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A major gap in our understanding of natural sound processing is knowledge of where

or how in a cortical hierarchy differential processing leads to categorical perception at

a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought

to determine if and where cortical pathways in humans might diverge for processing

action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world

sound when matched for duration and intensity. This was tested by using relatively

less semantically complex natural sounds produced by non-conspecific animals rather

than humans. Our results revealed a striking double-dissociation of activated networks

bilaterally. This included a previously well described pathway preferential for processing

vocalization signals directed laterally from functionally defined primary auditory cortices

to the anterior superior temporal gyri, and a less well-described pathway preferential

for processing animal action sounds directed medially to the posterior insulae. We

additionally found that some of these regions and associated cortical networks showed

parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to

perceptual features of the natural stimuli, such as the degree of perceived recognition or

intentional understanding. Overall, these results supported a neurobiological theoretical

framework for how the mammalian brain may be fundamentally organized to process

acoustically and acoustic-semantically distinct categories of ethologically valid, real-world

sounds.
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INTRODUCTION

Critical to survival and social organization is our ability to view, hear, and understand the goals
and intentions of others, including both human (conspecifics) and non-human (non-conspecific)
animals. However, it remains unclear how the human auditory system is fundamentally organized
to process the diverse range of natural, biologically relevant sounds, such as speech and action
events, and provide the listener with a sense ofmeaning. In dual-streammodels of sound processing
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dorsally directed cortical pathways, relative to primary auditory
cortex (PAC), are involved in part with processing spatial
information, such as localizing sounds and preparing motor
movements or action schemas to engage or avoid the sound-
source (Romanski et al., 1999; Rauschecker and Tian, 2000;
Rauschecker and Scott, 2015). Conversely, ventrally directed
cortical pathways, relative to PAC, are involved more in
identification of sound patterns for perception of what the
source is or its potential communicative content. This dorsal
vs. ventral dichotomy has also been applied to models of
spoken language processing (MacNeilage, 1998; Rauschecker
and Scott, 2009; Arbib, 2010; Perlovsky, 2011; DeWitt and
Rauschecker, 2013). In these models, dorsal pathways are
generally implicated in temporal processing, such as amplitude or
temporal envelope segmentation. In contrast, ventral pathways
are involved in pattern matching for content, such as syllables,
phonemes, and words. However, the processing that takes
place along intermediate stages, between PACs and the higher-
level semantic and audio-motor representations that are more
commonly affiliated with recognition and behavior remains
unclear. Thus, while hypothesized dorsal-ventral organizations
for sound processing are reasonably well established, many
gaps remain in our understanding of how the putative ventral
pathways for sound recognition (“what is it”) may be organized
to process the acoustic signal attributes that may be characteristic
of different semantic or “acoustic-semantic” categories of natural
sounds.

With regard to “bottom-up” theories of sound processing and
perception, numerous animal models, and more recently human
models, have revealed principles for how real-world sounds
become processed subsequent to tonotopically organized regions
(Rauschecker et al., 1995; Kaas and Hackett, 1998; Petkov et al.,
2008; Lewis et al., 2009; Giordano et al., 2013). In particular,
hierarchical models indicate that parallel processing pathways
along auditory cortices have successive stages containing neurons
that show increasing selectivity for complex spectro-temporal
attributes (Fecteau et al., 2004; Medvedev and Kanwal, 2004;
Kumar et al., 2007; Rauschecker and Scott, 2009; Schönwiesner
and Zatorre, 2009; Lewis et al., 2012). Such organizations are
suggestive of “matched-filter” tuning mechanisms, which may
facilitate or mediate the detection of certain types of sounds or
sound attributes that effectively segment sounds of interest from
background noise (Suga, 1965; Pollak and Bodenhamer, 1981;
Rose and Capranica, 1983; Lewicki, 2002; Woolley et al., 2005).
However, there is no consensus as to what low- or high-level
acoustic signal attributes comprise the basic building blocks for
the processing and reconstruction of real-world, natural sounds
as meaningful events to a listener.

Conversely, top-down driven models, such as embodied or
grounded cognition models, have led to the development of
theories of how various widespread brain regions may mediate
semantic knowledge representations at a categorical level (Moore
and Price, 1999; Barsalou et al., 2003; Miller et al., 2003; Hickok
and Poeppel, 2004; Martin, 2007; Binder et al., 2009; Engel
et al., 2009; Lewis et al., 2011; Bornkessel-Schlesewsky et al.,
2015). However, many earlier human neuroimaging studies
using human-produced sound stimuli, which in adult listeners

tend to inherently entail complex semantic associations, likely
recruited brain regions well outside of auditory cortex proper
for processing higher order cognitive information, including
linguistic features, subtle communicative nuances, and audio-
motor schemas (Shallice, 1988; Grafton et al., 1997; Binder et al.,
2000; Fiebach et al., 2003; Alain, 2007; Canessa et al., 2007;
McNamara et al., 2008; Turkeltaub andCoslett, 2010;Meyer et al.,
2011; Woods et al., 2011; Beer et al., 2013). Consequently, the
cortical processing of highly familiar human-produced sounds
may mask some of the more fundamental, or intermediate, stages
of real-world, natural sound processing.

In the present study, we sought to further bridge bottom-
up and top-down models of fundamental aspects of sound
recognition by examining functional networks for processing
two categories of semantically (and acoustically) distinct real-
world sounds produced by non-human animals: Action sounds
vs. vocalizations. Such sounds would arguably be ethologically
valid, yet have fewer complex semantic associations than human-
produced sounds in general. More specifically, based on a
large number of earlier neuropsychological and neuroimaging
studies of hearing perception, we sought to test a general
theoretical framework for how the mammalian brain may be,
or may become, optimized for processing real-world sounds
at a semantic or acoustic-semantic categorical level (Figure 1).
This simple model incorporates the classical living vs. non-
living semantic category boundary for word-form knowledge as
one major division (Warrington and Shallice, 1984; Hillis and
Caramazza, 1991; Capitani et al., 2003) but here being applied
more specifically to sound-sources. A second major theorized
division, being explicitly tested in the present study, distinguishes
vocalizations from action sounds (non-vocalizations). Earlier
studies of speech and human vocalization processing have
identified the superior temporal gyri (STG) and surrounding
territories as principle “intermediate” cortical processing stages
for vocal communication sounds (Belin et al., 2000; Turkeltaub
and Coslett, 2010), including a left lateralized extended network
for intelligible speech sounds (Ohnaka et al., 1995; Scott et al.,
2000, 2006; Engelien et al., 2006; Friederici et al., 2010) and right
lateralized extended network preferential for processing non-
verbal and prosodic communication sounds (Corballis, 1989;
Zatorre et al., 1992; Thierry et al., 2003; Gandour et al., 2004).
The semantic boundary for processing vocalizations produced
by animals vs. humans (i.e., non-conspecifics vs. conspecifics)
has received relatively less attention (Figure 1, black dotted
line next to red box). Nonetheless, at least a subset of the
above mentioned STG foci and surrounding cortical regions are
reported to be recruited when human listeners process animal
(non-conspecific) vocalizations (Maeder et al., 2001; Lewis et al.,
2005, 2009; Engelien et al., 2006; Altmann et al., 2007; Belin et al.,
2008; Doehrmann et al., 2008; Talkington et al., 2012, 2013).
This conspecific vocalization processing boundary concept
is generally consistent with neuroimaging studies of other
mammalian species, including monkeys (Kohler et al., 2002;
Petkov et al., 2008) and canines (Andics et al., 2014), which reveal
regions or pathways preferential for processing their respective
conspecific vocalizations and calls. Consequently, for the present
study we regarded human vocalizations as belonging to a
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FIGURE 1 | A theoretical framework for the neurobiological organization of the human (and mammalian) brain for processing and recognizing

different acoustic-semantic categories encompassing all real-world, natural sounds. Human speech, tool use sounds, and human-made machinery sounds

are represented as extensions of categories in this rudimentary model, while music and emotionally-laden sounds are regarded as higher forms of communication.

The present study is testing the putative boundary (blue double headed arrow) between action sounds (yellow box) vs. vocalizations (red) using animal

(non-conspecific) sound stimuli. Refer to text for other details.

distinct acoustic-semantic category, which potentially facilitates
recruitment of down-stream cortical pathways for additional
processing of communicative intent or other complex learned
semantic knowledge associations. Therefore, human produced
vocalization sounds were not included in order to target more
rudimentary or intermediate stages of sound processing.

