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Abstract
Common bean is one of the major legume crops for direct human consumption. The genetic improvement of common bean 
is a primary approach to increase crop adaptability to climate change conditions while maintaining productivity. A diverse 
panel of middle American beans was evaluated over three growing seasons (2021, 2022 and 2023) for agronomic traits con-
sidered in the crop ideotype such as flowering, maturity, pigment content, lodging, and yield. A study of the genetic regions 
controlling trait variation was carried out using single-trait and simultaneous (joint) multi-trait GWAS approaches. Addition-
ally, genome-wide epistatic interactions were also analyzed. Several previously reported and novel regions were identified 
as significant for individual traits in the single and multi-year analyses with varying percentages of individual (7–52%) and 
collective (10 – 59%) phenotypic variance explained. In the single-trait and multi-year analyses, markers detected for lodging 
showed the highest average of percentage of variance explained (52%) followed by other traits with percentages between 11 
and 19%. For yield, new loci were found with estimated effects between –96.19 to 90.96 kg/Ha in the multi-year data. In the 
multi-trait analyses, marginal loci on Pv02 and another on Pv04 were identified to have interaction effects on flowering and 
yield. A significant locus on Pv04 showed a common effect between lodging and maturity, characterized by several SNPs. 
Significant epistatic interactions were found along different chromosomes for all the evaluated traits, with some loci having 
interactions with multiple regions. In flowering, an interaction between loci on Pv01 and Pv04 explained up to 10.5% of the 
phenotypic variation, followed by interactions between Pv06 and Pv10 for chlorophyll b and between Pv03 and Pv08 for yield 
explaining around 6% of the trait variation. Multiple transcription factors were identified as candidate genes, particularly 
in the pairs of combinations of epistatic effects. Based on the homology analyses of the candidate genes, several showed 
potential roles in the genetic control of the agronomic traits, particularly for flowering, maturity, and yield. Our results 
demonstrate the applicability of various approaches for common bean and show a comprehensive and expanded panorama 
of the genetic basis of agronomic traits. The results provide new resources for crop improvement that can be leveraged in 
multiple approaches such as selection, modeling and predicting crop performance and genetic gain.
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LD  Linkage disequilibrium
MAS  Marker-Assisted Selection
MDP  Mesoamerican Diversity Panel
MLM  Mixed Linear Models
Mt-GWA   Multi-trait GWAs
MTMM  Multi-trait Mixed Model
PCA  Principal Component Analysis
PVE  Phenotypic Variance Explained
Q  Population Structure
QQI  QTN-by-QTN Interactions
QTL  Quantitative Trait Loci
QTN  Quantitative Trait Nucleotide
RBD  Randomized Block Design
St-GWA   Single-Trait GWAS
TotChl  Total Chlorophyll

Introduction

Common bean (Phaseolus vulgaris L.) is the most impor-
tant cultivated legume for human consumption and a staple 
crop in both developed and developing countries (OECD 
2019). To maximize productivity in tropical and subtropical 
regions where beans are cultivated, varieties with desirable 
agronomic traits are needed. A crop ideotype defines an ide-
alized model that combines morphological and physiological 
traits to maximize yield and quality under a certain environ-
ment (Donald 1968). First adopted by Adams (1982), and 
later expanded by Acquaah et al. (1991), the common bean 
ideotype describes the characteristics a plant must have to 
increase productivity. Some of the main traits considered in 
the ideal plant are short flowering and maturity periods that 
maximize resource use and harvest tasks, and an upright 
architecture that improves light interception and minimizes 
losses due to soil-borne diseases and mechanical harvest. 
The improvement of these individual traits, which are less 
genetically complex compared to yield, will contribute to 
the overall performance of the plan with a potential impact 
on crop yield.

Among other factors, the successful improvement of traits 
in breeding programs heavily depends on effectively select-
ing parents and progeny that accumulate beneficial alleles to 
achieve the ideal phenotype. Over the last decades, genome-
wide association studies (GWAS) in plants have shed light 
on the genetic control of multiple yield-related traits. These 
results have contributed to improving the selection of poten-
tial lines through Marker-Assisted Selection (MAS) or, more 
recently, through genomic prediction (GP) and modeling 
by including information on relevant loci in the analyses 
(O’Connor et al. 2020; Kaler et al. 2022; Lin et al. 2023; 
Zhang et al. 2023a).

In common bean, several studies have identified QTLs 
involved in the control of agronomic traits in Andean and 

Middle American bean populations (Kamfwa et al. 2015; 
Moghaddam et al. 2016; Hoyos‐Villegas et al. 2017; Diaz 
et al. 2020). Depending on the location, new validations lead 
to the discovery of additional loci or genes that may con-
tribute to the observed variation in the traits (Mohammadi 
et al. 2020; Sallam et al. 2023; Sahito et al. 2024). Despite 
the contributions and benefits of GWAS, some limitations 
need to be overcome. GWAS can be affected by confounding 
factors such as population structure and relatedness, which 
need to be considered in the models. Single-locus models 
such as mixed linear models (MLM), and multi-locus mod-
els, such as fixed and random model circulating probability 
unification (FarmCPU) and Bayesian information and link-
age disequilibrium iteratively nested keyway (BLINK) have 
been developed with varying levels of success in analyzing 
diverse complex traits, where multi-locus has shown to be 
superior (Merrick et al. 2022; Sahito et al. 2024). The dif-
ferences in effectiveness of single- and multi-locus GWAS 
models may be attributed to trait architecture, population 
structure, and marker density. For instance, when evaluating 
leaf anatomical traits, Narawatthana et al. (2023) found that 
multi-locus models may have produced a higher number of 
false positives compared to single-locus models. This high-
lights the importance of testing several GWAS models to 
find the method that best fits the genetic architecture of the 
trait and the studied population.

Other challenges in GWAS include that GWAS only 
explains a fraction of the heritability (Brachi et al. 2011), 
ultra-rare variants are not easily detected, not all determi-
nants of traits can be identified, the causal variant is usually 
not distinguished, and genotype interactions are not routinely 
analyzed (Tam et al. 2019; Tibbs Cortes et al. 2021). Some 
attempts to improve and expand the scope of GWAS include 
the use of diverse populations, the simultaneous analysis of 
related traits, the adoption of new gene model actions, and 
the study of genotype-by-genotype (epistasis) and genotype-
by-environment (G × E) interactions.

In the analysis of multiple traits, co-localization of signif-
icant markers independently identified in single-trait GWAS 
has been one of the main tools used in different crops, 
including beans (Kamfwa et al. 2015; Jaiswal et al. 2016; 
Saballos and Williams 2024). Korte et al. (2012) developed a 
joint multi-trait mixed model (MTMM) that simultaneously 
considers the variance observed within and between corre-
lated traits. MTMM analysis has allowed the identification 
of regions and genes with effects on multiple traits (Oladzad 
et al. 2019a; Malik et al. 2022).

