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Abstract: Retinal apoptosis plays a critical role in the progression of diabetic retinopathy (DR),
a common diabetic complication. Currently, the tight control of blood glucose levels is the standard
approach to prevent or delay the progression of DR. However, prevalence of DR among diabetic
patients remains high. Focusing on natural nutrients or herbal medicines that can prevent or delay
the onset of diabetic complications, we administered an ethanol extract of the aerial portion of
Osteomeles schwerinae (OSSCE), a Chinese herbal medicine, over a period of 17 weeks to spontaneously
diabetic Torii (SDT) rats. OSSCE was found to ameliorate retinal apoptosis through the regulation of
advanced glycation end product (AGE) accumulation, oxidative stress, and mitochondrial function via
the inhibition of NF-κB activity, in turn, through the downregulation of PKCδ, P47phox, and ERK1/2.
We further demonstrated in 25 mM glucose-treated human retinal microvascular endothelial cells
(HRMECs) that hyperoside (3-O-galactoside-quercetin), quercitrin (3-O-rhamnoside-quercetin),
and 2”-O-acetylvitexin (8-C-(2”-O-acetyl-glucoside)-apigenin) were the active components of OSSCE
that mediated its pharmacological action. Our results provide evidence that OSSCE is a powerful
agent that may directly mediate a delay in the development or disease improvement in patients of DR.

Keywords: Osteomeles schwerinae; diabetic retinopathy (DR); spontaneously diabetic Torii (SDT) rat;
human retinal microvascular endothelial cells (HRMECs); advanced glycation end products (AGEs);
retinal apoptosis; oxidative stress; mitochondrial function; adjunctive effect; combination therapy

1. Introduction

Diabetic retinopathy (DR) is common long-term microvascular complication of diabetes and
is a microcirculation disorder that accounts for the large majority of cases of visual impairment
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in working-age adults [1]. Early changes in DR include the apoptosis of peripheral blood cells,
microvascular occlusion, vascular leakage, and microaneurysm [2]. Retinal endothelial cells (REC)
form the first barrier that senses changes in the blood glucose. Two hallmarks of human retinal cell
loss in chronic diabetes have been reported—the loss of the blood–retinal barrier integrity and direct
effects on metabolism in the neural retina [3]. The diabetic metabolic influence on retinal neurons
leads to an increase in apoptosis, which, in turn, causes the breakdown of the blood–retinal barrier.
The retinal neuron cells begin to die soon after the onset of streptozotocin (STZ)-induced diabetes in
an experimental rat model. The increase in frequency of apoptosis occurred after only one month of
induction, and a similar increase was noted in human retinas after six years of diabetes [4]. The current
therapy for patients with DR involves the tight control of blood glucose levels, with the aim of
postponing the disease onset and progression. Nevertheless, the prevalence of DR remains high [5].
To address this problem, at least in the form of adjunct treatment, we have used natural resources as
nutrients or herbal medicines to develop an alternative preventive and/or therapeutic strategy against
the onset and progression of retinal apoptosis.

Under conditions of chronic hyperglycaemia, glucose and other reducing sugars react
nonenzymatically with proteins, leading to the formation of advanced glycation end products (AGEs).
AGEs remain tightly bound to proteins and form intra- and intermolecular crosslinks with adjacent
proteins [6]. Their formation and accumulation damage cells in tissues such as the retinal vascular
endothelium and kidney glomerular mesangium via the binding interactions between them and the
AGE receptor (RAGE) [7–10]. In patients with diabetes, AGEs are abnormally elevated and are found
to be accumulated in tissues and organs that form the sites for chronic diabetic complications [7].
In this vein, Hamme’s group reported that the AGEs accumulated in diabetic retinal vascular cells [11]
promoted retinal apoptosis and vascular hyper-permeability [12]. Under hyperglycaemic conditions,
oxidative stress is initiated by the generation of free radicals through protein glycation. An abnormal
increase in reactive oxygen species (ROS) levels and/or a decrease in antioxidant levels leads to
cellular damage by hampering normal mitochondrial function. The damaged organelles trigger
the apoptotic signalling pathway [13]. Oxidative stress-induced apoptosis follows the intrinsic
mitochondrial pathway, with the disruption in balance between the proapoptotic protein, B-cell
lymphoma-2-associated X protein (Bax), and the antiapoptotic protein, B-cell lymphoma-1 (Bcl-1)
proteins, resulting in an excess of proapoptotic proteins in the cells, which reduces the mitochondrial
membrane potential (∆ΨM) following the release of cytochrome c into the cytosol [14].

Osteomeles schwerinae C. K. Schneid (Chinese name: Huaxixiaoshiji) is recorded in the traditional
Chinese book of botanical medicine, the Chinese Materia Medica. It is a species of deciduous,
semi-evergreen shrubs of the family Rosaceae that is indigenous to Asia and Polynesia. It has been
used in traditional Chinese folk medicine to treat various diseases, including dysentery, diarrhoea,
and so on [15]. In our preliminary studies, it was discovered that an ethanol extract of the leaves and
twigs of O. schwerinae (OSSCE) and two flavonoids, hyperoside and quercitrin, isolated from OSSCE
inhibited the activity of rat lens aldose reductase (RLAR) [16]. Specifically, a novel phytochemical
compound, 5′-methoxy (1,1′-biphenyl)-3,4,3′-triol from OSSCE (referred to as K24), was confirmed
to reduce the dilation of hyaloid-retinal vessels to near-normal values in 130 mM glucose-treated
flk: EGFP (a receptor for vascular endothelial growth factor, flk, expressed the enhanced green
fluorescent protein) transgenic zebrafish larvae [17]. The antiangiogenic action of K24 was also
demonstrated in an oxygen-induced retinopathy (OIR) mouse model [18]. Another novel compound
from OSSCE, 4-hydroxy-3′,5′-dimethoxybiphenyl-(1,1′-biphenyl)-3-O-β-D-glucopyranoside (referred
to as K19), inhibits the nonenzymatic formation of AGE and the cross-linking of AGE to collagen
in vitro. An intravitreal injection of K19 into the AGE-modified rat serum albumin (AGE-RSA)-injected
Sprague-Dawley (SD) rats inhibited a retinal vascular leakage by suppressing the expression of vascular
endothelial growth factor (VEGF) and by preventing the loss of occludin, an important tight junction
protein [19]. We have previously reported that OSSCE reduces the AGE/RAGE binding interaction
and the expression of TGF-β1 by pERK1/2, p38MAPK, and IκB phosphorylation in mouse glomerular
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mesangial cells under diabetic conditions [20]. Furthermore, it was also confirmed that OSSCE inhibits
the extracellular matrix accumulation and mesangial proliferation of glomeruli in spontaneously
diabetic Torii (SDT) rats through the inhibition of the interaction between the platelet-derived
growth factor-B chain (PDGF-BB) and the PDGF-BB receptor (PDGFR-β) [21]. Hyperoside,
isolated from Abelmoschus manihot, prevents glomerular podocyte apoptosis in STZ-induced diabetic
nephropathy [22]. Hyperoside from Allium victorialis exhibits inhibitory effects on AGE formation and
disrupts AGE-RAGE binding in hRAGE overexpressing mesangial cells [23].