With regard to action (non-vocalization) sounds, we
previously reported the existence of a four-fold dissociation
of cortical networks for processing different categories of real-
world sounds, distinguishing those produced by human, animal,
mechanical, and environmental sources (Engel et al., 2009; Lewis
et al., 2011). These studies revealed the left and right posterior
insulae as regions preferential for processing non-human
animal action sounds. Thus, also included in our theoretical
framework (Figure 1, black dotted line next to yellow box) is
a semantic processing boundary between human vs. animal
action sounds. On this front, our model incorporates grounded
(“embodied”) cognition theories, which at least loosely relate to
mirror neuron systems (MNS), which may reflect system-level
processing strategies for matching heard action sounds to the
listeners own repertoire of sound-producing motor actions; this
processing strategy is thought to provide a listener with a sense
of meaning or intention behind the sound-producing action
(MacNeilage, 1998; Arbib, 2001; Buccino et al., 2001; Barsalou
et al., 2003; Rizzolatti and Craighero, 2004; Bidet-Caulet et al.,
2005; Calvo-Merino et al., 2005; Gazzola et al., 2006; Lewis et al.,
2006; Lahav et al., 2007; Martin, 2007; Mutschler et al., 2007;
Barsalou, 2008; Galati et al., 2008; Giordano et al., 2010; Imai
et al., 2015). Most studies examining biological motion (visual
or auditory) have focused on using human (conspecific) stimuli
(for review, see, Chouchourelou et al., 2012). However, one
study using point-light animations of both human and animal
biological motion, together with brain lesion mapping, reported
cases of selective impairment in recognizing human motion but
not animal motion (Han et al., 2013), thereby distinguishing
these semantic action-event categories. Ostensibly, when
processing biological sounds that cannot be fully or accurately
mimicked motorically by one’s own body or limbs (e.g., a
horse galloping or pigeon flapping its wings) the brain must

still attempt to process and decode the acoustic signals for
potential meaning behind the heard action. Thus, in the
present study we also regarded human vs. animal action sounds
as belonging to semantically and neurobiologically distinct
categories.

At a gross level, our model of acoustic-semantic category-level
sound processing makes a strong prediction for the existence
of a major divergence in cortical pathways for processing
animal action sounds vs. animal vocalizations (Figure 1, blue
arrow). As alluded to earlier, higher level cognitive systems
tend to show greater hemispheric lateralization for information
processing (Preuss, 2011), with some dependence on task
and developmental plasticity (Hamzei et al., 2003; Iacoboni
et al., 2005; Lewis et al., 2006). This lateralization effect is
especially prominent with processing associated with language,
vocal and instrumental music, and other complex semantic-
level processing that entails potentially higher forms of acoustic
communication or thought (Peretz and Zatorre, 2005; Binder
et al., 2009; Meyer et al., 2011; Alluri et al., 2013; Cai
et al., 2013). Hence, our presumed rudimental model for
the acoustic-semantic organization of sound processing further
predicts that the processing of non-conspecific animal sounds
should recruit divergent pathway activation in both cortical
hemispheres that likely relate to relatively less specialized
processing weighted by bottom-up acoustic signal processing.
Thus, the goal of the present study, using fMRI, was to test
for the existence of divergent cortical processing streams along
human auditory cortices, presumably in both hemispheres, that
respect the theorized acoustic-semantic boundary for processing
non-conspecific animal action sounds vs. vocalizations as ideal
stimulus sets to critically test this putative major boundary—
which may represent a sensory processing boundary common
to most if not all mammals. Exploring and establishing
fundamental cortical organizational principles behind natural
sound processing is ultimately expected to help advance both
anthropological theories of spoken communication evolution, as
well as neurodevelopmental models of hearing perception and
spoken language acquisition in healthy young children and those
with speech or language delays.
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MATERIALS AND METHODS

Participants
We tested 17 right-handed participants (Avg. 23.6 ± 2.6
years, range 20–29, 8 female) who performed one or multiple
paradigms using functional magnetic resonance imaging (fMRI).
All participants were native English speakers with no history
of neurological or psychiatric disorders, and a self-reported
normal range of hearing with no auditory impairments. Informed
consent was obtained for all participants following guidelines
approved by the West Virginia University Institutional Review
Board and in compliance with the Code of Ethics of the World
Medical Association.

Sound Stimulus Creation and Presentation
The sound stimulus set consisted of 29 animal vocalizations
and 29 animal action sounds (Table 1; also see art piece
in Supplemental Figure S4) derived from professional
compilations (Sound Ideas, Inc., Richmond Hill, Ontario,
Canada), incorporating recordings of animals in isolation with
little to no background noise. The animal vocalizations selected
were produced by vibrations of the vocal folds, primarily of
various land mammals. To facilitate data interpretation, we
minimized the use of bird calls and aquatic mammals, due
to differences in their mechanisms of sound production via
their respective “vocal” systems (e.g., syrinx or blowhole), as
a listener’s ability to mimic sounds may influence perceptual
processing mechanisms (Liberman andMattingly, 1985). Animal
vocalizations were initially derived from another study by
our lab examining mimicry (Talkington et al., 2012) in which
at least 46 of 50 participants could correctly categorize the
sound as non-human (in contrast to animal vocalizations
mimicked by a human; two alternative-forced choice [2AFC]
task). Animal action sounds were also selected based upon
whether they were produced primarily by land animals and
were deemed to be devoid of any vocalization content. This set
of sounds was initially derived from our earlier study (Engel
et al., 2009), which included action sound sources that were
categorized as animal (vs. human, mechanical, or environmental;
four alternative forced choice [4AFC]) by more than 80% of
participants.

Using commercially available software (Adobe Audition 3.0,
Adobe Systems Inc.), the two categories of sound stimuli
were carefully matched for duration (2.7 ± 0.2 s) and total
root mean squared power (−17.6 ± 0.5 dB), which remained
matched both before and after post-hoc censoring six of the
action sounds from data analyses (addressed below). In addition,
the onsets/offsets were ramped by 25 ms to avoid “pops”
during sound presentation. Sound stimuli were converted to
one channel (mono, 44.1 kHz, 16-bit) but presented to both
ears via ear buds, thereby removing any binaural spatial
cues.

To validate the specificity and clarity of the sound source
category, five participants who were not included in the fMRI
studies, and were naïve to the purpose of the experiment,
assessed the censored sound stimuli to (1) verify that the
animal vocalizations and animal action sounds were easily

categorized as an action or vocalization, and (2) verify
that sounds were clearly perceived as not being produced
by a human agent. Sounds that were unclear or retained
ambiguous elements that might cross the theorized category
boundary/boundaries were replaced by other examples until a
complete set of 58 sound stimuli was obtained that all five
listeners could unanimously categorize correctly. After obtaining
post-scanning feedback from several fMRI participants, we
determined that some of the action sounds were perceived
as possibly containing overt communicative intent (e.g.,
rattlesnake rattling to indicate “stay away”), human intervention
(e.g., hearing metallic sounds of a dog collar jingling), or
were “breathy” (e.g., panting) some participants confused
as blending across the conceptual boundary between action
events and vocalizations. Consequently, we censored out fMRI
responses (blood oxygen-level dependent; BOLD) activation
brain responses to six of the animal action sounds post-hoc
(Table 1, italicized entries). Note, that including or excluding
these sound stimuli did not qualitatively affect the main results
(data not shown), thought these exclusions facilitated data
interpretation.

Acoustic Signal Features of the Sound
Stimuli
The sound stimuli were assessed for differences in quantifiable
high-order acoustic signal attributes and fine scale power
spectra using freely available phonetic software (Praat,
http://www.fon.hum.uva.nl/praat/, version 5.1.04). The animal
action sounds generally had greater power at the lower frequency
ranges (long term average spectrum at 10 Hz bandwidth
increments). This included a significantly greater prevalence
of amplitude fluctuations at rates between 10 and 50 Hz for
the animal action sounds [single factor ANOVA F(1, 9) = 473,
p < 10−8; see Supplemental Figure S1A], which is a range
typically regarded as envelope information (2–50Hz; also
known as “amplitude envelope” or “temporal information”)
in speech literature (Rosen, 1992). Some of this difference in
power at lower frequencies likely reflected temporal envelope
events, such as the pace of locomotion sounds (e.g., footsteps
and galloping) and temporal harmonics therein. Several low-
and high-order acoustic signal attributes could distinguish the
two semantic categories of sound on average (see Table 1). For
instance, the global harmonics-to-noise ratio (HNR) value was
determined for each sound using Praat software (10 ms time
step; minimum pitch cutoff of 75 Hz, 20 kHz ceiling; and 1
period per window) and on average revealed a significantly
greater degree of harmonic structure for the animal vocalizations
(animal vocalizations = +7.34 dBHNR, animal action sounds =
+0.58 dBHNR; two-tailed t-test, p < 10−7), which was expected
based on earlier studies (Lewis et al., 2005, 2009). Additionally, as
a measure of spectral flatness, which has also been used to study
the dynamics of vocal imitation in song birds (Tchernichovski
et al., 2001), we assessed the magnitudes of signal entropy
(Wiener entropy, WE). Entropy measures, and related spectral
structure variation (SSV) measures addressed below, were
derived using a freeware script with Praat software (“Wiener
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TABLE 1 | List of sound stimuli together with some of their acoustic signal attributes and perceptual features.