For epistatic interactions, Li et al. (2022) recently pro-
posed a three-variance multi-locus random-SNP-effect 
mixed linear model (3mrMLM) method to model QTN-by-
QTN interactions (QQIs). The method is based on the esti-
mation of the genotypic effects for pairs of QTNs depending 
on the allelic state (homozygous alternative, recessive, and 



Theoretical and Applied Genetics (2025) 138:131 Page 3 of 19 131

heterozygous (AA, Aa, aa)) and the partition of the effects 
into additive or dominance effects using a one-way analysis 
of variance. The estimated combination effects will consider 
when one or both QTNs have an additive- or dominance-
modeled effect, as well as the combination (Li et al. 2022). 
In an independent study, Zhang et  al. (2023a) used the 
3mrMLM method to identify epistasis in traits related to 
the saline–alkali tolerance in rice. The authors found signifi-
cant QQIs and associated candidate genes that showed dif-
ferential expression under control and salt stress conditions. 
Furthermore, the inclusion of QQIs in genomic prediction 
models showed higher prediction abilities, demonstrating the 
ability of the method for gene mining and selection efforts 
in breeding programs.

Here, we conducted a study on the genetic basis of agro-
nomic traits in common bean to contribute to current and 
future breeding efforts for the crop. The main goal was to 
leverage multiple approaches for GWAS that allowed us to 
expand our knowledge on the genetic control of ideotype-
related traits. For GWAS, we implemented single-trait, joint 
multi-trait, and epistatic models to identify genomic loci 
involved in the control of single traits, loci with pleiotropic 
effects in more than one trait, and regions interacting across 
the genome (epistasis), respectively. With the identified loci, 
we analyzed potential candidate genes and alleles for intro-
gression and future selection in breeding programs.

Materials and methods

Common bean diversity panel and field 
experimental conditions

The common bean Mesoamerican Diversity Panel (MDP) 
from BeanCap (Moghaddam et al. 2016) was evaluated 
during three growing seasons between 2021 and 2023 at 
the Emile A. Lods Agronomy Research Centre at McGill 
University, Montreal, Quebec, Canada following local agro-
nomic standard practices for pest and disease management. 
The MDP consists of modern dry bean cultivars from races 
Durango–Jalisco and Mesoamerica with different US market 
classes represented (Moghaddam et al. 2016). A total of 285 
genotypes were grown in plots of four, five-meter-long rows 
with 75 seeds per row and a row spacing of 0.76 m. The 
experiments were laid out in a randomized complete block 
design with 3 replications. Plots were maintained with stand-
ard agronomic practices for fertilization and pest, disease, 
and weed control.

Phenotypic evaluation of agronomic traits

The MDP was evaluated during the growing season and data 
was collected only from the two middle rows to avoid border 

effects. Days to flowering (DTF), days to maturity (DTM), 
lodging and leaf pigment concentration (chlorophylls and 
carotenoids) were measured in two seasons and yield during 
three growing seasons.

DTF were visually recorded per plot in 2021 and 2023 as 
the number of days from planting when 50% of the plants 
had 50% open flowers. DTM were measured when 50% of 
the plot reached physiological development and senescence 
(R9). Lodging was scored at maturity on a 1 to 10 scale 
where 1 indicates 100% plants standing erect and 10 indi-
cates 100% plants flat on the ground. DTM and lodging were 
recorded in both years 2021 and 2022.

Leaf pigments were measured before flowering (stage 
V10) and at flowering (R1) in 2021 and only at flowering 
in 2022 according to Singh et al., (2013). Briefly, five fully 
expanded and mature leaves from the middle part of the 
plant canopy were randomly collected in the field and five 
0.20  cm2 leaf disks were placed in black microcentrifuge 
tubes containing 1300 µL of 95% ethanol using a MIDCO 
2390 Tissue J punch. Tubes were incubated at room tem-
perature for 24 h, vigorously shaken with vortex for 30 s, 
and 200 µL of supernatant were transferred to Corning® 
96-well cell culture plates. Absorbance was measured at 664, 
648, and 470 nm with a TECAN Infinite M200 microplate 
reader. Total chlorophyll (totChl), chlorophyll A (ChlA), 
chlorophyll B (ChlB), and carotenoids concentrations were 
estimated using the equations of Lichtenthaler, (1987) and 
expressed in micrograms per milliliter (µg/mL). For fur-
ther analyses, only measurements taken at flowering were 
included to keep the datasets balanced and comparable 
between years.

The two data rows of each plot were mechanically har-
vested with a Wintersteiger Classic Plus plot combine. For 
each plot, weight was recorded, and moisture was measured 
with a DICKEY-john® GAC™ 2500-INTL Grain Moisture 
Analyzer. Yield per plot calculated for the three years (2021 
– 2023) in Kg per Ha considering plot moisture, and a stand-
ard moisture of 18% according to the following formula.

Data analysis

Experiments were planted in a randomized complete block 
design (RCBD) with three replicates for a total of 855 plots. 
Data were verified for normality using Shapiro–Wilk test, 
missing and extreme values. Best Linear Unbiased Predic-
tor (BLUP)-corrected means were estimated for each geno-
type in each year by fitting a mixed-effects model using the 
REML method in the lme4 package in R (Bates et al. 2015). 
For the single-year analysis, the model was as follows:

Yield(Kg∕Ha) =

(

Plotweight(Kg)

plot area(Ha)

)

∗

(

100 − plot moisture

100 − standard moisture

)
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where �i is the random effect of the i-th genotype, �j is the 
random effect of the j-th block, and eijk is the experimental 
error associated with observation ijk.

For the combined years analysis, years were considered 
as environments in the following model:

where �i is the random effect of the i-th genotype, �k is the 
fixed effect of the k-th environment (year), (� × �)ij is the 
interaction effect between the i-th genotype and k-th environ-
ment, �j(k) is the random effect of the j-th block nested within 
environment k, and eijkm is the experimental error associated 
with observation ijkm.

For each trait, broad-sense heritability  (H2) was estimated 
in the multi-year analysis by:

where �̂2
g
 is the variance attributed to the genotype, ̂�2

(�×�)
 the 

genotype × environment interaction variance, �̂2
e
 the error 

variance, k and n are the number of environments and repli-
cates in each environment, respectively.

Phenotypic correlations between traits were calculated 
using the BLUP-corrected means and the Pearson’s correla-
tion method in the cor function in base R v4.2 (R Core Team 
2022). Genetic correlations were estimated using META-R 
(Alvarado et al. 2020) as follows:

where  �g is the genetic correlation between two traits, �g(jj�) 
is the aritmetic mean of the genotypic covariances and 
�g(j)�g(j�) is the mean of the pairwise geometric means the 
genotypic variances of the traits (Ortiz et al. 2021).

Single and multi‑trait genome‑wide association 
analysis

The common bean MDP was previously genotyped using 
low-pass sequencing, Genotype-by-Sequencing (GBS), and 
the Illumina BeadChips BARC-BEAN6K_1 and BARC-
BEAN6K_2 (Moghaddam et al. 2016). SNP Data are pub-
licly available on the GitHub folder (see data availability 
statement). SNPs with a MAF < 0.05 were filtered out. 
However, SNPs with 0.02 < MAF < 0.05 were retained to 
explore marginal significant associations in an independent 
analysis. This lower MAF threshold was used to facilitate 
the discovery and exploration of potential low-frequency 

Yijk = � + �i + �j + eijk

Yijkm = � + �i + �k + (� × �)ij + �j(k) + eijkm

H2 =
�̂�2
g

�̂�2
g
+

�̂�2
(𝜏×𝜐)

k
+

�̂�2
e

k∗n

�g =
�g(jj�)

�g(j)�g(j�)

alleles (Ray et al. 2015). However, it should be analyzed 
and interpreted with caution and alongside candidate genes 
information. Genotypic data were used to assess population 
structure using Principal Component Analysis (PCA) in Tas-
sel (Bradbury et al. 2007).

