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A combined biomarker approach 
for characterising extracellular 
matrix profiles in acute myocardial 
infarction
Morgane M. Brunton‑O’Sullivan1,2*, Ana S. Holley1,2, Kathryn E. Hally1,2,3, 
Gisela A. Kristono1,2, Scott A. Harding2,4 & Peter D. Larsen1,2,3

Extracellular matrix (ECM) biomarkers are useful for measuring underlying molecular activity 
associated with cardiac repair following acute myocardial infarction (AMI). The aim of this study was to 
conduct exploratory factor analysis (EFA) to examine the interrelationships between ECM biomarkers, 
and cluster analysis to identify if distinct ECM profiles could distinguish patient risk in AMI. Ten ECM 
biomarkers were measured from plasma in 140 AMI patients: MMP-2, -3, -8, -9, periostin, procollagen 
I N-Terminal propeptide, osteopontin, TGF-β1, TIMP-1 and -4. EFA grouped eight ECM biomarkers into 
a two-factor solution, which comprised three biomarkers in Factor 1 and five biomarkers in Factor 2. 
Notably, ECM biomarkers were not separated based on biological function. Cluster analysis grouped 
AMI patients into three distinct clusters. Cluster One (n = 54) had increased levels of MMP-8, MMP-
9, and TGF-B1. Cluster Two (n = 43) had elevated levels of MMP-2, MMP-3, osteopontin, periostin 
and TIMP-1, and increased high-sensitivity troponin T and GRACE scores. Cluster Three (n = 43) had 
decreased levels of ECM biomarkers. Circulating ECM biomarkers demonstrated collinearity and 
entwined biological functions based on EFA analysis. Using cluster analysis, patients with similar 
clinical presentations could be separated into distinct ECM profiles that were associated with 
differential patient risk. Clinical significance remains to be determined.

The cardiac extracellular matrix (ECM) provides structural organisation to the myocardium, and facilitates 
electrical transduction, molecular signalling and intercellular communication1,2. Following ischaemic injury, as 
observed during myocardial infarction (MI), the ECM is altered to compensate for the negligible regeneration 
capacity of the adult mammalian heart3. This process is termed ECM remodeling4, and describes the replacement 
of damaged tissue with non-contractile scar1.

The ECM response post-MI is a coordinated process orchestrated by multiple cellular and molecular factors2,5. 
For example, matrix metalloproteinases (MMPs) are upregulated during the early inflammatory phase to mediate 
the removal of cellular debris at the infarct site6. This is followed by deposition of ECM during the proliferative 
phase which is regulated by signalling molecules, such as matricellular proteins and growth factors3. Indeed, 
murine models of MI have demonstrated the importance of a timely and regulated ECM response for optimal 
global myocardial repair7–10.

Measuring the ECM response in humans is considerably more challenging, as access to the myocardium is 
both invasive and clinically non-viable. However, measuring circulating ECM biomarkers provides an opportu-
nity to capture ECM activity5. Previous research has investigated single ECM biomarkers and linked circulating 
levels to myocardial remodeling outcomes post-MI5,11–13. While this remains important for translational research, 
it largely oversimplifies a complex pathophysiological process that is comprised of many individual components. 
A more comprehensive analysis of combined ECM biomarker activity has not yet been undertaken, and identify-
ing techniques to capture the ECM response is required.

Two statistical approaches that can be used to understand such complexity are exploratory factor analysis 
(EFA) and cluster analysis. The primary purpose of EFA is to define the underlying structure of data based on 
correlations between variables14,15. In this context, it is a powerful tool to investigate interrelationships between 
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circulating ECM biomarkers without prior assumptions of likely associations. Complimentary to this technique 
is cluster analysis, which can organise patients into distinct groups based on ECM biomarker levels. While EFA 
identifies groupings of variables, cluster analysis can separate patients with similar biomarker profiles by max-
imising homogeneity within a cluster and heterogeneity between clusters16,17.

Using these two techniques on a single AMI cohort provides an in-depth analysis of the ECM response in 
terms of both biomarker activity and patient profiles. This analysis will elucidate how we might capture the 
complexity of ECM biomarker interrelationships and identify whether there are patients with distinct ECM bio-
marker profiles. We believe that such an approach is required to investigate the state of ECM, prior to examining 
potential links to either short-term or long-term left ventricular (LV) remodeling.

In this study, we aimed to use combined statistical approaches to characterise ECM biomarkers in a cohort 
of AMI patients. Firstly, we employed EFA to investigate the underlying structure and interrelationships of 10 
circulating ECM biomarkers. Secondly, we used hierarchical cluster analysis to identify whether distinct ECM 
profiles existed within the patient population based on the expression of these ECM biomarkers.