Animal Action sounds HNR WE SSV Intent Recog Emotion

Bat flapping wings 2.83 −5.40 1.52 2.00 2.15 −0.07

Bird, flying away

Cow(s) moving in pen 2.23 −3.39 1.43 2.10 2.65 0.07

Dog (large) eating food from bowl −1.71 −3.21 1.81 2.90 2.20 0.53

Dog (small) eating food

Dog drinking water from bowl 1.27 −4.28 2.12 3.20 2.60 0.67

Dog footsteps −0.68 −1.94 0.38 2.65 2.60 0.07

Dog licking/lapping −1.52 −2.49 1.53 2.80 2.20 0.33

Dog panting heavily

Dog shaking head/ears flapping −0.93 −3.50 0.79 2.80 2.80 0.07

Dog sniffle and digging −1.01 −2.96 0.80 3.15 3.15 0.53

Dog swimming and shakes −4.00 −2.37 0.32 2.90 2.95 0.07

Dog trotting, toe nails on floor #1 −0.64 −2.53 0.41 2.75 2.70 0.33

Dog trotting, toe nails on floor #2 −1.24 −3.59 0.73 2.90 3.10 0.80

Dog/animal licking & chewing −1.40 −2.54 1.52 2.75 2.35 0.27

Horse eating −0.74 −4.58 1.84 2.30 1.85 0.40

Horse galloping #1 −1.65 −6.17 1.91 2.95 3.20 0.07

Horse galloping #2 3.16 −2.97 2.03 2.90 3.40 −0.07

Horse galloping #3 1.52 −2.60 1.72 3.15 3.45 0.13

Horse galloping #4 3.88 −3.28 2.28 3.15 3.45 0.33

Horse trotting 2.80 −3.38 2.19 3.30 3.65 0.33

Horse walking #1 7.72 −6.02 2.95 3.50 3.75 0.40

Horse walking #2 2.33 −2.87 0.80 3.35 3.40 0.33

Horse walking on cobblestone 1.14 −4.88 1.77 3.25 3.85 0.60

Pigeon flight −3.67 −2.30 0.36 2.65 2.75 −0.13

Rattlesnake rattling #1

Rattlesnake rattling #2

Rattlesnake rattling #3

Zebra trotting on dirt 3.59 −3.21 2.54 3.05 3.50 0.60

Average 0.58 −3.50 1.47 2.89 2.94 0.29

StDev 2.74 1.18 0.76 0.38 0.57 0.26

Baby bear bark 3.84 −6.90 4.29 2.45 2.30 −1.00

Bear call #1 1.64 −8.89 2.88 2.55 2.50 −0.73

Bear call #2 4.50 −7.96 2.95 2.90 3.25 −0.93

Bear call #3 12.52 −8.25 5.15 2.50 2.75 −0.93

Bear growl #1 −1.43 −8.64 1.51 2.70 2.50 −1.40

Bear growl #2 1.38 −8.40 1.28 2.55 2.20 −1.07

Bear growl #3 1.59 −6.57 0.86 3.05 2.95 −1.60

Bobcat growl −1.14 −6.47 1.34 3.00 2.70 −1.40

Bull call #1 12.08 −11.25 0.92 2.45 2.75 −0.93

Bull call #2 4.74 −8.19 1.87 2.75 2.65 −1.73

Bull call #3 11.18 −9.86 3.25 2.40 3.50 −0.47

Camel lowing 13.05 −10.00 0.82 1.95 2.60 −1.13

Camel moo 13.01 −10.00 0.78 2.35 2.45 −0.87

Cougar growl 1.83 −7.41 3.71 3.60 3.55 −1.73

Cow moo 16.90 −10.24 1.90 2.05 2.90 −0.80

Dog bark 4.03 −7.51 3.21 3.45 4.00 −0.20

Dog growl-sigh 4.43 −7.01 3.87 2.90 3.10 −0.87

Dog whine and bark 6.27 −7.44 2.41 3.40 3.60 −1.33

Goose (Canadian) honks 9.64 −7.99 9.63 2.45 3.40 0.53

Horse whinny 8.64 −6.14 1.03 3.45 3.90 −1.07

Jackal call 17.79 −7.14 4.29 2.90 3.30 −0.47

Lion roar 1.69 −10.82 2.30 3.00 3.45 −1.00

Monkey scream #1 14.96 −6.20 4.39 3.05 3.75 −0.93

Monkey scream #2 10.08 −5.92 0.88 3.00 3.70 −1.67

Monkey vocal 14.07 −7.37 6.76 2.65 3.75 1.00

Pig squeal 6.70 −5.25 0.69 3.10 3.70 −1.73

Sheep baa 8.46 −5.70 16.66 2.65 3.95 0.60

Wolf bark 9.42 −8.54 2.85 3.35 3.70 −0.60

Wolf growl 1.13 −5.80 0.61 3.35 2.80 −1.47

Average 7.34 −7.86 3.21 2.83 3.16 −0.89

StDev 5.51 1.62 3.30 0.43 0.55 0.69

Italicized entries were censored a priori from fMRI data analyses. HNR = harmonics-to-noise ratio; WE =Weiner entropy; SSV = spectral structure variation; Recog = recognition. Refer

to text for other details.
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entropy,” see online supplemental software script). On average,
action sounds showed a significantly greater magnitude in
signal entropy: Vocalization = −3.50, action sounds = −7.86;
two-tailed t-test, p < 10−15). Using a measure of change in
entropy over time (an index of spectral dynamics or rate of
change of spectral structure), the animal vocalizations showed
on average a greater degree of SSV measures (vocalizations =
3.21, action sounds = 1.47; two-tailed t-test, p < 0.01). Each
of the above signal attributes were assessed and examined
here because they have been implicated in auditory stream
segregation and auditory object perception in earlier studies
(Lewis et al., 2009, 2012; Reddy et al., 2009). We also assessed
potential category-level differences in modulation power spectra
(MPS), using techniques that have revealed spectro-temporal
attributes of sound that may be processed along distinct
pathways in auditory cortices in humans and macaques (Woolley
et al., 2005; Cohen et al., 2007; Elliott and Theunissen, 2009;
Kuśmierek et al., 2012; Herdener et al., 2013; Santoro et al.,
2014). We used freely available Matlab software programs
to derive MPS measures (http://strfpak.berkeley.edu), using
a 32 Hz frequency band and low-pass filter method for the
ensemble of 23 animal action sounds and 23 (of the 29) animal
vocalizations (Supplemental Figure S1C). In short, various
quantifiable low- and high-order acoustic signal attributes could
distinguish the two semantic categories of sound on average
(action sounds vs. vocalizations). Consequently, we referred
to the real-world natural categories of sound in Figure 1 as
“acoustic-semantic” categories. We further conducted post-hoc
analyses of differentially activated brain regions to test for
activation that showed parametric sensitivity to several of the
above acoustic signal attributes (addressed below), as well as
perceptual features, thereby probing for their potential functional
roles.

Perceptual Features of the Sound Stimuli
To identify potential perceptual features that may influence
cortical processing of the sound stimuli, we assessed the perceived
intention behind the sounds, the degree to which they could
be recognized, and the emotional valence associated with each
sound. Using freely available PsychoPy2 (v1.73.05) software
(Peirce, 2007), a separate set of non-imaging listeners (n =

20, 10 female) heard all sounds in a random order while
in a sound isolation booth, and rated them on a 1-4 Likert
scale with the instructions: “With regard to the sound you
heard, your ability to recognize the Intention was: (1) almost
certainly not, (2) unlikely, (3) likely, to (4) almost certainly”.
While there was a full range of ratings, overall there were
no significant differences in mean ratings of intent between
the two categories of sound (Table 1, t-test, two-tail p <

0.58). Using a counter-balanced design, these participants also
separately rated each sound for their ability to recognize the
sound with the instructions: “With regard to the sound you
heard, your ability to Recognize it was: (1) almost certainly not,
(2) unlikely, (3) likely, to (4) almost certainly.” Again, there
was a full range of responses but no significant differences
in mean ratings between categories (t-test, two-tail p <

0.16).

To assess the emotional valence of the sounds, another group
of listeners (n = 15, 8 female) rated all the sounds, presented
in a random order (using PsychoPy software), on a 5-point
scale of perceived emotional valence. This ranged from very
negative (−2), to neutral (0), to very positive (+2) for the degree
of emotional content ascribed to the agent (animal) producing
the action sound or vocalization. The animal vocalizations were
rated (Supplemental Figure S1B) as having a relatively negative
emotional valence overall (Mean/SD = −0.89 ± 0.69) while
animal action sounds were rated closer to neutral valence (+0.29
± 0.26), which were ratings that on average significantly differed
from one another [single factor ANOVA, F(1, 51) = 61.3, p <

10−13].

Scanning Paradigms
Sound Categorization Paradigm
The main auditory scanning paradigm for fMRI imaging (n
= 17, 8 female) consisted of two separate runs that were to
be presented three times each. Across the two runs, the 58
sound stimuli plus 24 silent events were presented in pseudo-
random order, with no more than two silent events presented
in a row. This randomized approach was adopted to avoid or
minimize activation related to state-dependent effects observed
in block designs (Rehme et al., 2013). The high-fidelity sound
stimuli were delivered using a Windows PC computer, with
Presentation software (version 11.1, Neurobehavioral Systems
Inc.) via a sound mixer and MR compatible ear buds (Model
S14, Sensimetrics Corp., Malden MA). Stimulus loudness was
set to a comfortable level for each participant: Immediately after
scanning a computer generated 1 kHz pure tone was played
through the sound transmission system and the intensity was
typically in the range of 80–83 dB C-weighted to each ear
(Brüel & Kjær 2239a sound meter). Participants were instructed
to determine by 2AFC left hand button response whether the
sound heard was (1) an animal vocalization (index finger) or (2)
an animal action sound (middle finger). Although none of the
participants had any previous exposure to these specific sound
stimuli, they were presented with several of the sound stimuli
during a brief practice fMRI scan to ensure the instruction were
clearly understood, and they were explicitly informed that all
the sounds they heard would be animal actions and animal
vocalizations.

