
to the inflammatory site.99 In turn, intestinal inflammation 
also promotes the glycosylation of MUC1 in colonic 
epithelial cells.101 The cause of glycosylation of MUC1 
is unknown but may be the result of glycosyltransferase 
action.

Intestine-related lymphoid tissues directly participate 
in and regulate intestinal mucosal immune regulation, 
and are also a predominant part of the body’s immune 
system, including a large number of macrophages, mono-
cytes, natural killer cells (NK cells), dendritic cells (DCs), 
T cells, and B cells (Table 2). O-glycans of MUC1 sialyl- 
Tn antigen may affect the immune response by inhibiting 
the maturation of DCs and the activity of NK cells.102,103 

Removal of a glycan from the surface of DCs results in 
increased endocytosis.104 Altered genes expression asso-
ciated with neutrophils, macrophages, mast cells, eosino-
phils, NK cells, and DCs are observed in Muc2 knockout 
mice,105 suggesting that these immune cells are probably 
associated with mucin-type O-glycans.

Cells of the Innate Immune System
Macrophages and monocytes play an important role in the 
innate immune response to the pathogenesis of IBD. 
Macrophages have the ability to phagocytosis and digest 
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“bad” foreign substances and express pro-inflammatory 
(M1-like) or anti-inflammatory (M2-like) phenotypes by 
sensing the microenvironment.106 Patients with CD have 
increased numbers of M1 macrophages and monocytes. 
Other studies have also found increased expression of 
macrophage-related cytokines in the inflammatory colon 
tissue.107 In the mouse model of colitis, there is an inex-
tricable relationship between macrophages and O-glycans. 
Studies have shown that the number and function of 
macrophages and monocytes are altered in colitis in mice 
with core 1-derived O-glycans deficiency. Significant infil-
tration of monocytes and macrophages in the colon tissues 
of core 1-derived O-glycans deficient mice is observed 
following the onset of colitis. Moreover, there is 
a significant increase in macrophages in mice with core 
1-derived O-glycans deficiency.28 This suggests that these 
cells are the primary cell types capable of sensing early 
microbial invasion and triggering inflammation. By knock-
ing out core 1β-1,3-galactosyltransferase-specific molecu-
lar chaperone (Cosmc) in macrophages, which is essential 
for the synthesis of mucin-type O-glycans. It was found 
that O-glycans can interfere with the recognition of macro-
phages’ mucin domain-containing molecule 4 to apoptotic 
cells, thus affecting the phagocytic function of macro-
phages, leading to incomplete clearance of apoptotic cells 
by macrophages.108

Macrophages can in turn influence mucin glycosyla-
tion. For example, O-glycans alterations of MUC1 are 
driven by M2 macrophages through overexpression of 
glycosyltransferase ST6GALNAC1. The modified enzyme 

added sialic acid to the O-linked GalNAC residues to form 
the tumor-associated sialic acid Tn O-glycans, and this 
abnormal glycosylation of MUC1 occurs in chronic 
inflammation including UC.107 Moreover, antigen- 
presenting cells (APCs), DCs, and macrophages can pro-
mote the differentiation of CD4+T cells into helper T(Th)2 
cells by phagocytosis and processing antigen, and the 
cytokine IL-13 secreted by these cells drives intestinal 
goblet cell proliferation and increases the levels of mucins 
Muc2 and Muc5a.109,110 The close interaction between 
macrophages and monocytes and mucosal O-glycan sug-
gests that innate immune responses are involved in 
O-glycan-induced colitis.

Cells of the Adaptive Immune System
T cells play a vital role in the pathogenesis of IBD. The 
imbalance between pro-and anti-inflammatory T cells may 
be responsible for the initiation and aggravation of the 
inflammatory process in patients with IBD.111 In patients 
with active IBD, pro-inflammatory T cell infiltration is 
increased in intestinal inflammatory tissues, while anti- 
inflammatory T regulatory (Treg) cell activity is 
impaired.111 Both CD and UC are characterized by sig-
nificant expansion of inflammatory memory CD4+ T cells 
in the inflamed intestine.112,113 In the process of intestinal 
inflammation, Core-2β1, 6-N-acetylglucosamine amino-
transferase (C2GNT) 1 is down-regulated, resulting in 
Core 1-derived O-glycans maturation disorder on the sur-
face of CD4 + T cells. Immature Core 1-derived O-glycans 
bind to galectin-4, a member of the endogenous lectin 

Table 2 Intestinal Immune Cells Associated with O-Glycan

Type of Cell Cell Function Alter of Glycan Immune Association

M cells99 Take up antigens from the symbiotic bacteria 
to prevent abnormal immune activation 

against parasites

A relatively thin 
glycocalyx compared 

with enterocytes

Glycans promote the contact of M cells with 
antigens

Macrophages28,107 Phagocytosis and digestion of “bad” foreign 

substances

Core 1-derived 

O-glycans deficiency 

mice

Infiltration of macrophages in the colon tissues; 

interfere with the recognition of macrophages to 

apoptotic cells

NK Cells102,100 Neutrophil recruitment MUC2 deficiency mice The activity of NK cells