Results
Demographics and clinical characteristics.  Baseline demographics and clinical characteristics of the 
140 patients AMI patients are summarised in Table 1. The study population was 76.4% male with a mean age of 
61 years and a mean BMI of 28.4. Of the patients in this cohort, 84.3% identified as European, 11.4% identified 
as Māori and Pasifika, and a further 4.3% identified as ‘Other’. Upon index admission, 44.3% of patients had 
hypertension, 54.3% had dyslipidaemia, 15.0% had diabetes and 22.9% were current smokers. Patients in this 
AMI cohort presented as Non-ST Elevation Myocardial Infarction (NSTEMI; 73.6%) and ST-Elevation Myocar-
dial Infarction (STEMI; 26.4%).

Correlations between extracellular matrix biomarkers.  In total, 10 ECM biomarkers were measured 
in this study: matrix metalloproteinase (MMP) -2, -3, -8, -9, osteopontin, periostin, procollagen N-terminal 
propeptide (PINP), transforming growth factor beta 1 (TGF-β1), tissue inhibitor of matrix metalloproteinase 

Table 1.   Baseline demographics of the study population. Parametric continuous variables were expressed as 
mean ± SD and non-parametric continuous variables were expressed as median (IQR). Categorical variables 
were expressed as frequencies (percentages). BMI body mass index, NSTEMI non-ST-elevation myocardial 
infarction, STEMI ST-elevation myocardial infarction, GRACE Global Registry of Acute Coronary Events.

Characteristics Patients (n)

Age (mean, years) 61 ± 11

Male (n) 107 (76.4)

BMI (median, kg/m2) 28.4 (25.7–32.8)

Ethnicity

 European 118 (84.3)

 Māori and Pasifika 16 (11.4)

 Other 6 (4.3)

Risk factors

 Hypertension 62 (44.3)

 Dyslipidaemia 76 (54.3)

 Diabetes 21 (15.0)

 Current Smoker 32 (22.9)

Classification

 NSTEMI 103 (73.6)

 STEMI 37 (26.4)

Biochemical measurements

 MMP-2 (ng/mL) 106.92 (94.12–134.38)

 MMP-3 (ng/mL) 10.15 (7.77–15.07)

 MMP-8 (ng/mL) 0.41 (0.14–0.74)

 MMP-9 (ng/mL) 17.31 (11.78–28.69)

 Osteopontin (ng/mL) 36.71 (27.14–47.26)

 Periostin (ng/mL) 85.25 (69.39–107.15)

 PINP (ng/mL) 0.53 (0.30–0.97)

 TGF-β1 (ng/mL) 4.41 (3.10–6.14)

 TIMP-1 (ng/mL) 71.83 (54.37–85.37)

 TIMP-4 (ng/mL) 2.70 (2.04–3.53)

 High-sensitivity troponin T (ng/L) 382 (133–1,583)

 GRACE score 122 (96–145)
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(TIMP) -1 and -4. Blood samples were collected from patients on day three following hospital admission, and 
biomarkers were quantified in plasma using ELISA or Luminex assays.

The relationship between all ECM biomarkers was examined using Spearman’s Rank correlation. Of the 45 
pairs examined, 13 significant correlations were observed (Fig. 1). These correlations were weak-to-moderate 
in strength, with the strongest correlation observed between MMP-8 and MMP-9 (rs = 0.571, p < 0.0001). Of the 
13 significant correlations, two inverse relationships were observed between osteopontin and PINP (rs = − 0.225, 
p < 0.05) and TGF-β1 and MMP-2 (rs = − 0.267, p = 0.001).

Correlations between patient risk and extracellular matrix biomarkers.  Peak high-sensitivity 
Troponin T (hs-TnT) can be used as a surrogate marker for infarct size18, while Global Registry of Acute Coro-
nary Events (GRACE) scores estimates the probability of mortality within 6  months of hospital discharge19. 
The relationship between peak hs-TnT, GRACE scores and ECM biomarkers were examined using Spearman’s 
Rank correlation with weak-to-moderate correlations observed. For peak hs-TnT, three positive and significant 
correlations were observed and these were with MMP-8 (rs = 0.172, p < 0.05), osteopontin (rs = 0.341, p < 0.0001) 
and TIMP-1 (rs = 0.206, p < 0.05) (see Supplementary Fig. S1). For GRACE scores, four positive significant cor-
relations were observed and these were between MMP-2 (rs = 0.250, p < 0.01), MMP-3 (rs = 0.232, p < 0.01), osteo-
pontin (rs = 0.304, p < 0.001) and TIMP-4 (rs = 0.277, p = 0.001) (see Supplementary Fig. S2). In addition, MMP-9 
levels were inversely correlated with GRACE scores (rs = − 0.208, p < 0.05) (see Supplementary Fig. S2).