Button Press Control Paradigms
To identify brain regions that may be involved in the preparation
and mechanics of button presses, we conducted two motor
output-related control paradigms germane to the main auditory
paradigm. As a first control condition, one participant performed
the main auditory paradigm using her right hand for button
presses for two runs and her left hand for two runs. This
allowed for a direct comparison of the anticipated effects of
primary motor cortex activation related to the hand used
when responding. As a second control condition, two of the
participants performed a separate button press paradigm after the
main sound categorization task. This involved a simple ON/OFF
block design cued by short tone pips every 20 s for 4 ON and
5 OFF blocks. During the ON cycles, they made self-initiated
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button box responses with their left index or middle finger
at approximately the same rate as during the main auditory
scanning paradigm. ON cycles were flanked by OFF cycles during
which they would rest their hand.

Magnetic Resonance Imaging and Data Analysis
The fMRI imaging paradigms were all conducted on a 3
Tesla Siemens Verio MRI scanner using a 32-channel head
coil. For all paradigms, participants kept their eyes closed. For
the auditory paradigm, a sound or silent event was presented
every 10 s, and BOLD signals were collected continuously
using an echo planar pulse sequence (ep2d: TR = 2000 ms,
TE = 30 ms, FOV = 240mm, 75◦ flip angle). Whole-head
brain volumes were collected, including 32 axial slices at 4mm
slice thickness (plus 0.6mm gap) and 3.75 × 3.75mm2 in-
plane resolution. Continuous scanning, as opposed to sparse
sampling, was utilized in order to obtain BOLD signals over
time that could be more robustly analyzed using gamma-variate
models. Sound stimuli were heard over continuous scanner
noise. The presentation of each auditory stimulus event was
triggered by the fifth transistor-transistor logic (TTL) pulse
from the MRI scanner for each TR (triggering sound or silent
events every 10 s), thereby ensuring accurate time stamps for
image acquisition relative to stimulus sound onsets and for
recording button press reaction times. After the completion
of the functional imaging scans, whole brain T1-weighted
anatomical MR images were collected using an MPRAGE pulse
sequence (1.5mm sagittal slices, 0.625 × 0.625mm2 in-plane
resolution, TI= 1100ms).

All functional datasets were processed using Analysis of
Functional NeuroImages (AFNI) and associated software plug-
in packages (http://afni.nimh.nih.gov/) (Cox, 1996). For each
paradigm, the 20th volume of the final functional scan, closest
to the anatomical image acquisition, was used as a common
registration image to globally correct motion artifacts due to head
translations and rotations using program 3dvolreg. Voxels were
subjected to a Gaussian spatial blurring of 8mm (Mikl et al.,
2008), and BOLD signals were then converted to percent signal
change on a voxel-wise basis relative to BOLD signal during silent
events for each scanning run for each participant.

For subsequent group-level analyses we conducted both
volumetric and surface-based alignment methods. Surface-based
alignment methods generally enable greater accuracy in the
localization of activated ROIs across the cortical folds, such as
along the superior temporal plane and fronto-parietal operculum
(Desai et al., 2005). However, both alignment methods yielded
qualitatively similar results for our datasets, so only the results
from the standard Talairach volumetric alignment method
are presented here. Individual anatomical brain volumes were
manually aligned to standardized Talairach space (Talairach
and Tournoux, 1988). For each individual, scanning runs were
concatenated into a single time series and corrected for baseline
linear drifts (six runs for fourteen participants, five runs for
one participant, and four runs for two participants). A multiple
linear regression analysis was performed using a gamma-variate
waveform model (using AFNI program 3dDeconvolve) of the

sound onsets for each category of sound stimulus to compare
cross-categorical BOLD brain responses (animal vocalizations
vs. animal action sounds), both relative to averaged BOLD
signals from silent events as a baseline control (used for
computing percent signal changes). We further restricted the
analysis to reveal only those contrasts where the averaged
BOLD activation responses to vocalizations or action sounds, or
both, were positive relative to the responses to baseline silent
events.

For the primary analyses, only those imaging events that
corresponded to correctly categorized sounds for a given
participant (as determined by button press accuracy) were
retained for analyses (average 96.9% accuracy for vocalizations
and 94.3% for action sounds across all scanning runs,
rejecting trials with omissions or commissions. There were
insufficient numbers of incorrectly categorized sounds for
statistical error-trial analyses. The resulting BOLD multiple
regression coefficients (statistical maps) were spatially low-
pass filtered (6 mm box filter) and subjected to t-test and
thresholding. We also processed all individual datasets using
no spatial blurring, which yielded qualitatively similar results
but required lower group-averaged threshold settings (data not
shown).

To correct for multiple comparisons (multiple inference
problem) (Forman et al., 1995; Eklund et al., 2016), we
used AFNI related software. We estimated spatial blurring
in our data by examining signal noise from the residual
error time series from the full model of two individual’s
input data runs (3dDeconvolve software), blurring the error
signals at 6mm (roughly 1.5 times the size of acquisition
voxels). This yielded estimated full-width half-max Gaussian
filter widths of x = 6.5, y = 6.5, and z = 6.4mm spatial
smoothness. A brain mask was created for each of the subjects
(3dAutomask software; dilation factor of 2). Using the brain
mask and the above spatial filter widths, 10,000 Monte Carlo
simulations were applied using 3dClustSim (version 16.2.06)
to obtain corrected significance levels. For data in Figures 2,
3, a combination of a minimum cluster size threshold (6.4
voxels, or 414mm3 volume; two-sided thresholding) and an
individual voxel probability threshold (pthr < 0.001) achieved
a specified overall false detection probability (i.e., family-wise
error rate; FWER) of alpha = 0.05, [p(corr) < 0.05], which
was herein designated as the high threshold setting. A lower
threshold setting was also used to reveal subtler effects, which
was obtained with a cluster size of 44.6 voxels (2885mm3

volume) and pthr < 0.05, which also yielded a corrected
significance level of p(corr) <0.05. Functional imaging data were
transformed into standardized Talairach coordinate space and for
visualization purposes were projected onto the PALS atlas cortical
surface models (in AFNI-Talairach space) using Caret software
(http://brainmap.wustl.edu) (Van Essen et al., 2001; Van Essen,
2005).

Multiple Linear Regression Analyses
Several post-hoc linear and multiple linear regressions analyses
were used to identify correlations between various acoustic signal
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FIGURE 2 | Results from group-averaged fMRI data (n = 17) revealing divergent cortical pathways for processing animal action sounds (yellow) vs.

animal vocalizations (red), both relative to processing silent events (solid yellow hues at high threshold settings: p(uncorr) < 0.001, alpha corrected for

multiple comparisons to p(corr) < 0.05; transparent yellow hues at a lower threshold setting p(uncorr) < 0.05, p(corr) < 0.05). (A) Data are illustrated on

fiducial and inflated PALS atlas surface models. For comparison, functionally defined estimates of tonotopically organized primary auditory cortices (PACs, orange

cortices) are also mapped (refer to Methods). Histograms indicate the BOLD percent signal changes (average ± SEM) in response to each sound category relative to

silent events for various regions of interest, all of which were significant at p(corr) < 0.001 except for the PAC regions. aIFS = anterior inferior frontal sulcus, aSTG =

anterior superior temporal gyrus, M1 = primary motor cortex, MFG = medial frontal gyrus, PACs = primary auditory cortices, pSTS = posterior superior temporal

sulcus. aSTG* = foci (black outline) based on p(corr) < 0.00001 were used for generating histogram data more highly restricted to the aSTG to facilitate data

interpretation. ns = not significant. (B) Insets illustrate boxed regions from the 3D models in Panel (A) after further inflation and flattening, which highlight the main

findings from this study (all data at p(uncorr) < 0.001, p(corr) < 0.05). Refer to text for other details.

attributes (Table 1) or perceptual features of the sound stimuli
(within and across categories) with activation strength of a voxel-
wise basis for various regions of interest (ROIs). We modeled
the BOLD signal as the linear convolution of the input stimulus

(whether vocal sounds or action sounds), with the hemodynamic
response function (HRF) for that particular stimulus. This BOLD
signal was in addition to the baseline signal, which was modeled
as a 3rd order polynomial, which was fit separately for each of
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FIGURE 3 | Parametric activation analyses related to the acoustic signals and perceptual attributes of the animal sounds. (A) The group-averaged

datasets from Figure 2 are superimposed on an axial section of one participant (Talairach z= +13) showing the divergent processing regions (yellow vs. red) in both

hemispheres. Multiple linear correlation p-value fits between regions of interest with the quantifiable high-order acoustic signal attributes (HNR, WE, SSV) and

perceptual features (Intention, Recognition) of the animal action sounds and vocalizations (from Table 1) at the brain imaging time phase of TR = 3, occurring 4–6 s

after sound onset. Negative correlations are indicated by negative value entries. Cells with black highlighting depict p < 0.05 (significant), and cells with gray

highlighting depict p < 0.09 (trending). (B) Top panels show linear correlation charts for three of the five left hemisphere ROIs (MFG, aIFS, and pSTS; also evident in

Figure 2). Charts illustrate BOLD percent signal change activation relative to acoustic signal attributes and perceptual ratings as in Panel A, except at the brain

imaging time phase of TR = 4, occurring 6–8 s after sound onset. Lower panel shows results from a multiple linear regression analysis (correlation p-value fits) for all

five ROIs sensitive to animal action sounds. Refer to Methods for further details.

the six concatenated runs. This resulted in the following multiple
linear regression model for the fMRI signal:

y (t) =

6
∑

k= 1

[

b0,k + b1,k
(

t − t0,k
)

+ b2,k
(

t − t0,k
)2

+b3,k
(

t − t0,k
)3

]

Ik(t)+

15
∑

i= 0

hVS (i) VocalSounds (t − i)

+

15
∑

j= 0

hAS
(

j
)

ActionSounds
(

t − j
)

+ ε(t)

where y(t) = measured fMRI signal (six concatenated runs),
k = run index, t0,k = time at beginning of kth run, Ik(t) =

indicator function for kth run (i.e., Ik(t) = 1 if t occurs during
kth run, 0, otherwise), hVS(i) = HRF for vocal sounds, hAS(j)
= HRF for action sounds. Least squares fitting of the above
model allowed for testing of various hypotheses concerning the
fit coefficients, such as testing for significance using the above

signal time series as well as testing at two distinct temporal phases
of BOLD acquisition time, including the TR’s corresponding to
4–6 s and 6–8 s after sound onset, respectively.