In this study, we investigated the inhibitory effects of OSSCE on AGE accumulation and retinal cell
apoptosis in SDT rats. A multi-targeted mode of action was confirmed in human retinal microvascular
endothelial cells (HRMECs) for OSSCE and its marker compounds (MCs), quercitrin, hyperoside,
and 2”-O-acetylvitexin under hyperglycaemic conditions.

2. Materials and Methods

2.1. OSSCE Preparation

OSSCE was collected in Kunming, Yunnan Province, China, in April 2011 and identified by
Professor Joo Hwan Kim (Gachon University, Korea). A voucher specimen (no. DiAB-141) was
deposited in the herbarium of the Korea Institute of Oriental Medicine (KIOM), Korea. For animal and
cell studies, air-dried leaves and twigs (4 kg) were extracted with EtOH three times by maceration.
The combined extracts were filtered and concentrated using a vacuum evaporator, leaving behind the
EtOH extract [16].

2.2. High-Performance Liquid Chromatography (HPLC) Chromatogram of OSSCE

The air-dried leaves and twigs of OSSCE were chopped and then extracted with 99% ethanol for
24 h at room temperature under reflux and concentrated to obtain OSSCE. Hyperoside and quercitrin
were purchased from Sigma, and 2”-O-acetylvitexin was isolated from OSSCE and was identified from
the spectroscopic data. An HPLC analysis was performed using an Agilent 1200 HPLC instrument
(Agilent Technologies, USA) equipped with a binary pump, vacuum degasser, auto sampler, column
compartment, and diode array detector (DAD). The column used was a Luna C18 (250 × 4.6 mm/5.0 µm,
Phenomex, USA). The mobile phase was composed of HPLC grade methanol (A) and 0.1% acetic acid
in H2O (B) and gradually changed as follows: from 0 min to 40 min (A: 25%–45%; B: 75%–55%); from
40 min to 55 min (A: 45%–70%; B 55%–30%); from 55 min to 65 min (A: 70%–100%; B 30%–0%); and
from 65 min to 70 min (A 100%). The column temperature was maintained at 30 ◦C. The analysis was
performed at a flow rate of 1.0 mL/min and monitored at UV 254 nm.

2.3. Inhibitory Activity on Nonenzymatic AGE Formation

Bovine serum albumin (BSA; Roche Diagnostics, Basel, Swiss) in a phosphate buffer containing
sodium azide (s-8032, Sigma-Aldrich, St. Louis, MO, USA) was added to a 0.2 M solution of glucose
and fructose. This solution was added to the OSSCE or aminoguanidine (AG; 396494; Sigma-Aldrich),
a positive control. Following 14 days of incubation, the AGE-specific fluorescence was analysed using a
spectrofluorometer (Synergy HT; BIO-TEK, Winooski, VT, USA; 370 nm/440 nm). The IC50 (inhibitory
concentration which nonenzymatic AGE formation is reduced by half) was calculated from the dose
inhibition curve.

2.4. Inhibitory Activity on AGEs Formation Expression of RAGE in HRMECs

Human retinal microvascular endothelial cells (HRMECs) were purchased from Cell Systems
(Cat. No. ACBRI 181, Kirkland, WA, USA) and used at passages 3–7. The cells were grown in a Cell
Systems serum and CultureBoostTM medium (CSC complete medium, CS-4ZO-500; Cell Systems)
containing Bac-Off® (antibiotic). The cultures were maintained at 37 ◦C in a humidified 95% air/5%
CO2 atmosphere [24]. For the inhibitory activity on the AGE formation and expression of RAGE,
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the cells were treated with either OSSCE or AG dissolved in dimethyl sulfoxide (DMSO) for 1 h before
the addition of 25 mM high glucose (HG) and 500 µg/mL BSA, following which they were incubated
for 24 h. The cells were prepared for a Western blot analysis.

2.5. Animal Experimental Design

SDT rats 10 weeks of age and age-matched SD rats were purchased from CLEA Japan (Tokyo,
Japan) and OrientBio (Korea), respectively. They were acclimated and maintained in a controlled
temperature room (22 ± 2 ◦C in 55 ± 10% relative humidity) with a 12-h light–dark cycle. They
received a basal diet (5L79, PMI Nutrition International, St Louis, MO, USA) and tap water ad libitum
for 14 weeks until the blood glucose levels of the SDT rats reached 300 mg/dL. At 24 weeks of age,
the rats were randomly divided into four groups: (1) normal SD rats (Nor, n = 10), (2) vehicle-treated
SDT rats (SDT, n = 10), (3) SDT rats treated with 100 mg/kg/day of OSSCE (OSSCE-100, n = 10),
and (4) SDT rats treated with 250 mg/kg/day of OSSCE (OSSCE-250; n = 10). The OSSCE was
dissolved in distilled water and administered once a day orally for 17 weeks. All 42-week-old rats
were sacrificed. All animal care procedures were approved by the Institutional Animal Care and Use
Committee of KIOM. Blood samples were obtained at the time of sacrifice. The blood glucose level
was measured with an automated biochemistry analyser (HITACHI 917, Japan), and the glycated
haemoglobin was determined by a commercial kit (Unimate HbA1c, Roche Diagnostic, Mannheim,
Germany) [21].