Single-trait Genome-Wide Association (st-GWA) analy-
ses were performed in GAPIT v3 (Wang and Zhang 2021) 
using single and multi-locus models and the BLUPs esti-
mated as described above. False positives due to popula-
tion structure were controlled by using principal compo-
nent analysis (PCA) and kinship as parameters in the GWAS 
models. Kinship was calculated with the VanRaden method 
(VanRaden 2008) integrated into GAPIT.

Mixed Linear Model (MLM), Settlement of MLM Under 
Progressively Exclusive Relationship (SUPER), Fixed and 
random model Circulating Probability Unification (Farm-
CPU), and Bayesian information and LD Iteratively Nested 
Keyway (BLINK) were compared based on the model 
adjustment in the QQ-plots. FarmCPU was used for the 
reported results. FarmCPU includes kinship (K) and popu-
lation structure (Q) as covariates in the model, but also con-
trols the confounding between the testing marker and both K 
and Q by allowing the fixed and random effects models per-
form separately, while adjusting K (Liu et al. 2016). To find 
genomic loci with pleiotropic common or interaction effects 
between pairs of traits, multi-trait GWAs (mt-GWA) were 
performed following the multi-trait mixed model (MTMM) 
approach and scripts developed by Korte et al. (2012) using 
BLUP-corrected means. The MTMM model is based on the 
theory behind the mixed models described by Henderson 
(1984) where, when analyzing two traits, the phenotypic 
covariance matrix is defined as:

where y1 and y2 are the values for traits 1 and 2, �g and �e are 
the genotypic and error variance associated with traits 1 or 
2, respectively, �g captures the genetic correlation between 
the two phenotypes and �e includes the correlation between 
traits due to shared environments or error sources. K is a 
n × n kinship matrix and I is the identity matrix identity 
matrix. For more information on the method’s implementa-
tion, see Korte et al. (2012).

The percentage of the variance explained by the indi-
vidual and collective significant SNPs in each year was cal-
culated using the coefficient of determination  (R2) of a linear 
regression model fitted to the data. The model included three 
first principal components (PC) from the PCA and the esti-
mated effect of each marker according to one of three gene 
action models: additive, dominance of the reference allele, 
and dominance of the alternative allele. The marker effect 
was estimated using the GWASpoly package implemented 
in R with a diploid setting (Rosyara et al. 2016).

cov
(

y1, y2
)

= �g1�g2�gK + �e1�e2�eI
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For both st-GWA and mt-GWA, the threshold for declar-
ing a significant association was corrected for multiple test-
ing using the False Discovery Rate (FDR) criterion with the 
Benjamini and Hochberg (1995) method.

Genome‑wide epistasis analysis

A three-variance-component multi-locus random-SNP-effect 
mixed linear model (3VmrMLM) approach (Li et al. 2022) 
was used to identify quantitative trait nucleotides (QTNs) 
with epistatic effects (QTN-by-QTN interactions—QQIs). 
As before, BLUP-corrected means from the combined multi-
year experiment were used. Testing all the possible pairwise 
interactions between the ~ 200K available SNPs would be 
computationally demanding. Therefore, the genotypic data-
set was filtered down by removing SNPs with MAF < 0.05 
and by thinning SNPs with a 10,000 nucleotides distance 
using Tassel v5 (Bradbury et al. 2007). SNPs were fur-
ther pruned based on linkage disequilibrium (LD) with the 
‘indep-pairwise’ option in Plink, using a window size of 
50Kb, a step size of 50 and a squared correlation  (r2) thresh-
old of 0.3, as previously reported for common bean (Keller 
et al. 2020). Our purpose was to obtain a highly reduced, but 
evenly distributed and representative dataset for the epistatic 
analysis. Therefore, the  r2 threshold was picked to increase 
the dataset reduction and favor the computational analy-
sis. After pruning, a set of 1,978 SNPs were used for the 
analyses run in R and the ‘IIIVmrMLM’ package using the 
function ‘epistasis’, with the following settings: SearchRa-
dius = c(0,1); svpal = c(0.05,0.05); and sblgwas_t = − 1 
(default). With this dataset, a total of 1,955,253 genome-
wide pairwise comparisons were analyzed. The method 
provides suggested interactions if the LOD score is > 3 and 
significant interactions when the p value of the interaction 
is below the Bonferroni-corrected cutoff (p < 0.05). Unlike 
the FDR correction applied in the st- and mt-GWAS, for the 
epistasis analysis a more stringent multiple-testing correc-
tion is recommended to identify QQIs with enough confi-
dence. Additionally, the method already suggests a more 
relaxed threshold (LOD > 3) for potential interactions that 
must be analyzed carefully and within a biological context.

Candidate gene analysis

Candidate genes were analyzed in a 100 Kbp SNP-centered 
window using the genomic annotation files from the Pha-
seolus vulgaris reference genome v2.1 (Schmutz et al. 2014) 
in Phytozome 13 (https:// phyto zome- next. jgi. doe. gov/ info/ 
Pvulg aris_ v2_1). The window was defined in accordance 
with previous GWAS using the MDP (Moghaddam et al. 
2016) and based on the genome-wise LD decay pattern 
calculated using a non-linear regression of the expecta-
tion of the parameter  r2 and the distance between each pair 

of markers (Hill and Weir 1988; Remington et al. 2001). 
A custom script was used to retrieve the candidate genes 
within the window, and genes were further selected based 
on their annotation, level of expression in different common 
bean tissues (O’Rourke et al. 2014), and the homology with 
Arabidopsis thaliana gene models (TAIR10; Berardini et al. 
2015).

Results

Agronomic traits analysis

Days to flowering, days to maturity, lodging and pigments 
had similar variations and means in the first and second 
years of evaluation. However, yield showed more variation 
among years, with higher yields in the third year and lower 
minimum yields in the second year (Fig. 1). In the ANOVA, 
the blocking factor (replicate) was significant (p < 0.05) for 
DTF, DTM, pigments and yield in 2021; for lodging in 2022; 
and for lodging, pigments, and yield in the combined analy-
sis (data not shown).

Strong significant correlations based on BLUP-corrected 
means were observed between leaf pigments. ChlA and 
ChlB were positively correlated with the totChl concentra-
tion (r = 0.76 and 0.93, respectively), but totChl and ChlB 
were negatively correlated with carotenoids concentrations 
(r = − 0.37 and − 0.64, respectively). Genetic correlations 
followed the same trend as the correlations based on BLUP 
corrections, but with higher values (Figure S1). Although 
not strong (r = − 0.3 to − 0.13), yield was negatively corre-
lated with lodging, ChlA and B, and totChl, while positively 
correlated with DTF (r = 0.17; Figure S1).

The calculation of broad-sense heritability (H2, Fig. 1), 
resulted in the highest heritability for lodging (0.72), fol-
lowed by DTF (0.49), and DTM and ChlB (0.41). TotChl 
and carotenoids had similar H2 (0.32). ChlA had a consider-
ably lower H2 value (0.05).