Reaction Time Data Analyses
The average response times to correctly categorized vocalizations
across all scanning runs was 2.26 ± 0.25 s and to correctly
categorized (and post-hoc censored) animal action sounds was
2.26 ± 0.28 s, showing no significant difference [ANOVA
F(1, 157) = 0.014, p < 0.90]. To characterize potential within-
session changes in task performance, we analyzed both reaction
time and accuracy response data. On average the reaction times
to categorizing the sounds during the first two of six runs vs.
the last two runs showed changes across the scanning session:
For animal vocalizations was 2.53 s and then 2.35 s respectively
(n = 13 subjects; two tailed t-test, p < 0.0013), and for animal
action sounds was 2.51 and then 2.35 s (p < 0.0011). The
first two runs for vocalization sounds yielded 97.6 vs. 97.6%
accuracy (no difference) in the last two runs, while animal action
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sounds yielded 98.0 vs. 96.0% (two-tailed t-test, p > 0.15, not
significant) respectively. Thus, while there was some reaction
time improvement over the course of the experiment and some
mild perceptual deterioration effects over time (Mednick et al.,
2005), participants were effectively performing at ceiling levels
throughout the scanning procedures, as expected for this simple
task of categorizing the easily recognized animal sounds.

Tonotopic Map Construction
As part of an earlier study (Lewis et al., 2009), a different
set of participants (n = 7) performed a tonotopy mapping
paradigm to reveal primary auditory cortices (PACs). This
served to create functionally defined estimates of frequency-
dependent response regions (FDRRs; or “tonotopic maps”).
Regions showing tonotopic progressions (typically abutted by
a mirror reversal map) were outlined for each individual and
collated as a heat map, providing a probabilistic estimate of the
location of PACs. Cortical volumes showing overlap of tonotopic
maps by at least two individuals and that intersected with the
transverse temporal gyri (Heschl’s gyrus) were retained and
projected onto the cortical models. The PAC foci from this
prior study were largely localized to the medial two thirds of
Heschl’s gyri, consistent with the location of primary auditory
cortices reported in anatomical studies (Rademacher et al., 2001)
and functional studies (Formisano et al., 2003; Talavage et al.,
2004), and thus adopted here as ROIs (Figure 2, orange) for
comparative analyses.

RESULTS

Using an event related continuous acquisition fMRI paradigm,
we imaged participants while they listened to non-conspecific
animal vocalizations and action sounds, plus silent events as a
baseline control. They indicated by button press as to whether
the sound heard was (1) a vocalization or (2) an action sound
by two alternative forced choice button response with the left
hand. Both categories of sound stimuli were carefully balanced
and matched overall for duration and intensity. Contrasting
brain activation preferential for one vs. the other semantic
category of sound source revealed a robust double-dissociation
of cortical regions showing significant preference for processing
animal action sounds medially in the posterior insulae [Table 2
and Figure 2, solid yellow at p(uncorr) < 0.001, corrected to
p(corr) < 0.05 for minimum cluster size, and transparent yellow
at p(uncorr) < 0.01, p(corr) < 0.05] vs. processing of animal (non-
conspecific) vocalizations laterally in the middle and anterior
superior temporal gyri (STG) [red; p(uncorr) < 0.001, p(corr) <

0.05]. As functional landmarks, we also charted the estimated
location of primary auditory cortices (PACs) based on an overlay
of tonotopically organized maps (Figure 2, orange, ROIs from
our previous work; see Materials and Methods).

Supporting our theoretical model for semantic-level sound
categorization (Figure 1), the main finding of the present
study was the presence of spatially distinct cortical regions
in both the left and right hemisphere auditory cortices (i.e.,
along or immediately surrounding the superior temporal
plane) for preferentially processing the two semantically (and

TABLE 2 | Group activation centroids in Talairach coordinate space for

activation foci.

Anatomical location Talairach coordinates Volume (mm3)

x y z

VOCALIZATIONS > ACTION SOUNDS (P < 0.001)

Left aSTG −58 −4 2 20,069

Left temporal pole −34 10 −34 31

Right aSTG 54 −4 1 16,801

Right precentral g. (M1) 47 0 48 3303

ACTIONS SOUNDS > VOCALIZATIONS (P < 0.001)

Left Posterior Insula −36 −28 18 1216

Right Posterior Insula 32 −16 15 761

ACTIONS SOUNDS > VOCALIZATIONS (P < 0.05)

Left MFG −43 9 32 2848

Left Parietal −42 −36 31 2011

Left pSTS −52 −50 3 964

Left aIFS/vlPFC −45 41 8 4908

Right aIFS/vlPFC 30 29 6 2836

See text and Figure 2 legend for abbreviations.

acoustically) distinct categories of non-conspecific biological
sounds. Specifically, this included the left and right posterior
insulae for animal action sounds, and the left and right aSTG
for animal vocalizations. The independently derived functional
estimates of PACs showed comparable levels of activation to both
categories of sound (Figure 2A, orange; see histograms).

Relative to the action sounds, the vocalizations additionally
showed preferential activation along the bilateral fronto-parietal
operculum (Figure 2A, red) that was volumetrically contiguous
with portions of the STG foci (evident in many individual
datasets, and thus due at least in part to limitations in spatial
resolution), plus the right lateral precentral cortex, overlapping
functionally identified primary motor cortex (“M1”), which was
shown to relate to left-hand button presses (see below). At lower
threshold settings, brain responses to the animal action sounds
additionally revealed preferential BOLD activation (Figure 2A,
transparent yellow) in the left middle frontal gyrus (MFG), left
parietal cortex (intraparietal sulcus), and left posterior superior
temporal sulcus (pSTS), plus the bilateral anterior inferior frontal
sulcus (aIFS) regions (left > right; which roughly overlapped
ventro-lateral prefrontal cortices, vlPFC, more generally). This
network directly overlapped with the classically defined left-
lateralized mirror neuron system (Molenberghs et al., 2012).
While mapping the full extent of mirror neuron systems (MNS)
was beyond the scope of the present study, these results
demonstrate at least partial recruitment of a left-lateralized
motor-related system for processing and categorizing the animal
action sounds relative to networks for processing animal
vocalizations.

Button Response and Right Motor Cortex
Participants used their left hand for button box responses with
the index finger being used for vocalizations and the middle
finger for action sounds. The consistent use of the left index
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finger for responses to the vocalization category almost certainly
accounted for increased activation located along estimated right
primary motor cortex (right “M1”; Figure 2A, red) in the
vicinity of the left hand homunculus representation (Penfield
and Boldrey, 1937). To verify this assertion, we performed three
different types of analyses and control paradigms, as addressed
in the Supplemental Results section (Supplemental Figure S2).
In short, the three control paradigms and conditions examined
demonstrated that the right precentral gyrus activation was
due primarily, if not exclusively, to factors related to button
response preparation and execution as opposed to acoustic signal
processing related to one vs. the other category of sound.

Sensitivity to Acoustic Signal Attributes
and Perceptual Features of Natural Sounds
In addition to category membership, a number of acoustic
signal attributes distinguished the animal action sounds from
vocalizations. For instance, vocalizations were characterized by
greater harmonic content (e.g., Table 1), qualitatively higher
rates of spectral modulation (Supplemental Figure S1C), greater
spectral structure variation, and lower signal entropy measures
(Table 1). Systematic exploration of these attributes, and a
potential myriad of other signal attributes, of natural sounds
that may lead to the observed processing double-dissociation was
beyond the scope of the present study. Nonetheless, to explore
why the two acoustic-semantic categories of natural sound may
have led to differential processing, we examined various regions
of interest for group-averaged parametric correlation with some
of the signal attributes and perceptual features that could be
parameterized along a single dimension (see Methods). We
examined both single and multiple linear regression models that
tested for significant correlations between BOLD signal responses
within the ROIs for all sound stimuli in a given category
(Figure 3). Note, that this study did not a priori attempt to match
the range of acoustic signal attributes or perceptual ratings of
the action sounds and vocalizations (e.g., clusters by category in
Supplemental Figure S3). Consequently, ceiling or floor effects
could in part account for some of the combinations of category-
specific results. Nonetheless, significant correlations and trends
persisted that served to facilitate data interpretation. In short,
the left and right hemisphere auditory cortex ROIs (Figure 3A;
aSTG, PAC, and posterior insulae) collectively showed a mix
of parametric sensitivity to both acoustic signal attributes and
perceptual features, while the left-lateralized ROIs preferential for
animal action sound processing (Figure 3B; aIFS, MFG, pSTS)
showed parametric sensitivity mostly to perceptual features of
the sounds (Figures 3A,B highlighted cells in tables), as detailed
further below.