Relationship between clinical risk factors and extracellular matrix biomarkers.  Significant rela-
tionships between ECM biomarkers and clinical characteristics are summarised in Table 2. Detailed correla-
tion values and differences between clinical characteristics and ECM biomarkers are shown in Supplementary 
Tables S1 to S5 online.

Figure 1.   Correlation matrix between extracellular matrix biomarkers. Spearman’s Rank correlation was 
performed between extracellular matrix biomarker pairs. Red shading indicates positive correlations and blue 
shading indicates inverse correlations. Significance is shown by white asterisk symbols. *p < 0.05, **p < 0.001, 
***p < 0.0001. This image was created using the corrplot package in R version 4.0.2, www.R-​proje​ct.​org.

http://www.R-project.org
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When biomarkers were correlated with age, seven of the 10 pairs were statistically significant. These significant 
correlations were weak-to-moderate in strength, with the strongest correlation observed between age and TIMP-4 
(rs = 0.429, p < 0.01). A significant inverse relationship was also observed between age and PINP (rs = − 0.197, 
p < 0.05). No significant correlations were observed between BMI and ECM biomarkers. Female patients had 
higher levels of PINP, TIMP-1 and TIMP-4 (all p < 0.05) when compared to male patients. In comparison, male 
patients had increased MMP-3 levels (p < 0.001) compared to females.

Patients presenting with NSTEMI had lower circulating levels of osteopontin (p < 0.05) compared to patients 
who presented with STEMI. Patients diagnosed with hypertension had increased levels of periostin (p < 0.05) and 
TIMP-4 (p < 0.01) when compared to non-hypertensive patients. Higher levels of TIMP-4 (p = 0.05) were observed 
in diabetic patients and higher levels of PINP (p < 0.05) were observed in patients diagnosed with dyslipidaemia. 
In this cohort, no differences were observed in ECM biomarker levels across ethnicities.

Exploratory factor analysis.  Exploratory Factor Analysis (EFA) was performed on 10 log-transformed 
ECM biomarkers using principle axis factoring with Oblimin rotation. Model fit was assessed using the Kaiser–
Meyer–Olkin (KMO) measure which verified sampling adequacy with a value of 0.6 which is greater than the 
required threshold of 0.5. Bartlett’s Test for Sphericity, which assesses collinearity within a dataset, was signifi-
cant for this study (p < 0.0001) and suggests EFA is an appropriate method to examine meaningful relationships 
between variables.

A factor represents a group of items that are highly interrelated. The strength in association between an item 
and the corresponding factor can be determined by the factor loading score. A factor loading closer to ± 1 dem-
onstrates a strong relationship, and the squared factor loading is the amount of total variance that is accounted 
for by the factor. In this study, we have presented all variables which have factor loadings > 0.3, which accounts 
for approximately 10% of item variance.

EFA identified a two-factor solution which best described the relationship between ECM biomarkers in this 
AMI cohort. The rotated factor matrix, which describes the composition and loadings for each factor, is shown 
in Table 3. Factor 1 clustered three biomarkers with factor loadings greater than 0.3. MMP-8 and MMP-9 were 
highly correlated with Factor 1, while TGF-β1 only moderately contributed to Factor 1 which was demonstrated 
by a smaller factor loading. Factor 1 accounted for 15.88% of variance.

In comparison, Factor 2 was comprised of five biomarkers with factor loadings greater than 0.3. MMP-2 and 
osteopontin significantly contributed to Factor 2. Comparably, MMP-3, periostin and PINP only had mid-range 
factor loadings between − 0.312 and 0.499. Factor 2 accounted for 12.33% of variance. In this EFA, PINP was 

Table 2.   Summary of significant relationships between ECM biomarkers and clinical characteristics. Only 
significant (p < 0.05) relationships are shown in this table. For values and levels of significance, refer to 
Supplementary Tables S1 to S5 online. Spearman’s Rank correlation was conducted between age and ECM 
biomarkers. The strength of significant correlations has been recorded. Mann–Whitney U testing was used 
to identify differences between categorical variables and ECM biomarkers. An arrow indicates a significant 
relationship, with the direction specifying if ECM biomarker levels were increased (↑) or decreased (↓) for the 
clinical variable measured.

Clinical variable MMP-2 MMP-3 MMP-8 MMP-9 Osteopontin Periostin PINP TGF-β1 TIMP-1 TIMP-4

Age 0.295 0.216 0.298 0.231 − 0.197 0.194 0.429

Male ↑ ↓ ↓ ↓

Hypertension ↑ ↑

Dyslipidaemia ↑

Diabetes ↑

STEMI ↑

Table 3.   The rotated factor matrix for circulating ECM biomarkers using EFA. EFA performed on 10 log-
transformed ECM biomarkers. Only factor loadings > 0.3 are presented.