Single‑trait genome‑wide association studies

Agronomic traits were independently analyzed in each year 
and in a combined analysis across years using the corrected 
means from a multi-environment model where an environ-
ment denotes a year. In the single-trait GWAS using Farm-
CPU, the observed p values in the QQ plot were distributed 
along the expected diagonal with only noticeable deviations 
in the right tail (highest –log(p)) across different datasets 
(Figure S3A-G).

For days to flowering (DTF), two significant and one mar-
ginal SNPs were detected on Pv01, Pv04 and Pv09 in the 
first year (Table 1, Table S1-2) explaining between 6and 8% 
of the phenotypic variance (PV) individually  (R2) and up 

https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1
https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1
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to 10% for only the significant SNPs together. Five signifi-
cant peaks were identified in the third year with major sig-
nals on Pv11, Pv02, and Pv01 with a 14% of PVE (Table 1; 
Table S1). In the combined analysis, one significant and 
three marginal loci were detected on Pv01, Pv02, Pv08 and 
Pv11, where the SNP S11_50734871 was only 4 bp away 
from the SNP S11_50734875 identified in the analysis of the 
third year (Table 1; Table S1-2). However, the SNP found 
in the third year had an estimated effect of + 1.39 in contrast 
to -0.93 for the SNP from the common analysis, but both 
explained around 11% of the phenotypic variance.

For days to maturity (DTM), a total of 18 signifi-
cant SNPs were identified in the single and multi-year 
analysis (Table S1). In the combined analysis, the SNP 
S01_34529676 was common with year two and had a maxi-
mum estimated effect of 5.4 days, explaining 16% of the phe-
notypic variance (Table 1). Moreover, SNPs S04_39063963 
(R2 = 0.12) from the first year and S04_40907424 
(R2 = 0.13) from the combined analysis were only 1.8 Mbp 
apart with effects of − 1.6 and − 2.3 days, respectively 
(Table 1 and Table S1).

For Lodging, 17 SNPs were detected as significant and 
tow as marginal for the three analyses with similar percent-
ages of individual PVE  (R2 around 0.48 for each SNP) and 
with a mean of 57% PVE when considered together within 
each year (Table 1; Table S1-2). In year 1, S09_35943555 
was highly significant with an effect of 0.9 units and in 
year 2, S08_12832727 had the highest -Log(p) value 

(11.6) with an effect of − 0.12. For the multi-year analy-
sis, S04_4185944 and S06_18742429 co-localized with 
S04_4185943 and S06_18744301 from year 2 and year 1, 
respectively (Table 1).

In leaf pigments, no significant SNPs were detected for 
ChlA. For ChlB, 19 significant and one marginal SNPs 
were identified, with most of them in the combined analysis 
(Table 1; Table S1-2). The stronger signals were obtained 
for S08_20435750, S08_41560414, and S04_21552993 in 
years 1, 2 and multi-year, respectively, each SNP explain-
ing around 14% of the phenotypic variance. In Years 1 
and 2, the significant SNPs collectively represented 23% 
of the variation, whereas in the multi-year analysis, they 
accounted for up to 39% (Table  1 and Table  S1). For 
totChl, there were a total of 26 significant SNPs, where 
SNPs on Pv06 and Pv11 had the highest -Log(p) values. 
The SNP S11_50893830 was common between the year 
1 analysis and the multi-year with the highest percentage 
of explained variance (16%). The SNPs S04_25532988, 
S06_1824892, S08_20435750, and S08_41560414 were 
commonly identified for ChlB and totChl concentrations in 
different years (Table S1). Together, the significant SNPs 
identified in year 1 explained a higher PV (44%) compared 
to year 2 (22%) and multi-year (29%). For carotenoids, 11 
significant and one marginal SNPs were detected mainly 
on Pv01, Pv05, Pv07 and Pv11. In the multi-year analy-
sis, S07_29306628 and S11_49484186 (MAF = 0.047) had 
positive effects of around 0.27 units, and S07_31201555 

Fig. 1  Phenotypic distribution of the BLUP-corrected means of the evaluated agronomic traits during different years and multi-year analysis. 
Broad-sense heritability  (H2) for each trait is included in the top part of each panel
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Table 1  Most significant marker-trait associations (Highest –Log10(p)) identified in single-trait GWAS for individual years and the multi-year 
data

Trait Year Marker ID Pv Chr Position (bp) -log10(p) MAF Estimated Effect R2 Joint R2 *

Flowering (Days) 1 S09_8297313 9 8,297,313 6.72 0.05 − 0.23 0.07 0.10
S01_41094580 1 41,094,580 6.33 0.05 0.23 0.08

3 S11_50734875 11 50,734,875 10.66 0.05 1.39 0.11 0.14
Multi-year S11_50734871 11 50,734,871 6.07 0.05 − 0.93 0.11 -

Maturity (Days) 1 S04_39063963 4 39,063,963 8.18 0.21 − 1.56 0.12 0.20
S02_25857841 2 25,857,841 7.45 0.34 1.12 0.09

2 S01_1998312 1 1,998,312 12.59 0.25 − 5.11 0.12 0.28
S03_32405157 3 32,405,157 12.31 0.43 4.11 0.14

Multi-year S01_34529676 1 34,529,676 8.44 0.14 2.90 0.16 0.29
S01_35451714 1 35,451,714 7.32 0.40 − 2.35 0.11
S03_29601114 3 29,601,114 7.31 0.44 − 3.16 0.11
S04_14884840 4 14,884,840 7.08 0.38 − 2.05 0.13
S04_40907424 4 40,907,424 6.97 0.13 − 2.35 0.13

Lodging
(score 1–10)

1 S09_35943555 9 35,943,555 16.35 0.49 0.89 0.48 0.54
S06_18744301 6 18,744,301 6.89 0.40 − 0.63 0.47

2 S08_12832727 8 12,832,727 11.58 0.15 − 0.12 0.47 0.57
S04_4185943 4 4,185,943 6.79 0.31 − 0.08 0.51

Multi-year S01_38180559 1 38,180,559 11.78 0.05 − 0.10 0.46 0.59
S04_4185944 4 4,185,944 8.10 0.31 0.09 0.51
S06_18742429 6 18,742,429 7.61 0.40 − 0.06 0.47

Total Chlorophyll (µg/mL) 1 S06_23899103 6 23,899,103 8.02 0.42 1.17 0.16 0.44
S03_42619117 3 42,619,117 6.94 0.49 1.46 0.13

2 S11_43201973 11 43,201,973 10.49 0.35 1.22 0.10 0.22
S04_25532988 4 25,532,988 6.57 0.30 − 1.21 0.12

Multi-year S07_1457666 7 1,457,666 9.09 0.37 0.70 0.11 0.29
S08_62060162 8 62,060,162 9.05 0.15 − 1.01 0.14
S08_8912268 8 8,912,268 7.69 0.18 − 1.02 0.11
S10_34272441 10 34,272,441 6.73 0.38 1.25 0.11
S11_50893830 11 50,893,830 6.11 0.44 − 0.99 0.16

Chlorophyll B (µg/mL) 1 S08_20435750 8 20,435,750 7.90 0.44 1.37 0.14 0.22
S01_16088392 1 16,088,392 6.52 0.50 1.62 0.16