The aSTG regions (left > right) showed a significant
positive correlation of activation strength (at the temporal
phase of 4–6 s after sound onset) with increasing spectral
structure variation (SSV) measures of the animal vocalizations
(Figure 3A), and the right aSTG and left PAC both trended
toward positive linear correlation of activation strength with
SSV. The vocalizations showed greater spectral modulation rates
at least qualitatively (Supplemental Figure S1C), which may

be correlated with SSV measures—thought detailed analyses
along these lines went beyond the scope of the present study.
Additionally, SSV measures were positively correlated with
perceived emotional valence ratings (Supplemental Figure S3A,
chart: R2 = 0.56; Steiger’s Z = 3.31, two-tailed p < 0.01). Thus,
there may be a relationship between perception of emotional
cues in the animal vocalizations and aSTG activation (SSV-
sensitivity), though this determination would require future
study. The left PAC and bilateral aSTG regions also showed
significant activation strength that demonstrated a positive co-
linear correlation (Figure 3A, lower table) with the perceived
understanding of intention behind the animal action sounds; the
left and right aSTG also showed a positive co-linear correlation
between activation to animal action sounds and the degree
of perceived recognition of the animal action sounds. The
posterior insulae showed a trend toward correlation between
activation strength and decreasing acoustic signal entropy.
Moreover, the entropy measures of the vocalizations were found
to be positively correlated with the perception of understanding
the intention behind the sound (Supplemental Figure S3B;
chart R2 = 0.31; Steiger’s Z = 2.20, two-tailed p <

0.05).
In our earlier studies using animal vocalizations, we revealed

auditory cortices and STG regions that were sensitive to
harmonic content (Lewis et al., 2005, 2009). In the present study,
the left aSTG in this ROI-based analysis only trended toward
showing a linear parametric correlation with the harmonics-
to-noise ratio (HNR) values of the animal vocalizations (data
not shown), but this trend in correlation did not survive with
the linear regression analyses that included multiple signal
and perceptual parameters (Figure 3A). This apparently weak
presence of parametric sensitivity to harmonic content was likely
due to both the specific location of the aSTG foci of the present
study (being relatively more lateral to HNR-sensitive regions)
plus the high end range of HNR values of the vocalizations (avg.
+7.34 dBHNR), which were effectively at or near ceiling levels.
The animal action sounds did not exhibit parametric HNR-
sensitivity in any of the ROIs using any of the regression model
configurations.

The left hemisphere aIFS, MFG, IPS, pSTS, and posterior
insula ROIs (Figure 3B) were also tested for parametric
sensitivity at the 4–6 and 6–8 s TR delays. Interestingly, at the
later temporal phase (6–8 s after sound onset) the left aIFS,
MFG, and pSTS regions all showed significant negative co-linear
correlations between activation strength and degree of perceived
recognition of the animal action sounds (Figure 3B, charts). The
left posterior insula showed a trend for activation strength that
correlated with the degree of perceived understanding of the
intention behind the animal action sounds, but no correlation
with perceived recognition in this or any of the other multiple
linear regression analyses tested. The motor-related cortical
network, however, was parametrically activated more strongly
by animal action sounds that were generally deemed as more
difficult to recognize. Thus, there was an apparent hierarchy of
activation stages that correlated with different aspects of hearing
perception, with the posterior insulae followed by left-lateralized
non-auditory regions including the aIFS, MFG, and pSTS.

Frontiers in Neuroscience | www.frontiersin.org 11 January 2017 | Volume 10 | Article 579

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Webster et al. Animal Action Sounds vs. Vocalizations

In sum, the above results revealed two distinct regions
of auditory cortex proper located medial-posterior vs. lateral-
anterior to primary auditory cortices (core) regions that
showed preferential activation to processing animal action
sounds vs. animal vocalizations, respectively. A number of
left-lateralized cortical regions consistent with motor-related
functions additionally showed preferential activation to the
animal action sounds. An ROI analysis of parametric sensitivity
to high order acoustic signal attributes and/or psychophysically
assessed perceptual features revealed a gradient of response
profiles for the different regions, reflective of their different
functional roles in natural sound processing. In particular, these
results were consistent with designating the posterior insulae
as representing intermediate stages of a cortical processing
hierarchy that subserves categorical processing and perception of
action events at an acoustic-semantic level.

DISCUSSION

The present study revealed not only the existence of a major
divergence of cortical regions in humans for processing action
sounds vs. vocalizations, using duration and intensity matched
non-conspecific natural sounds (Figure 2; and Supplemental
Figure S4), but further identified a combination of both bottom-
up high-order quantifiable acoustic signal attributes and top-
down perceptual features that may mechanistically guide the
divergence of processing along these two apparently distinct
pathways. Importantly, these results support our neurobiological
theoretical framework of cortical organizations mediating the
perception of natural sounds at an acoustic-semantic category
level (Figure 1). In particular, the results identify intermediate
cortical processing stages along a hierarchical network that
appears to mediate the perception of natural sounds. We
selected non-human animal sounds as a sub-category of “living
things,” which entailed real-world ethologically meaningful
sound-producing events that most land mammals arguably
need to be able to efficiently process and interpret to survive.
Given our use of non-conspecific natural sounds, the cortical
organizations revealed herein should apply to most, if not
all, land mammalian species with hearing (and perhaps oral
communication) ability.

Analogous to hierarchical and parallel processing pathways
along core, belt, and parabelt auditory regions in primates
(Rauschecker et al., 1995; Rauschecker, 1998; Kaas and Hackett,
2000), the separate pathway findings of the present study were
consistent with representing a hierarchical processing system for
extracting acoustic attributes (e.g., harmonicity, entropy, spectral
structure variation, and high spectral modulation rates) and/or
matching sound features to templates, which is in line with
aspects of earlier models of spectral and temporal processing
pathways in primates (Bendor and Wang, 2008). Presumably,
acoustic information processing in primary auditory cortices
(Figure 2B, orange) was subsequently routed out to the aSTG and
the posterior insulae, which are regions that are not activated by
lower order acoustic attributes or “simpler artificially produced
sounds” such as pure tones, white noises, amplitude or frequency

modulated tones and the like (Kaas and Hackett, 1998, 2000;
Rauschecker and Scott, 2009). The aSTG and posterior insula
regions showed parametric sensitivity to some of the perceptual
features tested, including intention and emotional valence, and
thus reflected processing or representation of either bottom-
up acoustic signal attributes or some combination of signal
attributes and top-down perceptual features. In this manner, the
current findings extend “dorsal-ventral” dual-stream models of
sound processing (Rauschecker and Tian, 2000; Arnott et al.,
2008; Rauschecker and Scott, 2009; Hamzei et al., 2016). In
particular, with regard to the ventral sound recognition stream
(“what is it”), the two observed regions of the present study
(bilateral posterior insulae and aSTG foci) appear to reflect
portions of two major auditory pathways for purposes of
sound categorization and recognition, distinguishing among
different categories of biological (“living”) sound-sources at
an acoustic and acoustic-semantic level—action sounds vs.
vocalizations.

Notwithstanding, auditory streams directed dorsally from
primary auditory cortices have often been associated with spatial-
related (“where is it”) processing (ibid). However, the present
data suggest that the posterior insulae and the more dorsally
located “non-auditory” regions (aIFS, MFG, IPS) in the left
hemisphere subserve functions relating specifically to sound
recognition. These more dorsal “non-auditory” cortical stages
showed sensitivity almost exclusively to high level perceptual
features of the animal sounds (e.g., Figure 3B), such as the degree
of perceived intention and/or perceived recognition. Activation
of these latter stages presumably had greater dependence on
factors such as personal experience and expertise, which was
consistent with earlier animal studies that fail to find neurons in
prefrontal regions that are sensitive to acoustic signal attributes
per se (Cohen et al., 2007). This basic finding of a three tiered
hierarchy for the processing of sounds (auditory core, posterior
insulae, dorsal left-lateralized cortical network) revealed the
bilateral posterior insulae as intermediate processing stages
subserving categorization and recognition of real-world natural
sounds at an acoustic-semantic level. Consequently, the results of
the present study may reflect central processing mechanisms that
were critical to the evolution and neurodevelopment of acoustic
communication systems in the brain, as addressed below in the
context of proposed functional roles of the posterior insulae and
aSTG regions.