DCs106,104 Presentation of antigens and initiation of 

specific immune responses

Cell surface glycan 

deficiency

Inhibition of DC maturation; increased 

endocytosis

T cells28,109,110 Two subtypes: pro-inflammatory and anti- 

inflammatory

Core 1-derived 

O-glycans maturation 
disorder

Pro-inflammatory T cell proliferation; increased 

pro-inflammatory factors;
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family, which then binds to the glycan structure and con-
trols immune cellular processes, leading to CD4 + T cell 
expansion and more severe intestinal inflammation.114 

Interestingly, another paper found that a reduction in 
Core-1 O-glycosylation leads to an increase in the Foxp3 
+ Treg cell, which is microbiota-induced T(regs) cells, that 
inhibits immune-inflammatory responses.115,116 There is 
a significant increase in microbiota-induced Treg cells 
(Figure 3) during the disease onset phase (Week 3) of 
colitis mice specifically deficient in colonic epithelial 
core 1-derived O-glycans.28,117 There is also no significant 
increase in the number of NK cells in mice with colonic 
epithelial core 1-derived O-glycans specific deletion.28 

During the progression of colitis to the relapse stage 
(Week 9), symptoms in mice with combined deficiency 

of O-glycans and lymphocytes of core 1 source are milder 
than those in mice with O-glycans deficiency of core 1 
source only,28 and pro-inflammatory T cell subsets prolif-
erate significantly.117 This implies that lymphocytes may 
play an important role in the later stages of colitis.

Although colitis caused by core 1-derived O-glycans 
deficiency in mice is an inflammatory response driven by 
innate immunity, not adaptive immunity,28 many changes 
in Th1 and Th2 cells have been observed in glycan knock-
out mouse enteritis models. Researchers created C3GnT 
−/− mice that lack core 3-derived O-glycans, reduced 
colon-specific MUC2 protein, and are highly sensitive to 
colitis. In the absence of DSS, the pro-inflammatory cyto-
kines IL-2, IFN-γ, and tumor necrosis factor (TNF)-α, 
which are mainly secreted by Th1 cells, are slightly 

Figure 3 Association between mucin-Type O-glycans, microbiota, and immune cells. O-glycans regulate microbial composition, promote microbial adhesion, and inhibit 
bacterial virulence. Conversely, intestinal flora can degrade glycan for energy and also affect the composition of glycan. O-Glycans not only affect the number of various 
immune cells in the body, such as macrophages and CD4+T cells but also enhance the ability of macrophages to remove apoptotic cells. Immune cells mainly secrete 
inflammatory factors to promote mucin glycosylation. Lack of glycosylation can also affect microbial-related regulatory T cells, thereby inhibiting immune responses.
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increased in mucosal lymphocytes of C3GnT −/− mice, but 
are far from developing into Th17 or Th2 immune 
colitis.37 This suggests that the interaction between 
O-glycans and lymphocytes is not the main cause of 
immune colitis. Again, the assertion that the adaptive 
immune response does not play an important role in the 
process of colitis caused by O-glycans deficiency is 
demonstrated.

The glycosylation of the lymphocytes themselves is 
also associated with colitis. Human glycosyltransferase 
1,2-fucosyltransferase (FUT1) transgenic mice are an 
IBD mouse model with severe glycosylation abnormalities 
on the lymphocyte surface. A significant reduction in 
lymphocytes is found in FUT1 transgenic mice, particu-
larly CD4+T cells (reduced by 90%) and CD8+T cells. In 
addition to the decrease in the number of T cells, the 
nature of T cells also changes. CD3 is reduced on the 
surface of T cells, and a large number of T cells show 
both CD4 and CD8 positive markers.118 This phenomenon 
indicates that abnormal glycosylation of lymphocytes can 
lead to T lymphocyte depletion and maturation disorders, 
leading to colitis. In addition, mice with a specific loss of 
lymphocyte O-glycans had reduced thymus mass, abnor-
mal thymus structure, and bone marrow hypoplasia.118 

Although current data shows that O-glycan-induced colitis 
is not adaptive immune-driven, O-glycans is one of the 
important factors affecting the change of T cell subsets.

Conclusions
Several studies have shown that O-glycan is involved in 
the pathogenesis and development of IBD. Variable 
O-glycosylation of mucins by large amounts of glycosyl-
transferases is important for the maintenance of intest-
inal mucosal barrier function, bacterial-binding capacity, 
and immune homeostasis. In future research, more atten-
tion should be given to the changes in mucosal O-glycan 
in the mechanism of intestinal flora and immune dysre-
gulation. The intensity of glycosylation changes corre-
lates with the degree of inflammation, suggesting the 
potential of the glycosylation spectrum to predict IBD 
progression. In addition, there is the need to develop 
better experimental animal models that truly reflect 
human conditions. This means the models should carry 
human mucins with human glycosylation patterns, which 
requires some genetic modification in mice. Future 
explorations should also include the investigation of the 
association between O-glycan and the microbiota 

through appropriate, well-designed, and targeted clinical 
studies.
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