2.6. Western Blot Analysis

The cells were treated with a Laemmli sample buffer (Cat. No. 161-0737, Bio-Rad, CA, USA)
and heated to 100 ◦C for 5 min. The proteins were electrophoresed at 20 µg/lane on a denaturing
sodium dodecyl sulfate-polyacrylamide gel (SDS–PAGE) and transferred to a nitrocellulose membrane
(Whatman, GmbH, Hahne str., Germany) using a Bio-Rad tank blotting apparatus (Bio-Rad, Hercules,
CA, USA). The membranes were probed with 1:1000–1:2000 dilutions of primary antibodies against
p47 Phox (Santa Cruz Biotechnology), ERK1/2 (Cell Signaling Technology, Danvers, MA, USA), PKCδ

(Santa Cruz Biotechnology), AGE (Trans Genic Inc.), RAGE (Cell signalling), and β-actin (Sigma).
The membrane was washed and incubated with a horseradish peroxidase-coupled goat anti-rabbit
IgG (Santa Cruz Biotechnology). After washing the membranes thrice, the signals were detected with
a WEST-one enhanced chemiluminescence (ECL) solution (Intron, Korea) using a Fujifilm LAS-3000
(LAS-3000, Fuji Photo, Tokyo, Japan). The band intensities were determined using Multi Gauge Version
3.0 software.

2.7. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Staining

The rat retinal vessel was fixed with 4% paraformaldehyde. The TUNEL staining was performed
with a Dead End Fluorometric TUNEL kit as per the manufacturer’s instructions (Promega, Madison,
WI, USA).

2.8. IκB Kinase (IKK) Complex Assay

The IKK activity was evaluated using an IKK-β inhibitor screening kit (Calbiochem, CA, USA)
according to the manufacturer’s instructions.

2.9. Morphological Observation of Mitochondria

For the assessment of mitochondrial morphology in living cells, the mitochondria were stained
with MitoTracker red (Life Technologies, USA) and phalloidin (Santa Cruz, USA) for 30 min at 37 ◦C in
a humidified chamber with 5% CO2. Images were taken using an Olympus FV10i confocal microscope.
To observe the individual mitochondria, z-stack images were acquired in series of six slices per cell
ranging in thickness from 0.5 to 0.8 µm per slice.
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2.10. Mitochondrial Membrane Potential (∆Ψm) Analysis

The lipophilic cationic probe JC-1 (Abcam, USA) was employed to measure the mitochondrial
membrane potential (∆Ψm) of cells according to the manufacturer’s directions. The cells were
incubated with 5µg/mL JC-1 for 20 min and rinsed with a JC-1 staining buffer. The fluorescence
intensity of mitochondrial JC-1 monomers (green) and aggregates (red) was detected using an Olympus
microscope (BX51, Olympus, Japan). In healthy cells with high mitochondrial ∆Ψm, JC-1 forms
complexes that emit intense red fluorescence (JC-1 aggregates). In apoptotic cells with low ∆Ψm, JC-1
remains in the monomeric form and emits a green fluorescence. The ratio of red to green fluorescence
was calculated by analysing the digital images using Image J software (National Institutes of Health,
MD, USA) and was indicative of the ∆Ψm.

2.11. Intracellular ROS Measurement

The measurement of intracellular ROS levels was made using dihydrodichlorofluorescein
diacetate (DCF-DA) in which the fluorescent probe, 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCF-DA; Molecular Probes Inc., Eugene, OR, USA), was converted by intracellular esterase
to H2DCF, which was oxidized by intracellular ROS to the highly fluorescent DCF. The OSSCE or MC
treatment was administered for 10 min, and the cells were then stimulated with HG for 96 h. The cells
were washed with Hank’s Balanced Salt Solution (HBSS) buffer and incubated in the dark for 30 min
in HBSS buffer containing 50 µM H2DCF-DA. The DCF fluorescence was measured using a Synergy
HT spectrofluorometer (excitation 485 nm/emission 530 nm, BIO-TEK, VT, USA). The production of
intracellular ROS was visualized by the fluorescence microscopic imaging of cells incubated in the
dark for 5 min in a HBSS buffer containing 10 µM H2DCF-DA, using an Olympus microscope (BX51,
Olympus, Japan) equipped with an Olympus DP 70 camera.

2.12. Intracellular 8-OHdG Measurements

The cells were washed with PBS, fixed, and permeabilized with 0.2% Triton X-100. Following
three additional washes, the cells were incubated with a primary antibody against 8-OHdG (1:100,
Abcam), washed, and incubated with the secondary antibody conjugated to Alexa Fluor 594. After
removing the secondary antibody, the cells were washed three times and observed under the inverted
fluorescence microscope.

2.13. Immunostaining

The cells were grown to 80% confluency in 4-well slides, synchronized, and exposed for 96 h
to HG in the absence or presence of the treatment solution (OSSCE or MCs). The cells were fixed
for 15 min in 4% paraformaldehyde in PBS at 4 ◦C and washed. For the determination of NF-kB
nuclear translocation, the treated HRMECs were washed and fixed using 4% paraformaldehyde in PBS.
The cells were then washed and treated with 10% goat serum in PBS for 30 min to block nonspecific
binding. The primary NF-kB p65 antibody (1:200, #8242, Cell signalling) was diluted 1:1000 and
incubated for 1 h. After further washing, the cells were incubated with fluorescein isothiocyanate
(FITC) labeled antibody for 1 h. The stained cells were sealed with a mounting solution (DAKO,
Glostrup, Denmark) and observed using an Olympus fluorescence microscope (BX51) equipped
with an Olympus DP 70 camera. Immunohistochemistry was performed as previously described [25].
The following antibodies were used: Monoclonal mouse anti-AGEs (1:200, cat. no. KAL-KH001; Cosmo
Bio Co, Ltd., Tokyo, Japan). For the detection of the AGEs, the sections were incubated with a labeled
streptavidin-biotin kit (DAKO, Carpinteria, CA, USA) and were visualized by 3,3′-diaminobenzidine
tetrahydrochloride. The images were captured using an Olympus BX51 microscope and DP71 digital
camera (Olympus). For the morphometric analysis, the positive signal intensity per unit area (0.32mm2)
in a total of 5 randomly selected fields were determined using Image J software (version 1.52; National
Institutes of Health, Bethesda, MD, USA).
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2.14. Measuring Nuclear Factor-κB (NF-κB) Activity

For the electrophoretic mobility shift assay (EMSA), nuclear extracts were prepared with a kit
according to the manufacturer’s instructions (NE-PER™ nuclear and cytoplasmic extraction reagents;
Pierce Biotechnology, Inc., Rockford, IL, USA). The EMSA assay was performed by incubating 10 µg
nuclear protein extract with IRDye 700-labeled NF-κB oligonucleotide (LI-COR Biosciences, Lincoln,
NE, USA) or an unlabeled NF-κB probe (Promega Corporation) for cold competition. The EMSA gels
were analyzed, and the images were captured and quantified using a LI-COR Odyssey infrared laser
imaging system (LI-COR Biosciences).