Variables Factor 1 loadings Factor 2 loadings

MMP-8 0.919 –

MMP-9 0.621 –

TGF-β1 0.448 –

MMP-2 – 0.606

Osteopontin – 0.565

MMP3 – 0.499

Periostin – 0.408

PINP – − 0.312

% of variance (rotated Sum of Squared loadings) 15.88 12.33
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the only biomarker with a negative factor loading and this suggests that lower levels of PINP result in positive 
factor loadings. No biomarkers were cross-correlated across factors and TIMP-1 and TIMP-4 did not contribute 
to either factor despite being included in the input for the EFA.

Cluster analysis.  Using EFA analysis, we have shown that complex interrelationships exist between ECM 
biomarkers. To capture this complexity, we have employed cluster analysis to investigate ECM profiles in our 
AMI population. Hierarchical cluster analysis identified three patient groups with different ECM biomarker 
profiles. A dendrogram of patient clustering is shown in Fig. 2. Differences in clinical characteristics between 
clustered groups is shown in Table 4, and differences in ECM biomarker levels between clusters are shown in 
Fig. 3 and Supplementary Table S6 online.

Cluster One (n = 54) comprised the largest patient group. Patients in Cluster One had significantly elevated 
levels of MMP-8, MMP-9 and TGF-β1 when compared to all other clusters. Levels of PINP and TIMP-4 were 
also increased when compared to patients in Cluster Two, while MMP-3 levels were significantly decreased.

Cluster Two (n = 43) comprised patients with an increased median age compared to Cluster One (p < 0.01) and 
Three (p < 0.001). Peak levels of MMP-2, MMP-3, osteopontin, periostin and TIMP-1 were observed in Cluster 
Two when compared to other clustered groups. Median levels of MMP-8 and TIMP-4 were increased when 
compared to Cluster Three, while PINP levels were significantly decreased. Patients in Cluster Two had signifi-
cantly elevated GRACE scores when compared to patients in Cluster One (p < 0.01) and Cluster Three (p < 0.05). 
Peak hs-TnT levels were also significantly elevated in Cluster Two when compared to Cluster Three (p < 0.05).

Patients in Cluster Three (n = 43) demonstrated significantly lower median levels of most ECM biomarkers 
(Fig. 3 and Supplementary Table S6). Median levels of MMP-8, periostin and TIMP-4 were significantly reduced 
when compared to all clustered groups. Levels of MMP-2, MMP-3, osteopontin and TIMP-1 were significantly 
lower in patients from Cluster Three compared to Cluster Two, while PINP levels were increased. Median levels 
of MMP-9 and TGF-β1 were decreased in this group compared to Cluster One.

Figure 2.   Dendrogram of hierarchical cluster analysis. Hierarchical cluster analysis identified three distinct 
groups of AMI patients based on ECM biomarker levels. This image was created using the factoextra package in 
R version 4.0.2, www.R-​proje​ct.​org.

http://www.R-project.org
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Discussion
In this study, we have explored the complexity and heterogeneity of ECM biomarkers measured in AMI patients 
on day three following hospital admission. EFA demonstrated entwined and collinear interrelationships exist 
between ECM biomarkers. To account for this complexity, we applied cluster analysis to our AMI population 
and this identified three subgroups of patients that exhibited distinct ECM biomarker profiles with differential 
patient risk. These findings suggest that AMI patients can be partitioned into phenotypically distinct groups 
based on ECM biomarkers alone, and this provides an opportunity to discriminate between patients using a 
combined biomarker methodology.

To understand the complexity of interrelationships between measured ECM biomarkers in-depth, we 
employed EFA. This is an advanced statistical technique with the primary purpose of defining the underlying 
structure of data based on the correlations between variables15. This approach takes multidimensional data and 
reduces it to overarching latent variables, known as factors. Variables with high collinearity are grouped together 
in a single factor, and their factor loading value represents the strength of their relationship within a factor14.

In this study, a two-factor solution best described ECM biomarkers in our AMI cohort. Factor 1 was com-
prised of three ECM biomarkers. In this factor, MMP-8 had the highest loading value, and this was followed 
by MMP-9 and then TGF-β1. This composition could suggest that Factor 1 represents an ECM degradation 
phenotype, as MMPs are responsible for mediating the removal of cellular debris at the infarct site20, while 
TGF-β1 can activate these pathways as a multifunctional growth factor21. In comparison, Factor 2 comprised a 
larger number of ECM biomarkers with weak- to mid-range loadings. This suggests that a combination of ECM 
biomarkers jointly contributed to the composition of Factor 2, unlike Factor 1, which was mostly described by 
a single biomarker. Biomarkers with the strongest loadings in Factor 2 were MMP-2 and osteopontin, closely 
followed by MMP-3, periostin and PINP. Consequently, deciphering the latent variable represented by Factor 2 
is more challenging due to the combination of ECM biomarkers included, which are not separated solely based 
on biological function.