Functional Roles of the Posterior Insulae
Our earlier studies of hearing perception revealed the left and
right posterior insulae as regions preferential for processing non-
conspecific animal action sounds relative to other categories
of sound-producing events, including human, mechanical
and environmental sounds (Engel et al., 2009; Lewis et al.,
2011). However, the functional role(s) of the posterior insulae
in humans remained elusive. In the macaque monkey, the
retroinsular (Ri) area shares at least some topological overlap
with the posterior insulae of humans (Hackett et al., 2007)
and thus may share some homologous functions. Area Ri has
direct neuronal connections with auditory cortices as well as
with second somatosensory cortex (S2) and several parietal

Frontiers in Neuroscience | www.frontiersin.org 12 January 2017 | Volume 10 | Article 579

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Webster et al. Animal Action Sounds vs. Vocalizations

areas (ibid). Moreover, preliminary electrophysiological data
indicate that area Ri in the macaque has strong auditory and
somatosensory responses, and robust superadditive multisensory
(audio-tactile) interactions (O’Connell et al., 2004). Sound
stimuli used in the present study revealed animal action
sounds as having greater power in the lower frequency ranges
(Supplemental Figure S1A), possibly reflective of the temporal
dynamics or cadences of locomotion sounds. This finding
may prove to relate to greater temporal modulation rates
of action sounds more generally (Schönwiesner and Zatorre,
2009; Herdener et al., 2013), and thus is a promising topic
for further study using sound stimuli that have acoustically
well-controlled higher order signal attributes. Animal action
sounds also had higher entropy measures than vocalizations,
reflective of action sounds being significantly less “acoustically
organized” on average. Together, the above neuroanatomical
considerations and perceptual features suggest a possible role
for the human posterior insulae in representing action sounds
in relation to audio-tactile and audio-motor associations, or
perhaps more generally in abstracting representations in the
neural code of the temporal dynamics of observable real-world
action events.

At lower threshold settings, the animal action sounds
additionally evoked preferential activation involving left
lateralized frontal, parietal, and pSTS regions (Figures 2A, 3B),
which appeared to entail some of the classical dorsal (“where
is it”) pathways (refer to Introduction). However, this more
dorsally-directed system was unlikely to be recruited for
purposes of sound localization relative to one’s own motor
spatial coordinates per se (e.g., to engage or avoid the sound-
sources), since binaural spatial cues were removed and there
was no overt spatial processing task. Nor was this dorsal
system recruited for any overt linguistic-related processing (e.g.,
segmenting amplitude envelopes of human communication
sounds) as observed in some studies of spoken language (Burton
et al., 2000; LoCasto et al., 2004), since only non-verbal, non-
conspecific animal sounds were used. Rather, this left-lateralized
fronto-parietal plus pSTS system was more reminiscent of
the location and functions ascribed to classically defined left
lateralized mirror neuron systems (MNS) revealed during
overt action observation (Rizzolatti and Arbib, 1998; Rizzolatti
and Craighero, 2004; Molenberghs et al., 2012). MNS-like
network activation in hearing perception studies in humans
are thought to reflect processing that provides a probabilistic
match between heard action sounds and the listener’s own
repertoire of sound producing actions (e.g., walking, chewing
food), thereby providing a sense of meaning or intention
behind the action (Buccino et al., 2001; Bidet-Caulet et al.,
2005; Calvo-Merino et al., 2005; Gazzola et al., 2006; Lahav
et al., 2007; Mutschler et al., 2007; Galati et al., 2008; Engel
et al., 2009; Lewis et al., 2011). Ostensibly, recordings from
frontal and parietal cortex neurons of the macaque monkey
has revealed responsiveness when the animal either performs
a goal-directed, sound-producing action or while hearing,
without viewing, the same motor act (Kohler et al., 2002; Keysers
et al., 2003). Thus, the primate brain appears to map complex
acoustic signals and attributes of action sounds to motor- and

sensory-motor-related associations as a general strategy that may
subserve categorization and aspects of recognition of natural
sounds.

Importantly, in the present study the non-conspecific animal
action sounds, relative to vocalizations, led to relatively more
robust activation of the bilateral insulae than to the left-
lateralized MNS-like system. In contrast, we reported the
opposite pattern when processing human action sounds relative
to animal action sounds in our earlier studies of action sounds
(Engel et al., 2009; Lewis et al., 2011). Thus, the posterior insulae
in humans may represent stages prior to MNS-like systems
for processing acoustic and perceptual attributes statistically
characteristic of heard action events. While the animal action
sounds were generally characterized by significantly lower
harmonic content, lower spectral structure variation, and
less acoustic signal organization (i.e., greater signal entropy)
relative to vocalizations (Supplemental Figure S3B), they did
show greater average spectral power in the 10–50 Hz range
(see Supplemental Figure S1A), which is a range known to
be important for conveying amplitude envelope information,
such as for speech processing (Rosen, 1992). The amplitude
envelope cadences representative of locomotion sounds (e.g.,
a horse trotting) presumably contain both low and high-order
quantifiable signal attributes, such as specific envelope ranges
and combinations of temporal modulation rates, that could
be driving bottom-up information processing to and including
pathways involving the left and right posterior insulae. This
processing may in turn lead to network comparisons of acoustic
temporal dynamics with the listener’s own repertoire of sound-
producing motoric representations in motor- and visuomotor-
related networks (including left-lateralized aIFS, MFG, and IPS
regions). Processing in these regions with the task of action event
categorization and recognition may subsequently match, or fail
to adequately match, the listeners’ repertoire of sensorimotor
sound producing actions to facilitate or mediate the perception
of intention, and/or a sense of recognition, behind the action
sound. The animal action sounds of the present study were
clearly perceived as non-human, as opposed to human or self-
like, and thus would arguably be less readily emulated or
mimicked through motor imagery-related mechanisms. Thus,
animal action sounds lead to relatively less robust recruitment
of MNS-like systems for purposes of recognition, consistent
with our earlier studies contrasting human and animal action
sounds (Engel et al., 2009; Lewis et al., 2011). Moreover, the non-
auditory dorsal network for action sounds revealed activation
strength that was parametrically greater for animal actions that
were generally judged by participants as being more difficult to
recognize. This suggests that audio-motor association networks
may have been activated to a relatively greater extent by the
sounds that were harder to recognize before finally settling
on a “best solution” match (Hopfield and Tank, 1985) that
effectively deemed the sound as being produced by a living
agent, but was not the action of a self-like (i.e., conspecific)
sound-source.

Given the current interest and contentions in debates
regarding MNS systems in the context of gestural origins
behind the evolution of spoken language systems (Gallese and
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Goldman, 1998; Corballis, 1999; Arbib, 2005; Cerri et al.,
2015), further study of the functional roles of the posterior
insulae would be merited to address predictions made by
anthropological theories. In particular, one theory hypothesizes
that symbolic representations in the brain for specific natural
categories, including “vocalizations” and “incidental sounds
of locomotion” (in addition to “tool-use sounds”), reflect
some of the earliest sound-producing categories of events that
would need to have been effectively communicated orally by
hominins (Hewes, 1992; Larsson, 2014, 2015). Findings of
the present study, suggestive of distinct cortical processing
pathways for representing action sounds as a distinct acoustic-
semantic category of natural event types, may thus reflect
a fundamental cortical organizational principle for mapping
complex spectro-temporal attributes of natural sounds to
perceptual representations, and ultimately supporting elements
of acoustic communication symbolism and iconicity (Lotze
et al., 2000; Monaghan et al., 2012; Perniss and Vigliocco, 2014;
Lockwood and Dingemanse, 2015). Vocalizations, as another
distinct acoustic-semantic category, have perhaps more obvious
relationships between symbolism and oral communication, as
addressed next.

Functional Roles of the aSTG
Animal vocalizations are arguably produced to convey
intentional communication of some sort (e.g., distress, territorial
warning, mating calls), which derive from motivational states
thought to be similar across many species (Hauser, 2000; Bass
et al., 2008; Lingle et al., 2012). The animal vocalizations in
the present study had on average a significantly greater degree
of perceived negative emotional valence in comparison to the
relatively neutral valence of the animal action sounds (Table 1).
The aSTG regions further showed parametric sensitivity to
SSV measures, perceived intention and perceived recognition
(Figure 3A, table), and also to the perceived emotional valence
ratings (data not shown) which showed a correlation with
SSV measures (Supplemental Figure S3A). Thus, the aSTG
activation appeared to reflect both intermediate and higher
stage processing of vocalizations with a functional role in
representing acoustic signals containing prosodic information.
Consistent with this interpretation, earlier studies have similarly
reported differential activation to vocalizations conveying
emotional content along the aSTG brain regions (Zatorre and
Penhune, 2001; Kotz et al., 2003; Friederici and Alter, 2004;
Ethofer et al., 2006; Schirmer and Kotz, 2006; Grossmann et al.,
2010). Additional other brain regions commonly reported to be
sensitive to emotional or prosodic cues in sound include the left
anterior insula, for linking action representations to emotions
(Carr et al., 2003; Wicker et al., 2003; Craig, 2009), and the left
and right amygdala (Fecteau et al., 2007; Belin et al., 2008). Both
of these latter regions were also preferentially activated by the
vocalizations at lower threshold settings in the present study
(data not shown). Therefore, the aSTG, together with a network
of other brain regions, may have been extracting acoustic
signal attributes that conveyed emotion and thus perhaps other
forms of representation of intention behind the sound-sources.
Thus, in addition to the roles that the bilateral mSTG/aSTG

have in spoken language processing (Binder et al., 2000), the
present results speak to a more fundamental role in processing
acoustic information that conveys information regarding the
sound-source’s intentions or emotional state, which is another
rudimentary aspect of auditory communication thought to be
critical to the evolution of proto-networks for spoken language
systems in hominins (Falk, 2004).