2.15. Measurement of NADPH Oxidase Activity

After treatment with OSSCE or MCs, the cells were washed, scraped, and then harvested with a
lysis buffer containing 20 mM KH2PO4, protease mixture inhibitor, 1 mM EGTA, 10 µg/mL aprotinin,
and 0.5 µg/mL phenylmethane sulfonyl fluoride (PMSF) at 4 ◦C. Following centrifugation at 10,000 g
for 10 min, the cell lysates were analysed immediately [26].

2.16. Statistical Analysis

Image analysis was implemented using Image J software (National Institutes of Health, MD,
USA) and averaged. All experiments were repeated at least three times. The data are analysed using
a one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test or using an
unpaired Student’s t-test with the Prism 6.0 software (GraphPad software, San Diego, CA, USA).

3. Results

3.1. HPLC Chromatogram of OSSCE

The HPLC analysis demonstrated that hyperoside, quercitrin, and 2”-O-acetylvitexin are marker
compounds for OSSCE (Figure 1).
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Figure 1. High-Performance Liquid Chromatography (HPLC) chromatogram of ethanol extract of the
aerial part of Osteomeles schwerinae (OSSCE).

3.2. OSSCE Inhibits Nonenzymatic AGE Formation In Vitro, Expressions of Ages and RAGE in 25 mm
Glucose-Treated HRMECs, and AGE Level in Serum and Whole Retina of SDT Rats

OSSCE inhibits the nonenzymatic formation of AGEs (IC50: 16.34 ± 0.04 µg/mL) more effectively
than aminoguanidine (AG), an established AGE inhibitor (IC50: 72.28 ± 4.21 µg/mL) (Figure 2a).
HRMECs were treated with 10 ng/mL OSSCE or 10 nM doses of the three identified MCs and
then incubated with 25 mM glucose (HG). OSSCE- and MC-treated HRMECs showed a marked
reduction in the formation of AGEs compared with vehicle-treated HRMECs (### p < 0.001). OSSCE and
quercitrin significantly reduced the expression of RAGE (## p < 0.01, # p < 0.05). The RAGE expression
in hyperoside- and 2”-O-acetylvitexin-treated groups exhibited a decreasing trend (Figure 2b).
The concentration of serum AGEs was prominently increased in vehicle-treated SDT rats compared
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with normal SD rats (** p < 0.01). The OSSCE treatment (250 mg/kg/day) significantly decreased
AGE levels in SDT rats relative to vehicle-treated rats (# p < 0.05) (Figure 2c). Whole retinal tissue
from vehicle-treated SDT rats showed a significant accumulation of AGEs relative to normal SD rats
(** p < 0.01). High doses of OSSCE significantly reduced the levels of AGEs relative to the levels in
vehicle-treated SDT rats (# p < 0.05) (Figure 2d).Nutrients 2019, 11, x FOR PEER REVIEW 8 of 25 
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Figure 2. OSSCE inhibits AGE formation and RAGE expression. (a) The inhibitory action of OSSCE on
nonenzymatic AGE formation: Aminoguanidine (AG) was used as a positive control. OSSCE was added
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into the solution of bovine serum albumin (BSA) and 0.2 M glucose and fructose and incubated for
14 days; the AGE-specific fluorescence was analysed using a spectrofluorometer. The IC50 value
was calculated from the dose inhibition curve. The IC50 values of OSSCE and AG activity against
nonenzymatic AGE formation are 16.34 ± 0.04 µg/mL and 72.28 ± 4.21 µg/mL, respectively (n = 3).
(b) The inhibitory effect of OSSCE and marker compounds (MCs) on AGE formation and RAGE
expression in HG-treated human retinal microvascular endothelial cells (HRMECs). Con, HG, H, Q,
and A stand for control, 25 mM glucose, hyperoside, quercitrin, and 2”-O-acetylvitexin, respectively.
HG incubation for 96 h was performed after treatment with OSSCE or MCs. The cell lysate was
subjected to western blotting with monoclonal antibodies against specific AGEs, RAGE, and β actin,
as described in the Materials Section. All data are expressed as the mean ± SD (n = 3). *** p < 0.001,
** p < 0.01 vs. Con.; ### p < 0.001, ## p < 0.01, # p < 0.05 vs. HG. The AGE level in serum (c) and whole
retina (d) of SDT rats: the OSSCE was administered at 100 or 250 mg/kg/day orally for 17 weeks.
The serum AGE levels were analysed by enzyme-linked immunosorbent assay (ELISA). The AGEs in
rat retinas were analysed by immunohistochemistry followed by densitometric quantification. GCL,
ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer ** p < 0.01 vs. NOR; # p < 0.05 vs.
SDT (n = 3–5). The data are expressed as means ± S.D.