This segues into the most important findings from EFA in this study. Firstly, EFA has confirmed that collinear-
ity exists within the ECM biomarkers measured in this patient cohort. This is shown by the significant Bartlett’s 
Test for Sphericity which confirms interrelationships exist between measured variables and by the inclusion of 
multiple biomarkers within each factor. EFA has also importantly demonstrated that ECM biomarkers are not 
grouped solely on biological function. This is particularly evident in the distribution of MMPs, which are evenly 
spread across both factors. Overall, these findings suggest that ECM biomarker relationships are entwined and 
consequently measuring multiple ECM biomarkers may be important for capturing the complexity of these 
interrelationships.

While included in the analysis, both TIMP-1 and TIMP-4 were not represented by either factor upon EFA 
because their factor loadings were below 0.3. This suggests that TIMPs were not meaningfully captured by either 
factor22. All biomarker measurements recorded for this study were collected three days following hospital admis-
sion, and this time point may favour cardiac ECM degradation processes as tissue clearance dominates early 

Table 4.   Patient demographics and clinical characteristics of clustered groups. Significant differences are 
shown in bold. Continuous variables are reported as median (IQR). Kruskal–Wallis test with Dunn’s correction 
for multiple comparisons was used to compare continuous variables between clusters. *denotes significance 
compared to Cluster 1. +denotes significance compared to Cluster 2. **p < 0.01, +p < 0.05, +++p < 0.001. 
Categorical variables are reported as frequency (percentage). Chi Square test was used to determine differences 
in categorical variables between clusters.

Characteristics Cluster one (n = 54) Cluster two (n = 43) Cluster three (n = 43)

Age (median, years) 60 (54–66) 67 (61–75)** 58 (47–66)+++

Male (n) 39 (70.2) 36 (83.7) 32 (74.4)

BMI (median, kg/m2) 28.3 (25.9–32.7) 28.4 (25.1–32.9) 28.4 (25.1–32.5)

Ethnicity

 European 44 (81.5) 35 (81.4) 39 (90.7)

 Māori & Pasifika 7 (13.0) 6 (13.9) 3 (6.9)

 Other 3 (5.6) 2 (4.7) 1 (2.3)

Risk factors

 Hypertension 28 (51.9) 21 (48.8) 13 (30.2)

 Dyslipidaemia 29 (53.7) 26 (60.5) 21 (48.8)

 Diabetes 8 (14.8) 8 (18.6) 5 (11.6)

 Current smoker 15 (27.8) 10 (23.3) 7 (16.3)

Classification

 NSTEMI 37 (68.5) 30 (69.8) 36 (83.7)

 STEMI 17 (31.5) 13 (30.2) 7 (16.3)

Patient risk

 h s-Troponin T (ng/L) 458 (127.0–1527.5) 644.0 (163–2700.0) 218.0 (105.5–683.5)+

 GRACE score 117.1 ± 30.9 136.3 ± 31.7** 117.3 ± 33.2+
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repair1. Indeed, Factor 1 and Factor 2 both comprised biomarkers that represented ECM degradation activity. 

Figure 3.   Extracellular matrix biomarker levels between clustered groups. Kruskal–Wallis test with Dunn’s 
multiple comparisons was performed to identify significant difference in ECM biomarker levels between patient 
clusters. Median (IQR) is plotted for each graph.*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. This image was 
created using GraphPad Prism software, version 7.04 for Windows, www.​graph​pad.​com.

http://www.graphpad.com
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As TIMPs are associated with ECM deposition mechanisms due to their active role in MMP inhibition23, this 
may be a biological explanation for why these were not captured by the EFA factors. The time point of three 
days post-hospital admission was chosen as it is the latest measurement collected from hospital inpatients, and 
provides an opportunity to capture ECM activity in the subacute phase of repair.

Following the findings that measuring a combination of biomarkers may more appropriately capture ECM 
activity post-MI, we employed cluster analysis to identify whether patients could be partitioned based on ECM 
biomarker levels. Cluster analysis is an unsupervised classification technique that groups objects with similar 
characteristics together, and dissimilar objects separately24. This study carried out agglomerative hierarchical 
cluster analysis on the patient population. This is a common method utilised in cluster analysis, and involves 
the successive combination of cases into groups until an optimal grouping is identified25. In this study, AMI 
patients were clustered into three groups based on the levels of 10 ECM biomarkers. These findings suggest that 
the ECM response following AMI is not homogenous, and distinct ECM biomarker profiles can be identified 
within the patient population. These findings are of significance in this setting, as they suggest that patients 
with similar clinical characteristics and AMI presentations have altered ECM biomarker levels and these can 
be categorised using cluster analysis. More specifically, ECM biomarker levels are not uniformly increased or 
decreased within clustered groups, but instead display a combination of changes that could not be identified 
using a single biomarker approach.