2 S08_41560414 8 41,560,414 9.52 0.25 0.06 0.14 0.23
S06_1824892 6 1,824,892 8.95 0.23 − 0.09 0.16

Multi-year S02_1604363 2 1,604,363 11.05 0.46 − 0.60 0.16 0.39
S04_21552993 4 21,552,993 10.56 0.26 1.62 0.18
S04_31012356 4 31,012,356 8.70 0.32 0.52 0.16
S05_40619283 5 40,619,283 8.41 0.10 0.68 0.15

Carotenoids (µg/mL) 1 S07_3329188 7 3,329,188 10.42 0.27 0.02 0.16 0.16
S01_12584337 1 12,584,337 9.40 0.29 0.03 0.15

2 S01_8441723 1 8,441,723 8.48 0.27 0.45 0.17 0.17
S08_11024883 8 11,024,883 7.71 0.47 0.57 0.16

Multi-year S05_28829663 5 28,829,663 8.49 0.41 0.21 0.19 0.32
S05_40685667 5 40,685,667 7.00 0.39 − 0.16 0.18
S07_29306628 7 29,306,628 6.81 0.41 0.27 0.20
S07_31201555 7 31,201,555 6.71 0.37 − 0.20 0.19
S11_35698632 11 35,698,632 6.19 0.13 − 0.19 0.16
S11_49484186 11 49,484,186 6.16 0.05 0.29 0.19
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and S11_35698632 had negative effects of − 0.21 units, 
each SNP explained around 17% of the phenotypic vari-
ation with a joint PVE around 17% for year 1 and 2, and 
32% for the multi-year dataset (Table 1). However, no co-
localized SNPs across environments (years) were identi-
fied for carotenoids concentration.

For yield, eight significant and two marginal SNPs 
were identified in the first year, five significant in the 
third year and seven in the multi-year analysis (Table S1). 
No significant or marginal SNPs were identified for the 
second season. Across all years, S04_47063565 in year 
3 had the highest -Log(p) (13.3) explaining 13% of the 
variance and an effect of − 254.94 units, followed by 
S02_37292928 (10.6) from the three-year analysis which 
explained 17% and had an effect of 80.24 units (Table 1). 
Finally, S06_14648484 (8.37) in the first year was the 
most significant (R2 = 0.16) with an effect of—372.29 
units. Interestingly, four SNPs detected in the three-year 
analysis (S02_37292928, S03_15064177, S06_1757726, 
and S08_4969454) were also identified when analyz-
ing the different years by pairs in different combinations 
(Table S1). In the combined analysis, S08_4969454 and 
S11_16896781 had the highest absolute effect on yield 
around 90 kg/Ha. When simultaneously considered, the 
significant SNPs explained from 14% (year 1) to 32% of 
the yield variation (multi-year).Genome-wise, the LD 
decay for the evaluated population was 136.3 Kb. Can-
didate genes were identified for each individual trait 
(Table S4 – S8) and potential roles in the control of agro-
nomic traits were analyzed (see discussion for GWAS can-
didate gene analyses). In the PCA for population structure, 
two subpopulations were observed (Figure S2).

Multi‑trait genome‑wide association studies

BLUP-corrected means from multi-year data were used 
to identify genomic loci with pleiotropic effects between 
pairs of traits. For DTF, the S04_29597528 [C/T] and 
S02_26051524 [C/T] loci had a marginal (MAF = 0.04) 
interaction effect with yield, each one explaining 12% of 
the yield variance based on the  R2 (Fig. 2A, Table 2, S3). 
Interestingly, the SNP on Pv02 was 154 Kbp from the SNP 
S02_25897197 [A/G] detected as significant for yield in 
the first year. The change from the reference to alterna-
tive alleles in S02_26051524 causes a reduction in yield 
of 164.2 kg/Ha (from 1303.8 kg/Ha to 1139.6 kg), but 
increases the DTF from 47 to 50 days (Fig. 2B). A similar 
behavior between DTF and yield was observed for the SNP 
on Pv04 (Figure S4).

Regarding common effects, the same peak on Pv04 
(S04_4185944) identified for single-trait GWAS for lodg-
ing, also showed a significant common effect with DTM 
(Fig. 2C, Tables 1 and 2). When the reference allele is 
present, the average DTM and lodging are 92.4 and 3.9, 
respectively, but when both alleles are alternative [TT], 
DTM increases to 97 and lodging to 7.0 (Fig. 2D). Based 
on the model adjustment, S04_4185944 explained 50% 
of the variation in lodging and 13% of the variation in 
maturity. Candidate genes for the interaction and common 
effects between pairs of traits were also identified for each 
significant SNP (Fig. 2, S4; Table S9).

Table 1  (continued)

Trait Year Marker ID Pv Chr Position (bp) -log10(p) MAF Estimated Effect R2 Joint R2 *

Yield (Kg/Ha) 1 S09_33477028 9 33,477,028 8.20 0.39 103.70 0.14 0.21

S01_17315579 1 17,315,579 8.06 0.09 168.43 0.137

S01_28269387 1 28,269,387 7.39 0.17 127.73 0.129

3 S04_47063565 4 47,063,565 13.32 0.43 − 254.94 0.13 0.14

S05_31748737 5 31,748,737 8.78 0.30 216.11 0.13

Multi-year (3 years) S02_37292928 2 37,292,928 10.57 0.38 80.24 0.17 0.32

S03_15064177 3 15,064,177 9.50 0.39 − 66.07 0.16

S04_2265016 4 2,265,016 7.87 0.29 − 45.33 0.13

S06_1757726 6 1,757,726 7.03 0.42 80.03 0.19

S08_4969454 8 4,969,454 6.10 0.39 − 96.19 0.17

S10_11495606 10 11,495,606 5.78 0.47 68.23 0.15

S11_16896781 11 16,896,781 5.76 0.36 90.96 0.13
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Genome‑wide epistasis analysis

Multiple genomic loci with significant epistatic effects 
were detected for the evaluated agronomic traits (Fig. 3, 
Figure S5, and Table S10). Table 3 summarizes the results 
for the mont significant interactions, including the PVE, 
valuable allelic combination, and the difference of the 
observed mean phenotype for that allelic combination and 
the overall mean of the trait (BLUP-corrected). The pro-
posed “valuable” allelic combination is the allelic states 
for each interaction that reduces or increases the pheno-
type depending on the trait (Table 3, and Table S11). For 
flowering, 10 significant QQIs were detected across the 
genome with percentages of variance explained (PVE) 
by the interaction between 0.04 and 10.5% and a total of 
20.8% when adding the significant interactions (Table 3, 
Table S10). Days to maturity had similar behavior with 10 
epistatic interactions in different chromosomes and PVE 
between 1.49 and 6.98% (total 32.5%). Lodging had one 
significant QQI between Pv02 and Pv10 with a PVE of 
2.65% (Table 3). In pigments concentrations, three, six, 
and one significant QQIs were found for totChl, ChlB, 
and carotenoids, respectively, with PVE by the interactions 
ranging from 2.70% in totChl to 6.34% in ChlB (Table 3). 
Four significant epistatic interactions were found with 
PVE between 1.6 and 5.96% for yield (total PVE 17.6%) 
(Table 3, Table S10).