3.3. OSSCE Inhibits Apoptosis of the Retinal Ganglion Cell Layer and Whole Retinal Vessels in SDT Rats

To confirm the inhibitory effect of OSSCE on retinal damage, we investigated the levels of
apoptosis in SDT rat tissues. We applied the terminal deoxynucleotidyl transferase dUTP nick
end labelling (TUNEL) assay in trypsin-digested retinal ganglion cells and in whole retinal vessels.
The retinal trypsin digests were analysed to quantitate TUNEL-positive cells. The examination of
the retinal trypsin digests of vehicle-treated SDT rats showed dramatic increases in TUNEL-positive
cells in the retinal ganglia (** p < 0.01) and in whole retinal vessels (*** p < 0.001) relative to that seen
in normal SD rats. The OSSCE-treated SDT rats exhibited a significant reduction in the number of
TUNEL-positive cells in the ganglion layer (# p < 0.05) relative to vehicle-treated SDT rats (Figure 3a).
The levels of apoptosis in whole retinal vessels of SDT rats treated with two different dosages of OSSCE
(18 ± 11%, 11 ± 9%) reduced by 67% and 78% respectively relative to the levels seen in vehicle-treated
SDT rats (45 ± 15%) (## p < 0.01; ### p < 0.001) (Figure 3b). We investigated further the ratio between
Bax and Bcl-2 and the expression of cleaved caspase-3 in the trypsin-digested whole retina of SDT
rats. The ratio of Bax to Bcl-2 in vehicle-treated SDT rats was significantly increased relative to that
seen in normal SD rats (** p < 0.01). The OSSCE-treated SDT rats exhibited a significantly reduced
Bax to Bcl-2 ratio when compared with vehicle-treated SDT rats, with the decrease occurring in a
dose-dependent manner (# p < 0.05; ## p < 0.01) (Figure 3c, left panel). The expression of cleaved
caspase-3 in vehicle-treated SDT rats also increased markedly (** p < 0.01) but was significantly
decreased in 250 mg/kg OSSCE-treated SDT rats (# p < 0.05) (Figure 3c, right panel).

3.4. OSSCE and MCs Inhibit HG-induced Intracellular ROS Generation and 8-OHdG Expression in HRMECs

The HRMECs were treated with 10 ng/mL OSSCE and 10 nM MCs before incubation with HG
for 96 h and assayed for intracellular ROS generation and 8-OHdG expression using a fluorescence
microscopy. The HG-treated group demonstrated a significant increase in ROS generation compared
with the normal group (*** p < 0.001). The OSSCE- and MCs-treated groups exhibited significantly
lower ROS production relative to the HG-treated group (### p < 0.001) (Figure 3d). The expression of
8-OHdG by HG was also significantly increased almost ten-fold compared to that seen in the control
group (*** p < 0.001). The OSSCE- and MCs-treated groups exhibited significantly reduced expression
of 8-OHdG when compared with the HG-treated group (### p < 0.001) (Figure 3e).
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the dihydrodichlorofluorescein diacetate (DCF-DA). The increase observed in HG-treated HRMECs 
was significantly reversed by treated with OSSCE or MCs. *** p < 0.001 vs. Con; ### p < 0.001 vs. HG. 
The data are expressed as means ± S.D. (n = 3). (e) The cells were incubated with an 8-OHdG-specific 
primary antibody and an Alexa Fluor 594 anti-rabbit antibody. The 8-OHdG expression was 
significantly decreased by treatment with OSSCE or MCs in HG-treated HRMECs. *** p < 0.001 vs. 
Con; ### p < 0.001 vs. HG. The data are expressed as means ± S.D. (n = 3). 

3.5. Protective Effects of OSSCE and MCs on HG-Induced Mitochondrial Morphology and Mitochondrial 
Membrane Potential (ΔΨM) in HRMECs 

The mitochondrial tubules in the HG-treated group became shorter and more fragmented 
compared to those from the untreated group. However, OSSCE and the MCs were found to prevent 
such mitochondrial damage (Figure 4a). We evaluated the effect of OSSCE and MCs on HG-induced 
ΔΨM in HRMECs by detecting different fluorescences emitted by monomeric and aggregated 5, 5′, 
6, 6′-tetrachloro-1, 1′, 3, 3′-tetramethyl benzimidazolyl carbocyanine iodide (JC-1). The depolarization 
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Figure 3. OSSCE inhibits retinal apoptosis in SDT rats, as well as ROS generation and 8-OHdG
expression in HG-treated HRMECs: (a) The OSSCE-treated groups reduce apoptosis in retinal ganglion
cells and in (b) retinal microvascular vessels. The retinal sections and whole mount of retinal
microvascular cells from all groups were stained with a terminal deoxynucleotidyl transferase dUTP
nick end labelling (TUNEL) kit; then, the TUNEL-positive cells were analysed. *** p < 0.001, ** p < 0.01
vs. NOR; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. SDT. (c) The retinal sections in all groups were
stained with Bax, Bcl-2, and cleaved caspase-3 antibodies, and their expression levels were measured
quantitatively by a western blot. The ratio of Bax to Bcl-2 and the levels of cleaved caspase-3 in
SDT rat retinas increased in vehicle-treated SDT rats but were significantly suppressed by OSSCE.
** p < 0.01 vs. NOR; # p < 0.05, ## p < 0.01 vs. SDT (n = 3–5). (d) The intracellular ROS levels
were measured by the dihydrodichlorofluorescein diacetate (DCF-DA). The increase observed in
HG-treated HRMECs was significantly reversed by treated with OSSCE or MCs. *** p < 0.001 vs. Con;
### p < 0.001 vs. HG. The data are expressed as means ± S.D. (n = 3). (e) The cells were incubated
with an 8-OHdG-specific primary antibody and an Alexa Fluor 594 anti-rabbit antibody. The 8-OHdG
expression was significantly decreased by treatment with OSSCE or MCs in HG-treated HRMECs.
*** p < 0.001 vs. Con; ### p < 0.001 vs. HG. The data are expressed as means ± S.D. (n = 3).