For simplicity in understanding the potential biological relevance of clustered groups, we have described 
groups based on peak biomarker levels. Cluster Two had the largest number of peak biomarkers with increased 
levels of MMP-2, MMP-3, osteopontin, periostin and TIMP-1 when compared to other cluster groups. Cluster 
One had increased levels of MMP-8, MMP-9 and TGF-β1, while no peak biomarker levels were observed in 
Cluster Three. Levels of TIMP-4 and PINP were increased in Cluster One compared to Cluster Two, and but 
were not different when compared to Cluster Three. We suggest that ECM biomarker levels are representative 
of intra-cardiac changes in molecular function. As such, we postulate that patients in Cluster Two have greater 
ECM activity then patients in Cluster One or Three. We also suggest that patients in Cluster Three had decreased 
global ECM activity.

Deciphering what differences in ECM activity could mean for long-term adverse remodeling processes is not 
possible to ascertain in this study, as clinical indices of LV function were not routinely measured in this patient 
population. While we could not link ECM activity with direct measures of LV function, we examined whether 
clustering based on ECM profiles could differentiate patients based on two indices of cardiovascular risk. Peak 
TnT is a clinically useful biomarker and is routinely used for AMI diagnosis and estimation of infarct size18. In 
addition to its clinical utility, peak TnT is also associated with patient risk, with increased levels linked to LV 
remodeling and adverse long-term outcomes26. In this study, we have shown that peak hs-TnT is significantly 
elevated in patients from Cluster Two compared to Cluster Three, and is numerically higher compared to Cluster 
One. In addition, GRACE scores were significantly higher in Cluster Two when compared to other groups. Higher 
GRACE scores are associated with increased mortality risk at 6 months post-MI27, and this score has also been 
shown to hold value for predicting longer term mortality outcomes19. Combined, these findings suggest that 
clustered groups can differentiate patients into distinct risk categories based on ECM biomarker profiles despite 
similar clinical presentation. Identifying how ECM biomarker profiles relate to major adverse cardiovascular 
events (MACE) and adverse LV remodeling would be an appropriate next step.

Previous studies have demonstrated the ability of cluster analysis to capture disease heterogeneity28,29. Further-
more, the relationship between clustered groups and patient risk has been well-documented in the literature29,30. 
In a recent study of HIV-infected patients, Scherzer et al.30 demonstrated that patients could be partitioned into 
distinct groups based on the levels of serum-derived biomarkers only. Of the three groups, one was classified as 
a cardiac phenotype, one was classified as an inflammatory phenotype and one remained undefined. The two 
defined phenotypes were shown to be predictive of mortality in patients, demonstrating the significance of pro-
filing patients based on biomarker levels. Similar to this study, we chose to create clusters based on biomarkers 
only. However, this is not the only approach to cluster analysis, as clinical variables and patient characteristics 
can also be included to strengthen patient subgroups28,31. Similar to the previous studies, we were interested in 
investigating the ability of biomarkers alone to group patients into distinct profiles and thus, clinical character-
istics were excluded from cluster analysis generation.

This study includes some limitations that should be addressed. Firstly, the current study measured a number 
of circulating biomarkers that represent key processes in the ECM response post-MI. While these biomarkers are 
well-linked to repair processes and are known to change post-MI5, we cannot conclude for certain the measured 
levels directly reflect intra-cardiac composition. However, direct measures of biomarker levels within the heart 
are not possible without invasive procedures. Secondly, this study measured a number of correlations between 
biomarker levels without compensating for multiple comparisons. While this may influence the number of 
significant correlations captured in our analysis, this does not greatly influence the outcome of our results as we 
were interested in maximising the number of significant correlations observed. This study measured samples at 
a single standardised time point following AMI to reduce biomarker variation that might have occurred if we 
did not control for sampling time. While a single measure cannot capture temporal biomarker dynamics, this 
was not the purpose of the present study. Finally, we chose to use cluster analysis as a method for combining 
biomarker measurements. While this approach overcomes collinearity, selecting an appropriate cluster size can 
be difficult. To overcome this limitation, we employed the NBClust package32 in R that analyses optimal cluster 
size based on 30 well-established indices within the literature. This analysis provided an in-depth and extensive 
examination of optimal cluster size.