The PVE was related to the magnitude (absolute value) 
of differences observed in the phenotype when the epistatic 
SNPs changed the allelic state. For instance, in the QQI 
with the highest PVE in flowering (10.5%), when the SNP 
S01_32037216 changes from the reference to the alternative 
allele, no major differences are observed for DTF (around 
47 days). However, when the SNP S04_28518734 is con-
sidered, the change of allele from reference to alternative in 
both SNPs causes a reduction of DTF from 48 to 42 DTF 
(Fig. 4A).

As for yield, a QQI between S01_49862482 on Pv01 and 
S04_4394151 on Pv04 explained the 5.19% of the pheno-
typic variance (Table 3). When S04_4394151 is considered 
alone, the observed yield remains at 975 kg/Ha independ-
ent of the allelic state. When both SNPs are present in the 
alternative allele, the average yield increases to 1,533 kg/Ha 
(Fig. 4B). Depending on the interaction and the allelic state, 
the QQI may represent an increase or reduction of yield 
compared to the overall mean (Table 3). Interestingly, when 
the markers for the QQI between Pv01 and Pv04 for yield 
are as reference and alternative, respectively, yield has the 
potential to increase 234 kg/ha (Fig. 4B, Table 3). Reduc-
tions compared to the mean were observed for the other two 
interactions. The calculated means for each genotypic state 
(reference or alternative) of the interacting SNPs in the sig-
nificant QQIs can be found in Table S11. Multiple candidate 
genes were identified for each of the significant markers in 

Fig. 2  Multi-trait GWAS for 
yield and DTF (A), and example 
of interaction effect observed 
for yield and DTF for the SNP 
with the highest effect (B). 
Analysis for DTM and lodging 
(C) and common effect between 
DTM and lodging for the most 
significant SNP (D). Significant 
associations are above the FDR 
corrected threshold (q < 0.05). 
REF denotes the reference allele 
and ALT is the alternative allele 
in the variant calling against the 
common bean reference genome 
v2.1. In B and D, black dots 
denote the mean and horizontal 
bars the median of the BLUP-
corrected phenotypes for each 
allelic state combination
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the QQI (Figure S4, Table S10-11). Their potential involve-
ment in the control of the traits is discussed.

Discussion

Agronomic traits analysis

In common beans, the key traits valued in the development 
of new varieties include short flowering and maturity peri-
ods, upright architecture, disease resistance, and high yield 
(Rocha et  al. 2019). Similar behaviors and correlations 
among the evaluated agronomic traits have been previously 
reported for common bean. Contrasting to our results, Kam-
fwa et al. (2015), and Moghaddam et al. (2016) reported 
negative correlations between DTF and yield. However, 
when studying the relationship among several agronomic 
traits, Scully and Wallace (1990) found that DTF (varying 
from 20 to 70 days) and yield are better correlated in a quad-
ratic fashion, with yield increasing until 50 DTF and then 
drastically decreasing. This may explain the negative, but 
not considerably high correlation we observed. As expected, 
DTF and DTM were positively correlated with each other, 
and lodging had a negative correlation with yield (Resende 
et al. 2018; MacQueen et al. 2019). Regarding lodging, an 
upright architecture (type I and II) favors the mechanical 
harvest, reducing losses and soil-borne diseases compared 
to prostrate (type II) plants.

Higher concentrations of chlorophylls are well known to 
be positively correlated to photosynthetic activity (Buttery 
and Buzzell 1977). ChlB is primarily present in the light-
harvesting antenna complex of the photosystem II (PSII) 
(Croft and Chen 2018), being a potential target trait for 
plant improvement. ChlA had a very low estimated herit-
ability (5%). In a study of common bean pigments, with 
the same extraction method, Leitão et al., (2021) also found 
near zero  H2 for ChlA. Varying estimations of  H2 for a trait 
may depend on the growing conditions, but largely on the 
phenotyping method used (Pattee et al. 1993). Therefore, 
the ethanol extraction method or the calculation of the con-
centrations may not be ideal for ChlA compared to the other 
pigments. However, further testing, data transformation, and 
validation may be necessary.

Crop yield is the primary target for plant breeding, but 
it is also a highly complex trait controlled by multiple 
genes with minor effects that may change under differ-
ent environmental conditions. Intriguingly, we observed 
a weak, but negative correlation between pigment content 
and yield. No clear trends have been reported in the litera-
ture between these two traits. For instance, in a study of 
11 genotypes of long bean (Vigna unguiculata (L) Walp.), 
Syukur and Sari Dewi (2019) found positive correlations 
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of pigments with some yield components such as pod size 
and weight, but a higher pigment content was associated 
with a lower pod number and seed weight. It is impor-
tant to mention the potential G × E effect on the observed 
phenotypes that we tried to control with the experimental 
design, replications, and the calculation BLUPs. Stabil-
ity and the G × E dynamics for agronomic and root traits 
within subsets of the MDP have been previously explored 
and may contribute to the further selection of materials 
(Hoyos-Villegas et al. 2016).

Single‑trait Genome‑wide association studies

In the evaluated genotypes from MDP, the races Mes-
oamerica and Durango were observed in the PCA (Fig-
ure S2), consistent with previous reports for the panel 
(Moghaddam et al. 2016; Hoyos-Villegas et al. 2017). 
In the QQ plots from FarmCPU, the observed p values 
followed the expected distribution with deviations only 
for the lower p values (Figure S3A-G) suggesting that 
the model properly fitted the phenotypes and identified 
significant associations in both individual years and the 

Fig. 3  Significant QTN-by-QTN interactions (QQIs) detected for the agronomic traits. The lines connecting different loci represent interactions 
for different agronomic traits coded as colors
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combined analyses. For a few datasets—specifically, the 
pigment content in certain years and the 3-year yield data-
set—slight deviations from the diagonal were observed 
in the middle p value range. However, lower p values 
(higher –Log(p)) returned to the expected distribution 
before reaching significant deviations. Based on these 
favorable results, the FDR correction for multiple testing 
was applied. Only SNPs passing the adjusted threshold 
were further analyzed with higher confidence as candidate 
SNPs and genes. Multi-locus models such as FarmCPU 
have demonstrated to be superior compared to single-locus 
models with a better fitting and lower false discovery rate 
(Merrick et al. 2022; Sahito et al. 2024). FarmCPU allows 
the detection of low-frequency variants with significant 
effects by controlling for large effect loci as fixed effects 
(Liu et al. 2016; Miao et al. 2018).

The discovery of positive alleles accelerates and enhances 
the identification of promising germplasm and parents, as 
well as the selection of progenies (Tibbs Cortes et al. 2021). 
The estimated PVE and effects (Table 1) show promising 
contributions of the identified markers for breeding applica-
tions such as MAS. After validation in independent popula-
tions and diverse backgrounds, sensitive markers based on 
SNPs such as Kompetitive Allele Specific PCR (KASP) or 
other fluorescence methods can be developed. These markers 
allow the rapid screening of potential parents carrying the 
allele of interest for future cycles, crosses, and introgression 
efforts. In early generations, molecular markers represent 
a valuable tool for selection of the offspring for traits with 
high heritability (Collard and Mackill 2008). More recently, 
the inclusion of GWAS results and candidate QTNs in pre-
diction models have been explored. For instance, Sehgal 
et al. (2020) and Chen et al. (2023) demonstrated that the 
preselection of QTL markers and their inclusion in genomic 
prediction models increased the prediction ability for grain 
yield in bread wheat and budburst stage of Norway spruce.