3.5. Protective Effects of OSSCE and MCs on HG-Induced Mitochondrial Morphology and Mitochondrial
Membrane Potential (∆ΨM) in HRMECs

The mitochondrial tubules in the HG-treated group became shorter and more fragmented
compared to those from the untreated group. However, OSSCE and the MCs were found to prevent
such mitochondrial damage (Figure 4a). We evaluated the effect of OSSCE and MCs on HG-induced
∆ΨM in HRMECs by detecting different fluorescences emitted by monomeric and aggregated 5, 5′, 6,
6′-tetrachloro-1, 1′, 3, 3′-tetramethyl benzimidazolyl carbocyanine iodide (JC-1). The depolarization of
the mitochondrial membrane was evidenced by the green fluorescence emitted by HG-treated cells,
resulting from the presence of JC-1 in monomeric form. Untreated cells, on the other hand, emitted a
red fluorescence due to the aggregation of JC-1. The reduced red/green fluorescence intensity ratio
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can, thus, indicate the depolarization of mitochondria. Figure 4b (left panel) indicates that HREMCs
exposed to HG for 24 h exhibited a significant decrease in the aggregate form (red fluorescence) and an
increase in the monomeric form (green fluorescence) of JC-1. However, treatment with OSSCEs and
MCs prevented the loss of aggregation and the concurrent increase in monomers. In addition, as seen
in the right panel of Figure 4b, the HG-treated group showed a greater variation in ∆ΨM, as inferred
from the lower range of red (hyperpolarized) to green (depolarized) colors when compared with that
seen in normal cells (p*** < 0.001). However, treatment with OSSCE and MCs was found to result
in a 43.2%, 39.3%, 36.1%, and 48.9% increase in the red/green fluorescence ratio of JC-1 respectively,
relative to that seen in HG-treated HRMECs (## p < 0.01; # p < 0.05; # p < 0.05; ### p < 0.001).Nutrients 2019, 11, x FOR PEER REVIEW 13 of 25 
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of mitochondrial shape in HG-induced HRMECs. (b, left panel) HRMECs were pre-incubated with
OSSCE or MCs for 24 h in the absence or presence of HG, and then, the MMP was evaluated using
JC-1. (b, right panel) The MMP was determined using an automatic fluorescence microplate reader.
The MMP (ratio of red/green) activity in the OSSCE- and MC-treated groups showed significant
increases compared with that in the HG-treated group, respectively. The red/green ratio (∆Ψm) of HG,
OSSCE, H, Q, and A was 49.75 ± 15.49, 87.61 ± 9.59, 82.01 ± 13.22, 77.87 ± 10.38, and 97.33 ± 12.96,
respectively. *** p < 0.001 vs. Con; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. HG. The data are expressed as
mean ± S.D. (n = 3).

3.6. Effects of OSSCE and MCs on Mitochondria-Dependent Apoptotic Pathways in HG-Treated Hrmecs

The upregulation of mitochondrial Bax (Figure 5a, left panel), cytosolic cytochrome c (Figure 5b,
right panel), and cleaved caspase-9 and -3 (Figure 5c) and the downregulation of cytosolic Bax
(Figure 5a, lower, right) and mitochondrial cytochrome c (Figure 5b, left panel) were observed in
HG-treated HRMECs (** p < 0.01; *** p < 0.001). OSSCE- and MCs-treated HRMECs showed a significant
reversal of these effects on protein expression (# p < 0.05; ## p < 0.01; ### p < 0.001).
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Figure 5. The effects of OSSCE and MCs on the mitochondria dependent-apoptotic pathways
in HG-treated HRMECs: OSSCE and MCs restore the expression of Bax (a), cytochrome C (b),
and caspase-9 and -3 (c) abnormally changed in HG-treated HRMECs. ** p < 0.01, *** p < 0.001
vs. Con; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. HG. The data are expressed as mean ± SD (n = 3).
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3.7. OSSCE Inhibits the Activation of Nuclear Factor K-B (NF-Kb) in SDT Rat Retina and HG-Treated Hrmecs

An electrophoretic mobility shift assay (EMSA) analysis of nuclear proteins revealed that OSSCE
treatment at a dose of 250 mg/kg/day significantly reduced nuclear translocation and DNA-binding
activity of NF-κB (### p < 0.001), whereas vehicle-treated SDT rats resulted in increased NF-κB
translocation (*** p < 0.001) relative to levels in normal SD rats (Figure 6a).Nutrients 2019, 11, x FOR PEER REVIEW 17 of 25 
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Figure 6. OSSCE inhibits the activation of NF-κB in the retina of SDT rats and in HG-treated HRMECs 
and the activity of IKK-kinase. (a) The increased NF-κB activity in the retina of SDT rats was decreased 
by OSSCE. The NF-κB activity was measured by TUNEL staining. *** p < 0.001 vs. NOR; ### p < 0.001 
vs. SDT (n = 3–5). (b) OSSCE and MCs suppressed NF-kB translocation into the nucleus in HG-treated 
HRMECs. *** p < 0.001 vs. Con; ### p < 0.001 vs. HG (n = 4). (c) The inhibitory effect of OSSCE on the 
IκB kinase activity: The treatment with OSSCE at concentrations of 50 and 100 ng/mL inhibited the 
IκB kinase activity dose-dependently. IKK-2 inhibitor IV (20 ng/mL) inhibited IKK activity. ** p < 0.01, 
*** p < 0.001 vs. HG. The data are expressed as mean ± S.D. (n = 3). 
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Figure 6. OSSCE inhibits the activation of NF-κB in the retina of SDT rats and in HG-treated HRMECs
and the activity of IKK-kinase. (a) The increased NF-κB activity in the retina of SDT rats was decreased
by OSSCE. The NF-κB activity was measured by TUNEL staining. *** p < 0.001 vs. NOR; ### p < 0.001
vs. SDT (n = 3–5). (b) OSSCE and MCs suppressed NF-kB translocation into the nucleus in HG-treated
HRMECs. *** p < 0.001 vs. Con; ### p < 0.001 vs. HG (n = 4). (c) The inhibitory effect of OSSCE on the
IκB kinase activity: The treatment with OSSCE at concentrations of 50 and 100 ng/mL inhibited the
IκB kinase activity dose-dependently. IKK-2 inhibitor IV (20 ng/mL) inhibited IKK activity. ** p < 0.01,
*** p < 0.001 vs. HG. The data are expressed as mean ± S.D. (n = 3).

OSSCE and MCs treatment also prevented the nuclear translocation of NF-κB in HG-treated
HRMECs (Figure 6b). The visualization (Figure 6b, left panel) and qualitative analysis of the nuclear
translocation (Figure 6b, right panel) of NF-κB in HG-treated HRMECs was performed using a
fluorescence microscopy and the Image J software respectively (*** p < 0.001). The nuclear NF-kB levels
in OSSCE and MCs-treated groups of HRMECs were significantly lower than that of the HG-treated
group (### p < 0.001). We checked whether OSSCE inhibited IKK activity. As shown in Figure 6c,
OSSCE treatment at doses of 50 ng/mL and 100 ng/mL dose-dependently inhibited IKK activity in
HRMECs (** p < 0.01, *** p < 0.001).