In this study, we have demonstrated that variation exists in the levels of ECM biomarkers measured in our 
patient population, and this can only be modestly described by patient characteristics and clinical presentation. 
We have shown complex interrelationships exist between ECM biomarkers using EFA, and measuring multiple 
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biomarkers may more accurately capture the ECM biological process post-MI. Using cluster analysis, we identi-
fied three groups of patients which had distinct ECM profiles with differential patient risk. These clustered groups 
provide an opportunity to discriminate between patients during early myocardial repair. The clinical significance 
of these subgroups remains to be determined.

Methodology
Study population.  Patients diagnosed with Acute Coronary Syndromes (ACS) and undergoing invasive 
therapy (coronary angiography ± percutaneous coronary intervention) at Wellington Regional Hospital between 
January 2012 and June 2018 were prospectively recruited into The Wellington ACS Registry. ACS was defined as 
having symptoms suggestive of myocardial ischemia for greater than 10 min, in conjunction with either troponin 
elevation or ≥ 1 mm of new ST-segment deviation or T wave inversion, as identified on an electrocardiogram in 
a minimum of two contiguous leads33. Patients were excluded from this registry if they had a platelet count less 
than 100 × 109 /L, a known platelet function disorder, administration of a fibrinolytic agent within 24 h of enrol-
ment or administration of a glycoprotein IIb/IIIa receptor agent within a week prior to enrolment. From this 
registry cohort, we included patients who had a primary diagnosis of acute myocardial infarction (AMI) and had 
blood samples collected three days post-hospital admission and prior to angiography. Patients were excluded 
from this study if they were documented as having had a previous AMI or a chronic heart failure (CHF) diagno-
sis, had an active malignancy, had pulmonary fibrosis, or had renal insufficiency determined by eGFR < 30 mL/
min/1.73m2 or renal failure that was disclosed in the medical record. Patients with rheumatological diseases 
potentially influencing collagen turnover were also excluded from participation in the study (rheumatoid arthri-
tis and osteoarthritis). Participation was voluntary and patients gave informed written consent at the time of 
recruitment. This study was approved by the Lower South Regional Ethics Committee (LRS/11/09/035) and the 
New Zealand Central Health and Disabilities Ethics Committee (16/CEN/68). All experiments were performed 
in accordance with the guidelines and regulations specified by these ethical committees.

Data collection and blood sample.  Demographic data, clinical characteristics, and aspects of clinical 
management were obtained prospectively from patient medical records. Whole blood was collected from AMI 
patients into sodium citrate tubes (0.109 M, BD Vacutainer, New Jersey, USA) three days post patient admission 
to hospital. Blood was collected from the peripheral vein using a 21-gauge needle or from the radial or femoral 
artery immediately after catheter insertion and prior to heparin administration in the cardiac catheterisation 
laboratory. Citrated whole blood was centrifuged at 1500× g for 15 min to generate platelet-poor plasma. Plasma 
was aliquoted and stored at − 80 °C for subsequent analysis.

GRACE score.  GRACE is a prospectively studied scoring system to evaluate the in-hospital and 6-month 
mortality in patients hospitalised with acute coronary syndromes (ACS)27. The GRACE score is calculated by 
assessing the following clinical parameters: age, heart rate, systolic blood pressure, creatinine, heart failure Kil-
lip class, cardiac arrest at admission, ST-segment deviation and abnormal troponin levels. All patients had a 
6-month GRACE score calculated using Microsoft Excel software (Microsoft Corporation; Washington, USA).

ECM biomarker measurement.  A total of 10 ECM biomarkers were measured in this study. The rational 
for biomarker selection is shown in Table 5.

ELISA quantification.  Plasma concentrations of TIMP-1 and TIMP-4 were measured using commercially 
available sandwich ELISA kits (Human TIMP-1/TIMP-4 Duoset ELISA, R&D System, Minnesota, USA). PINP 
is a surrogate marker for collagen type I synthesis, and is cleaved during the post-translational modification 
of procollagen type I. PINP concentrations were measured using a commercially available ELISA kit (Human 

Table 5.   Evidence for ECM biomarker role in ECM remodeling processes.