Significant SNPs for flowering time have also been identi-
fied on Pv01 and Pv11 in independent experiments on mid-
dle American beans (Oladzad et al. 2019b). The candidate 
model Phvul.001G158700 encodes a C2H2-type zinc finger 
domain-containing transcription factor. The homologous 
gene in Arabidopsis (AT3G23130) is the Floral Defective 
10 (FLO10) or SUPERMAN (SUP) gene. SUP is known for 
being a crucial floral-specific gene that regulates major genes 
during flower development (homeotic genes) and could be 
under epigenetic control (Schultz et al. 1991; Bondada et al. 
2020). On Pv09, the candidate gene Phvul.009G039000 
is annotated as a F11O4.3-RELATED gene. However, its 
homologous gene in Arabidopsis (AT4G35580) is a NAC 
transcription factor-like 9. NAC transcription factors are 
known to be involved in several development stages, plac-
ing a potential role of this gene in the control of flowering. 
For instance, several NAC transcription factors have been 
reported to be involved in flowering time coordination in 
soybean (Glycine max) (Fraga et al. 2021).

Regarding DTM, Moghaddam et al., (2016) also identi-
fied candidate loci on Pv04, but in different positions. The 
gene Phvul.001G124700 is annotated as a methyltransferase 
protein. The homologous in Arabidopsis (AT2G41380) 
encodes a S-adenosyl-L-methionine-dependent methyl-
transferases superfamily protein that is mainly expressed in 
senescent leaves (Waese et al. 2017), and it is a potential 
target of the ATAF1 transcription factor which is involved 
in the control of senescence and stress responses (Zhang 
et al. 2023a, b, c). Like in flowering, another member of 
the NAC (NAM, ATAF1/2, and CUC2) transcription family 
was identified. The gene, Phvul.001G023400, is a No apical 
meristem (NAM) protein that may have a potential role in 
the control of maturity in common bean (Podzimska-Sroka 
et al. 2015; Fraga et al. 2021).

Lodging had strong signals with high PVE that were in 
line with the highest estimated  H2 (0.72). The identified loci 

Fig. 4  Example of epistasis 
for flowering time (A) and 
yield (B) with the interactions 
explaining the higher percent-
age of variance explained. REF 
denotes the reference allele and 
ALT is the alternative allele in 
the variant calling against the 
common bean reference genome 
v2.1. Black dots denote the 
mean and horizontal bars the 
median of the BLUP-corrected 
phenotypes for each allelic state 
combination
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agreed with previous reports. In middle American beans, 
Moghaddam et al. (2016) and Hoyos-Villegas et al. (2017) 
also identified the significant locus on Pv07 as a main 
controller of plant lodging. Among the candidate genes, 
Phvul.007G221500 is a syntaxin of plants SYP7 (SYP7) 
and the mutation of its homologous gene in Arabidopsis 
(AT3G09740) has been recently shown to have severe effects 
on plant cell wall structure and components (Zhang et al. 
2023c). On Pv06, the gene Phvul.006G074600 encodes a 
WRKY transcription factor 33 (WRKY33). WRKY fac-
tors have diverse roles in plant development and defense. 
A paralog of WRKY33, WRKY23, has been reported to be 
involved in auxin-dependent and independent root devel-
opment (Grunewald et al. 2012). The role of the genes in 
cell wall structure and root development may be related to 
the ability of the plant to keep an upright architecture and 
prevent lodging.

For chlorophyll content, 12 candidate genes were anno-
tated as present or related to chloroplasts (Table S7). Five 
genes had homologous genes in Arabidopsis belonging to 
the cytochrome P450 family. Cytochrome P450 proteins 
have been shown to participate in the biosynthesis and deg-
radation of chlorophylls (Chakraborty et al. 2023; Yang 
et al. 2023). Regarding carotenoids, a candidate gene for 
the SNP S07_31201555, Phvul.007G192100, is homologous 
of the NAC074 protein in Arabidopsis and is proposed to 
regulate the catabolism of chlorophylls during plant senes-
cence (Xia et al. 2018) which could lead to the accumula-
tion of carotenoids. On Pv11, the gene Phvul.011G182000 
is a WD40-repeat-containing domain protein. In Medicago 
truncatula, a gene of the same family, MtWD40-1, regulates 
the carotenoid biosynthesis genes in flowers when targeted 
by the MYB activator White Petal 1 (WP1) (Meng et al. 
2019), highlighting a potential role of the gene in pigment 
accumulation in beans. When studying the genetic control 
of photosynthesis-related traits in beans, Leitão et al. (2021) 
also identified as the same candidate genes on Pv10 but for 
net  CO2 assimilation. Further validation of these genes may 
elucidate roles in photosynthesis-related traits.

Plant yield is a highly complex trait that depends on mul-
tiple genes and their interactions. Several genes related to 
the control of transcription were identified as candidates. On 
Pv02, the genes Phvul.002G121400 and Phvul.002G121500 
are related to the ATP-dependent Switch/Sucrose non-fer-
mentin (SWI/SNF) chromatin remodeling complex. This 
complex is involved in the regulation of the transcription 
of genes like those involved in the chromatin memory in 
response to stress (Meng et al. 2019; Thouly et al. 2020). 
The transcription factor identified as candidate on Pv05 
(Phvul.005G101900) encodes a squamosa promoter-bind-
ing-like protein 4-related (SPL4). SPL proteins are widely 
involved in plant growth and development, including the leaf 
initiation rate and flower and fruit development (Chen et al. 

2010; Shalom et al. 2015; Ma et al. 2022) which suggests 
a likely role of the homologous in common bean in yield-
related traits. Another transcription factor associated with 
the significant SNPs on Pv01 in year 1 was the transcrip-
tion initiation factor TFIID subunit 10 (TAF10). TAF10 is a 
‘selective’ factor that is transiently expressed only in lateral 
roots, rosettes and floral organs in Arabidopsis. TAF10 tar-
gets genes related to meristem and leaf development and 
taf10 mutants show phenotypic changes in growth (Tamada 
et al. 2007). The homologous of TAF10 in common bean 
may be involved in the overall growth and development of 
the plant and indirectly influence yield.

Multi‑trait Genome‑wide association studies

Multi-trait GWASs have been traditionally conducted by 
co-localization of significant SNPs from the individual 
study of phenotypes (Foley et al. 2021). Here, we exploited 
a MTMM and multi-year data for the joint analysis of pairs 
of phenotypes to identify QTNs with pleiotropic effects. The 
MTMM method evaluates variance components within-trait 
and between-trait simultaneously between correlated phe-
notypes (Korte et al. 2012). Consistent with the observed 
correlations (Figure S1), interaction (marginal) or common 
(significant) effects were detected. In the model evaluation, 
the QQ plots showed that the observed p values followed 
the expected distribution without deviations from the diago-
nal (Figure S3H-I). This indicates that no lack of power or 
model inflation that led to over-estimation and false-positive 
associations were observed. Only sharp, clear deviations for 
very high –Log(p) values were observed, corresponding to 
the potential significant associations identified.