3.8. Effects of OSSCE and MCs on NADPH Oxidase Activity and the Related Signalling Pathways in
HG-Treated HRMECs

In HG-treated cells, protein kinase C (PKC) δ was dramatically activated, although PKCα/βII and
PKCζ/λ were not phosphorylated (Figure 7a). HG-induced NADPH oxidase activity was significantly
decreased by diphenyleneiodonium (DPI; NADPH oxidase inhibitor), rottlerin (PKCδ inhibitor),
and GFX (PKC inhibitor), whereas Gö 6983 (PKCα/βII inhibitor) caused no such effect (Figure 7b).
We checked whether OSSCE and its MCs can regulate the activity of NADPH oxidase. NADPH oxidase
in the HG-treated group was activated (*** p < 0.001) when compared with the control group. OSSCE
and MCs-treated groups showed a significantly reduced activity of NADPH oxidase compared with
that seen in the HG-treated group (# p < 0.05, ## p < 0.01) (Figure 7c).

Next, we examined the inhibitory effects of OSSCE and MCs on HG-induced p47phox, extracellular
regulated kinase (ERK)-1/2, and PKCδ expression. The HG-treated group showed a significantly
elevated expression of PKCδ and p47phox compared to the control group (** p < 0.01, *** p < 0.001).
Treatment with OSSCE and MCs significantly downregulated PKCδ and p47phox (### p < 0.001).
The upregulated ERK1/2 expression caused by HG treatment was reversed by subsequent treatment
with OSSCE and MCs (## p < 0.01, # p < 0.05) (Figure 7d).
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condition. (b) The activity of NADPH oxidase was inhibited by DPI (NADPH oxidase inhibitor),
rottlerin (PKCδ inhibitor), and GFx (PKC inhibitor). G06983 (PKCα/βII inhibitor) did not affect the
NADPH oxidase activity. (c) OSSCE and MCs inhibit the HG-induced NADPH oxidase activity in
HRMECs. The activity of NADPH oxidase was measured by the luminescence assay. *** p < 0.001 vs.
Con; # p < 0.05, ## p < 0.01 vs. HG (n = 3). (d) The elevated expression of p47phox, ERK1/2, and PKCδ

due to HG was significantly restored nearly to the normal range by the treatment with OSSCE and
MCs. ** p < 0.01, *** p < 0.001 vs. Con; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. HG. All the data are
expressed as mean ± SD (n = 3).

3.9. Levels of Haemoglobin A1c (Hba1c) and Blood Glucose in SDT Rats

As already reported [21], the levels of HbA1c and blood glucose were significantly elevated in
vehicle-treated SDT rats. However, these parameters in the OSSCE-treated group showed the tendency
to be decreased (Table 1).

Table 1. The levels of HbA1c and blood glucose in SDT rats.

Nor SDT OSSCE-100 OSSCE-250

Blood glucose (mg/dL) 144.1 ± 21.0 419.2 ± 21.1 * 393.4 ± 47.7 391.5 ± 52.2

HbA1c (%) 3.49 ± 0.07 9.13 ± 0.37 * 9.14 ± 0.30 8.74 ± 0.48

Nor, normal SD rat; SDT, Spontaneously diabetic Torii rat; OSSCE-100, SDT rat treated with 100 mg/kg OSSCE;
OSSCE-250, SDT rat treated with 250 mg/mL OSSCE. All data were expressed as means ± SEM. * p < 0.01 vs.
NOR group.

4. Discussion

DR is a frequent diabetic microvascular complication and one of the most common causes of
legal blindness in the world. The low success of current therapeutic strategies in combating this
problem points to an unmet clinical need for therapy that may slow or halt the progression of DR. It is
well-known that in clinical practice, the development of diabetic complications is seen in a large number
of patients even after the strict control of blood glucose by oral medications, insulin therapy [27], or use
of the insulin pump [28]. Clearly, there is an urgent need for the development of alternative therapeutic
approaches. Matsuda’s group suggested a pancreatic transplantation before the “point of no return”,
thereby preventing or curing diabetic complications [29]. Traditional herbal medicine, sometimes
as adjunctive therapy, has been demonstrated to accrue various benefits to patients suffering from a
range diseases and complications [30,31]. The aim of the present study is to develop a drug candidate
from herbal medicine or plant resources as a therapeutic or adjunctive approach to prevent or delay
the onset of DR, including in our consideration, substances that may act through a mechanism other
than the tight modulation of blood glucose levels. We investigated the potential of OSSCE against
retinal apoptosis in SDT rats over a period of 17 weeks. Further, the multi-targeted mode of actions
for OSSCE and its MCs—hyperoside, quercitrin, and 2”-O-acetylvitexin—were also investigated in
HG-treated HRMECs.

The SDT rat spontaneously develops hyperglycaemia as a result of reduced insulin secretion
due to the dysfunction of pancreatic islet tissues [32,33]. It has been frequently used as a suitable
animal model for DR. Retinal vascular leakage, vascular cell loss, and proliferative neovascularization
are characteristics of SDT rats that resemble the clinical features of human DR [27,33]. Matsuda’s
group has reported that the non-perfusion area and neovascularization in the retina were detected
at 5 weeks following the onset of diabetes in SDT rats. A leakage of the retinal vessels was also
observed at 10 weeks post-onset of diabetes in SDT rats. Daily insulin treatment could not prevent
or reverse these ocular changes. With regards to pancreatic transplantation, DR and diabetic cataract
cannot be prevented or improved by performing a pancreatic transplantation at or beyond 10 weeks
post-onset [29].
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Hyperglycaemia leads to the formation and accumulation of irreversible AGEs, which is already
known to be one of the risk factors for the progression of diabetic complications such as DR. AGEs also
induce apoptotic cell death of pericytes through binding interactions with RAGE [34–36]. The IC50

value of OSSCE against nonenzymatic AGE formation (16.31 ± 0.04 µg/mL) was superior to that
of aminoguanidine (AG; 72.28 ± 4.21 µg/mL), a well-known AGE inhibitor [37]. Further, it was
confirmed that OSSCE and MCs significantly suppressed AGE formation and RAGE expression in
HG-treated HRMECs (Figure 2b). Moreover, OSSCE-treated SDT rats showed a significant reduction
in AGEs levels in the serum and whole retina (Figure 2c,d). AGE quantitative measurements following
OSSCE treatment under HG conditions yielded coinciding results in both in vitro and in vivo contexts.