ECM biomarker Rationale for measurement: evidence For role in ECM remodeling

MMP-2 Targeted gene deletion or pharmacological inhibition in mice can reduce left ventricular (LV) volumes34 and improve 
survival post-MI34,35

MMP-3 Associated with changes in LV function post-MI and indicated as a predictive marker of mortality and heart failure36

MMP-8 Indicated as a predictive marker of LV remodeling11

MMP-9 Murine targeted gene deletion protects against cardiac rupture37, reduces LV enlargement8 and reduces macrophage 
infiltration37,38 post-MI

Osteopontin Gene deletion in mice leads to increased LV chamber dilation due to increased infarct expansion and decreased collagen 
accumulation post-MI39

Periostin Mice with targeted gene deletion have increased mortality due to cardiac rupture post-MI40

PINP Associated with parameters of LV function at 1 year post-MI as assessed by cardiac magnetic resonance41

TGF-β1 Pharmacological inhibition in mice increased mortality and LV dilation post-MI10

TIMP-1 Targeted gene deletion in mice leads to increased LV dilation and LV volumes post-MI9,42

TIMP-4 Targeted gene deletion in mice increased mortality due to LV wall rupture and reduced collagen synthesis43. Gene over-
expression attenuated LV dilation, improved LV function and increased fibrillar collagen content post-MI in mice7
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Procollagen I N-Terminal Propeptide ELISA Kit, Abexxa, Cambridge, UK). The level of TGF-β1 was measured 
in plasma samples using the Quantikine ELISA kit (Human TGF-beta 1 Quantikine ELISA Kit, R&D Systems, 
Minnesota, USA). All samples were measured in duplicate following manufacturer instructions, and absorb-
ances were read using a Multiskan GO microplate spectrophotometer (Thermo Fisher Scientific, Massachusetts, 
USA). Intra-assay coefficient of variations ranged between 2.0% and 10.0%, and inter-assay coefficient of varia-
tions were between 1.9% and 11.3%. TIMP-4 and TGF-β1 concentrations were analysed by fitting a 4-parameter 
logistic curve to the standard analyte curves, while TIMP-1 and PINP concentrations were analysed by fitting a 
5 parameter logistic curve.

Human magnetic luminex quantification.  The concentrations of MMP-2, MMP-3 and MMP-9 and 
the concentrations of MMP-8, osteopontin and periostin were measured in plasma samples using multiplex 
Luminex kits (Human Magnetic Luminex Kit, R&D Systems, Minnesota, USA), respectively. All samples were 
measured in duplicate following manufacturer instructions and measured on a Luminex 100/200 (Millipore 
Sigma, Massachusetts, USA). Intra-assay coefficient of variations were between 4.6% and 11.2%, and inter-assay 
coefficient of variations were between 7.3% and 13.2%. Experimental data was analysed by fitting a 5-parameter 
logistic curve to the standard analyte curves.

Statistical analysis.  Continuous variables were assessed for normality using the Shapiro–Wilk test. Para-
metric continuous variables were reported as mean ± standard deviation (SD) and non-parametric continuous 
variables were reported as median (interquartile range; IQR). Categorical variables were reported as frequen-
cies (percentages). Univariate correlations were performed using Spearman’s Rank correlation. Statistical tests 
to compare medians of continuous and categorical variables were performed using Mann–Whitney U and 
Kruskal–Wallis H Test. Chi Square tests were used to compare categorical variables. Statistical significance was 
determined in this study by p < 0.05. All basic statistical analysis were conducting using either GraphPad Prism 
software version 7.04 for Windows (GraphPad Software Inc; California, USA) or SPSS v.24 (IBM; New York, 
USA). Visualisation of the correlation matrix was conducted in R version 4.0.244 using the corrplot package45.

Exploratory Factor Analysis (EFA) was performed on 10 log-transformed ECM biomarkers using principle 
axis factoring with Direct Oblimin rotation in SPSS v.24. Eigenvalues were used to determine the number of 
factors extracted for this solution. Derived from matrix correlations between analysed variables, eigenvalues 
describe how well a single factor explains the variance in a solution. An initial analysis demonstrated that five 
out of 10 factors met Kaiser’s criterion of 1 (eigenvalue ≥ 1). A scree plot, which plots factors against respective 
eigenvalues, indicated a two-factor solution was most appropriate and this was further confirmed by parallel 
analysis46. In this study, we have presented all variables that have factor loadings > 0.3, which is an established 
factor loading cut-off in the literature22.

Cluster analysis was performed exclusively using ECM biomarker data and did not include clinical charac-
teristics or patient risk factors. Prior to cluster analysis, biomarker data was log-transformed to normalise dis-
tribution and each biomarker was standardised to the same scale (mean = 0, SD = 1) to account for large variance 
between biomarkers which could influence cluster assignment. Subjects were partitioned using agglomerative 
hierarchical clustering using Ward’s method of minimum variance and the Euclidean distance metric. All statisti-
cal analysis associated with cluster analysis was conducted in R version 4.0.244. Visualisation of the dendrogram 
was conducted using the factoextra package47, and identification of optimal cluster number was determined by 
the metrics in the NbClust package32.

Data availability
The datasets generated and analysed for this study are available from the corresponding author upon reasonable 
request.
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