For the interaction detected between DTF and yield on 
Pv02, the gene Phvul.002G122400 encodes a Decapping 
5-like protein (DCP5-L)-related protein. In Arabidopsis, 
DCP5, a homolog of DCP5-L, has been shown to regulate 
the transcription of the floral repressor Flowering locus C 
(FLC) by interacting with the Sister of FCA (SSF) protein 
(Wang et al. 2023). At the same time, DCP5 is a transla-
tional repressor of genes encoding for storage proteins (Xu 
and Chua 2009). This suggests a potential involvement of 
DCP5-L in the regulation of both flowering time and yield 
in common bean. However, further validations are required. 
A locus on Pv03 with interaction effects between DTF and 
yield was previously reported in common bean, but through 
the identification of co-localized significant SNPs (Oladzad 
et al. 2019a).

The loci detected on Pv04 with common effects for DTM 
and lodging had candidate genes belonging mainly to the 
UDP-Glycosyltransferase (UGT) superfamily protein (e.g., 
Phvul.004G035800) and the transducin/WD40 repeat-like 
superfamily protein (e.g., Phvul.004G035400) that have 
potential roles in the control of both traits (Table S9). The 
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Arabidopsis gene AT5G15550 is homologous for the bean 
genes belonging to the WD40 repeat-like superfamily. This 
gene is implicated in root development through its interac-
tion with the AtPES protein (Zografidis et al. 2014), which 
may indicate a role in the upright growth habit. Despite not 
having information about the specific genes belonging to 
the UGT superfamily, other UGTs have been reported to be 
upregulated during the senescent stage of Arabidopsis and 
cotton plants (Rehman et al. 2018).

Genome‑wide epistasis analysis

Over the last decade, GWASs have significantly contributed 
to the study of the genetic architecture of traits in model and 
crop plants. However, one of the constraints of conventional 
GWAS is the limited inclusion and detection of loci with 
epistatic effects that may explain a significant percentage of 
the observed variance in different traits (Niel et al. 2015). A 
few efforts have been developed to model and test interac-
tions with varying levels of success (Sun et al. 2014). The 
3VmrMLM approach we adopted is based on the control 
of polygenetic backgrounds (the influence of several small-
effect QTNs) and analysis of variance (ANOVA) for the 
identification and estimation of QQIs effects (Li et al. 2022). 
Since no individual SNPs are analyzed in the model (multi-
locus), QQ plots are not possible for model evaluation. The 
confidence in the results for significant and suggested inter-
actions are based on three main parameters: (1) The control 
for confounding effects such as kinship, population structure, 
and polygenic backgrounds; (2) A stringent Bonferroni cor-
rection to declare significance; and (3) a three-step process 
for the estimation of variance components and selection of 
significant QQIs. In the three-step process, the model scans 
the genome to select for potentially associated QTNs. Then, 
the identified QTNs are jointly analyzed in a multi-locus 
model and their effects are estimated using empirical Bayes. 
Here markers with non-zero effects are further evaluated 
using a likelihood ratio test (LRT). Finally, significant QQIs 
should only be declared in a biological context where candi-
date genes can be identified for each marker. In the method 
development and validation, Li et al (2022) demonstrated 
how 3VmrMLM can identify previously reported gene-by-
gene interactions in the vicinity of significant QQIs in rice. 
It is important to highlight that as in any other GWAS study, 
empirical validation of candidate genes and their interac-
tions must be conducted. Here we intended to develop a 
first genome-wide scanning and provide candidate markers 
and genes for epistatic effects in common bean that can be 
further investigated.

The evaluation of epistatic interactions for the studied 
traits allowed the identification of pairs of SNPs and can-
didate genes. Interestingly, at least 14 candidate genes in 
different pairs of SNPs are annotated in the common bean 

genome as transcription factors (Table S10), which is highly 
expected when epistatic interactions are detected (Zheng 
et al. 2010).

The identified interactions provide novel knowledge 
and may allow improving simulations, selections, and 
predictions with models that consider previous informa-
tion on relevant loci as discussed above (Kaler et al. 2022; 
Lin et  al. 2023). For instance, in yield, the interaction 
between S01_49862482 and S04_4394151 provides as 
candidate genes a gibberellin-regulated protein 12-related 
(Phvul.001G247600) and the Transcription factor TCP13 
(Phvul.004G037700), respectively. TCP13 has been dem-
onstrated to repress gibberellin-regulated proteins such as 
GA20ox2 in response to shade (Son et al. 2023). In potato 
(Solanum tuberosum L.), Bao et al. (2019) observed that 
several TCP transcription factors are also regulators in the 
gibberellin signaling pathway and plant defense. Moreover, 
the mutation of stTCP23 resulted in morphological changes 
in tubers and plant height. Thus, the identified candidate 
genes may interact to promote plant growth and resistance 
and contribute to plant performance and yield in common 
bean.

Due to computational limitations, only a subset of 1,978 
markers, resulting in 1,955,253 interactions, was analyzed 
in a QTN-QTN interaction framework. We acknowledge that 
filtering and dataset reduction may have excluded impor-
tant loci. Advancements in computational tools that enable 
the analysis of more markers within reasonable processing 
times are still needed and will help uncover new epistatic 
interactions. In such cases, larger datasets with less stringent 
filters (e.g., r2 > 0.3) could be considered. Currently, com-
putationally efficient and reliable methods for higher-order 
interactions are lacking. As sequencing and bioinformatics 
advance, approaches capable of modeling third-order inter-
actions (QTN-QTN-QTN) will provide deeper insights into 
gene interplay, particularly for complex traits like agronomic 
characteristics.

Conclusions

A robust phenotypic evaluation of middle American beans 
paired with multiple approaches allowed a deeper under-
standing of agronomic traits in common bean. To our 
knowledge, this is the first study in common bean that 
simultaneously applies tools beyond single-trait GWAS to 
identify genomic loci controlling complex trait variation. 
The multiple analyses performed with data from multiple 
years allowed the identification of previously reported, but 
also new candidate markers and genes. Remarkably, new 
loci were identified to control variation in both flowering 
and yield, and maturity and lodging in a pleiotropic action. 
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When further validated in external populations or though 
bulk sequencing methods, and considering the environ-
mental effects, the identified SNPs and candidate genes 
provide a valuable resource for the selection and crop 
improvement. For instance, in yield, markers with posi-
tive effects up to 91 kg/Has in the combined analyses and 
216 kg/Ha in the single-year study may represent a great 
contribution to the slow increase in yield. In the pleiotropy 
analyses, the SNPs identified with interaction and com-
mon effect on Pv02 and Pv4 would allow the simultaneous 
improvement of traits. Selecting for the reference allele 
in S02_26051524 has the potential to maintain and even 
increase yield by 164 kg/Ha while reducing the flowering 
time. Similarly, moving toward the ideal upright plant with 
short maturity periods, keeping the reference allele for the 
locus on Pv04 or incorporate it in germplasm where it is 
absent, will be advantageous. Potential epistatic interac-
tions among genomic regions contributing to the variation 
of traits were also comprehensively identified. The identi-
fied epistatic interactions offer the opportunity to refine the 
stacking of positive alleles. For instance, if considering the 
interacting loci on Pv03 and Pv08 for yield, keeping both 
as reference would be beneficial. On the contrary, keeping 
the markers on Pv01 and Pv04 as reference and alternative, 
respectively, would show an increase in yield. Overall, 
our results expand the available fundamental and applied 
knowledge for common bean improvement that could be 
utilized in breeding methods such as market-assisted selec-
tion, modeling and genomic prediction.
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