Hyperglycaemia induces the activation of protein kinase C (PKC) and NADPH-oxidase, which
leads to the production of ROS and oxidative stress in diabetic patients. PKC and NADPH-oxidase
have been suggested as potential therapeutic targets for the control of hyperglycaemia-induced
oxidative stress [38]. An increased ROS production and cellular death are related. Their association is
mediated by a pathological cell death pathway (apoptosis) and may be aggravated by the interaction
of AGEs with RAGEs [38]. Therefore, we evaluated the effect of OSSCE on apoptosis in SDT rat
retina and the associated molecular mechanisms in HG-treated HRMECs. OSSCE also exhibited an
antiapoptotic effect in the retinal ganglion cell layer (Figure 3a arrow) and whole retinal vessels of
SDT rats (Figure 3b). We further investigated whether OSSCE could regulate apoptotic proteins in
the SDT rat retina. Bax/Bcl-2 ratio and the level of caspase-3 were increased more than two-fold in
vehicle-treated SDT rat retinas when compared to normal SD rat retinas. These abnormal increases
were significantly reversed by OSSCE treatment. Particularly, at a dosage of 250 mg/kg, they were
reduced to nearly normal values (Figure 3c). Intracellular ROS generation and an increased expression
of 8-OHdG in HG-treated HRMECs were prevented by the administration of OSSCE (Figure 3c,d). MCs
were shown to be active against oxidative stress. OSSCE reduced hyperglycaemia-induced oxidative
stress, thus preventing retinal apoptosis. Oxidative stress results in the alteration of mitochondrial
shape and function. The change in mitochondrial shape has been linked to neurodegeneration, reduced
lifespan, and cell death [39]. The dissipation of mitochondrial integrity is one of the early events
leading to apoptosis [40]. Mitochondrial dysfunction is a common denominator in several chronic
nervous system diseases and diabetes [41], as well as in ischemic brain injury [42].

Hyperglycaemia-induced oxidative stress increases Bax/Bcl-2 ratio, augmenting the release of
cytochrome c from mitochondria to cytosol and inducing the formation of the apoptosome. Further,
it leads to the conversion of inactive procaspase 9 into active caspase 9 and procaspase 3 into
caspase 3 [43]. OSSCE treatment ameliorated the damage to mitochondrial morphology and ∆ΨM
caused by HG in HRMECs. MCs were shown to be the active components of OSSCE responsible
for this effect (Figure 4a,b). OSSCE and MCs were effective in preventing the activation of the
mitochondrial-dependent apoptotic pathway in HG-treated HRMECs. HG-triggered apoptosis in
HRMECs occurs via the activation of caspase-9 and -3, the enhancement of cytochrome C release
into cytosol, and the subsequent interruption of the Bax/Bcl-2 balance. These detrimental effects
were prevented by OSSCE and MCs (Figure 5a–c). The oxidative stress-mediated activation of NF-κB
leads to the translocation of its p65 submit to the nucleus by releasing it from the inhibitory protein
Iκ-Bα through Iκ-B phosphorylation [14]. The nuclear translocation of NF-kB in SDT rat retinas
was significantly decreased by OSSCE treatment (250 mg/kg) (Figure 6a). In HG-treated HRMECs,
OSSCE and MCs showed marked inhibition of NF-κB translocation into the nucleus (Figure 6b).
HG-induced IκB kinase (IKK) activity was also dose-dependently decreased by OSSCE (50 ng/mL,
100 ng/mL) (Figure 6c). That is, OSSCE was able to inhibit NF-kB translocation through the suppression
of phosphorylation and through the degradation of IκB. OSSCE, thus, acts as an IKK inhibitor.
NADPH oxidase is an enzyme that catalyses the production of superoxide (O2

−) from oxygen and
NADPH. Superoxide produced by NADPH oxidase plays a critical role in diverse vascular diseases
such as diabetic microvascular complications [44], stroke [45,46], and cardiovascular disease [47,48].
The activation of PKCδ and NADPH-oxidase ultimately leads to oxidative stress- and NF-kB-mediated
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apoptosis [38]. In the present study, among the PKC isoforms, only PKCδ was dramatically activated by
HG in HRMECs (Figure 7a). The increase in NADPH oxidase activity mediated by HG was significantly
decreased by DPI, Rottlerin, and GFX but not by Gö 6983 (Figure 7b). These data demonstrated that
PKCδ plays a crucial role in the activity of NADPH oxidase in HG-treated HRMECs. OSSCE and MCs
significantly inhibited the NADPH-oxidase activity by mediating a reduction in the PKCδ activity
(Figure 7c). The increased expression of PKCδ, the p47phox subunit of NADPH-oxidase, and ERK1/2
in HG-treated HRMECs was significantly reversed by treatment with OSSCE and MCs (Figure 7d).

5. Conclusions

This series of experiments strongly indicated that OSSCE mediates the protection against retinal
apoptosis resulting from hyperglycaemia by simultaneously modulating AGE levels, oxidative
stress-induced retinal apoptosis, and mitochondrial dysfunction through the inhibition of NF-κB
translocation into the nucleus via the downregulation of PKCδ, P47phox subunit of NADPH oxidase,
and ERK1/2, although OSSCE, itself, could not properly control the levels of blood glucose and HbA1c
in SDT rats. Taken together, we can postulate that a delay and/or prevention of the development of
DR might be possible if the combination of additional OSSCE and an anti-glycaemic drug such as
metformin is given to patients with diabetes before the point of no return.

6. Patents

The patents related to this study were registered in Korea (no. 10-097394), Hong Kong
(no. HK1170958), England, France, Swiss, Germany (no. 247483), China (no. ZL 200980160639.3),
the United Arab Emirates (no. 1028), and the USA (no. 8,784,911).
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