CONCLUSIONS

In sum, the present study provides novel evidence of gross-
level divergent, intermediate stage regions of auditory cortex
for processing action sounds vs. vocalizations as distinct
acoustic and acoustic-semantic categories of natural sounds.
These pathways were consistent with neurocognitive models
of embodied semantic knowledge representations and with
a global theoretical framework for how ethologically valid
categories of sounds may become processed as meaningful
events by the brain. They were also consistent with established
dual-stream (dorsal-ventral) models for auditory perception
(Rauschecker and Scott, 2015); however, the “dorsal” pathways,
notably including the posterior insulae of the present study,
were not recruited for purposes of sound localization nor
segmentation of spoken communication (language) sounds,
but rather appeared to be recruited more for purposes of
comparing the dynamics of spectro-temporal sound patterns
to motor-related representations of actions, which may have
served to help categorize and provide a sense of meaning
(recognition or intentional understanding) behind the animal
action sounds (Gazzola et al., 2006; Lahav et al., 2007; Pazzaglia
et al., 2008). Further exploring auditory processing stages
and neuronal mechanisms for representing natural sounds,
including the roles of the posterior insulae relative to audio-
motor association systems, will likely provide a promising
approach for advancing anthropological models of language
evolution. Moreover, such exploration is also likely to advance
our understanding of the neurodevelopmental mechanisms
underlying auditory communication, and thus impact models
of acoustic signal processing in children with spoken language
disorders.
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Supplemental Figure S1 | Animal action sound (yellow) and vocalization

(red) acoustic features and emotional valence ratings. (A) Chart illustrating

differences in the average power spectra of the two categories of sound (from

Table 1). (B) Chart illustrating the scale rating responses (n = 15) for the

perceived emotional valence for each category of sound (red curve = 29

vocalizations; yellow curve = 23 animal action sounds). Button press ratings

included very negative (−2), negative (−1), neutral (0), positive (+1), and very

positive (+2). (C) Modulation power spectra for the retained 23 animal action

sounds relative to 23 (of the 29) animal vocalizations. Note that the vocalizations

qualitatively reveal relatively greater power at high spectral modulation rates. Refer

to text for other details.

Supplemental Figure S2 | Results from a control condition scan wherein

an individual performed the main auditory paradigm, using either their

(A) right hand or (B) left hand for button press responses. Green cortical regions

depict activation to both vocalization/index-finger and action sound/middle-finger

response trial conditions relative to silence/no-response conditions

(p(uncorr)<0.000001). Each trial response condition (for vocalizations and action

sounds) resulted in primary motor cortex activation (green with outlines) only in the

hemisphere opposite the hand used (axial slice at z = +62). Histograms show the

degree of activation for the left and right hemisphere ROIs for both tasks.

Supplemental Figure S3 | Correlations between acoustic attributes and

perceptual features. (A) Chart showing the correlation between emotional

ratings of animal action sounds (yellow squares) and animal vocalization sounds

(red diamonds) relative to spectral structure variation measures. (B) Chart showing

the correlation between one’s sense of perceiving the intention of the action sound

or vocalization relative to the measure of entropy in the sound stimuli. Refer to

Methods for further details.

Supplemental Figure S4 | Photos depicting non-human animals producing

either action sounds (yellow outlines) or vocalizations (red). Colored brain

regions (yellow and red) depict functionally distinct regions (using fMRI) that are

preferential for processing the corresponding acoustic-semantic category of

sound, colored respectively. Orange brain region depicts the functionally defined

location of primary auditory cortex. These findings extend concepts from the

ventral (“what is it”) processing pathways for sound recognition, and support a

general theoretical framework for how the mammalian brain may be organized to

represent natural sounds as meaningful events to the listener.

REFERENCES

Alain, C. (2007). Breaking the wave: effects of attention and learning on concurrent

sound perception. Hear. Res. 229, 225–236. doi: 10.1016/j.heares.2007.

01.011

Alluri, V., Toiviainen, P., Lund, T. E., Wallentin, M., Vuust, P., Nandi, A. K.,

et al. (2013). From Vivaldi to Beatles and back: predicting lateralized brain

responses to music. Neuroimage 83, 627–636. doi: 10.1016/j.neuroimage.2013.

06.064

Altmann, C. F., Doehrmann, O., and Kaiser, J. (2007). Selectivity for animal

vocalizations in the human auditory cortex. Cereb. Cortex 17, 2601–2608.

doi: 10.1093/cercor/bhl167

Andics, A., Gácsi, M., Faragó, T., Kis, A., and Miklósi, A. (2014). Voice-sensitive

regions in the dog and human brain are revealed by comparative fMRI. Curr.

Biol. 24, 574–578. doi: 10.1016/j.cub.2014.01.058

Arbib, M. A. (2001). Co-evolution of human consciousness and language. Ann. N.

Y. Acad. Sci. 929, 195–220. doi: 10.1111/j.1749-6632.2001.tb05717.x

Arbib, M. A. (2005). From monkey-like action recognition to human language:

an evolutionary framework for neurolinguistics. Behav. Brain Sci. 28, 105–124;

discussion 125–167. doi: 10.1017/s0140525x05000038

Arbib, M. A. (2010). Mirror system activity for action and language is embedded

in the integration of dorsal and ventral pathways. Brain Lang. 112, 12–24.

doi: 10.1016/j.bandl.2009.10.001

Arnott, S. R., Cant, J. S., Dutton, G. N., and Goodale, M. A. (2008). Crinkling

and crumpling: an auditory fMRI study of material properties. Neuroimage 43,

368–378. doi: 10.1016/j.neuroimage.2008.07.033

Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol. 59, 617–645.

doi: 10.1146/annurev.psych.59.103006.093639

Barsalou, L. W., Kyle Simmons, W., Barbey, A. K., and Wilson, C. D. (2003).

Grounding conceptual knowledge in modality-specific systems. Trends Cogn.

Sci. 7, 84–91. doi: 10.1016/S1364-6613(02)00029-3

Bass, A. H., Gilland, E. H., and Baker, R. (2008). Evolutionary origins for

social vocalization in a vertebrate hindbrain-spinal compartment. Science 321,

417–421. doi: 10.1126/science.1157632

Beer, A. L., Plank, T., Meyer, G., and Greenlee, M. W. (2013). Combined diffusion-

weighted and functional magnetic resonance imaging reveals a temporal-

occipital network involved in auditory-visual object processing. Front. Integr.

Neurosci. 7:5. doi: 10.3389/fnint.2013.00005

Beisteiner, R., Windischberger, C., Lanzenberger, R., Edward, V., Cunnington,

R., Erdler, M., et al. (2001). Finger somatotopy in human motor cortex.

Neuroimage 13(6 Pt 1), 1016–1026. doi: 10.1006/nimg.2000.0737

Belin, P., Fecteau, S., Charest, I., Nicastro, N., Hauser, M. D., and Armony, J. L.

(2008). Human cerebral response to animal affective vocalizations. Proc. Biol.

Sci. 275, 473–481. doi: 10.1098/rspb.2007.1460

Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., and Pike, B. (2000). Voice-selective

areas in human auditory cortex. Nature 403, 309–312. doi: 10.1038/35002078

Bendor, D., and Wang, X. (2008). Neural response properties of primary, rostral,

and rostrotemporal core fields in the auditory cortex of marmoset monkeys. J.

Neurophysiol. 100, 888–906. doi: 10.1152/jn.00884.2007

Bidet-Caulet, A., Voisin, J., Bertrand, O., and Fonlupt, P. (2005). Listening to a

walking human activates the temporal biological motion area. Neuroimage 28,

132–139. doi: 10.1016/j.neuroimage.2005.06.018

Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009).

Where is the semantic system? A critical review and meta-analysis

of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796.

doi: 10.1093/cercor/bhp055

Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A.,

Kaufman, J. N., et al. (2000). Human temporal lobe activation by speech and

nonspeech sounds. Cereb. Cortex 10, 512–528. doi: 10.1093/cercor/10.5.512

Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S. L., and Rauschecker,

J. P. (2015). Neurobiological roots of language in primate audition:

common computational properties. Trends Cogn. Sci. 19, 142–150.

doi: 10.1016/j.tics.2014.12.008

Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V.,

et al. (2001). Action observation activates premotor and parietal areas in

a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404.

doi: 10.1046/j.1460-9568.2001.01385.x

Burton,M.W., Small, S. L., and Blumstein, S. E. (2000). The role of segmentation in

phonological processing: an fMRI investigation. J. Cogn. Neurosci. 12, 679–690.

doi: 10.1162/089892900562309

Cai, Q., Van der Haegen, L., and Brysbaert, M. (2013). Complementary

hemispheric specialization for language production and visuospatial attention.

Proc. Natl. Acad. Sci. U.S.A. 110, E322–E330. doi: 10.1073/pnas.1212956110

Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., and Haggard, P.

(2005). Action observation and acquired motor skills: an FMRI study with

expert dancers. Cereb. Cortex 15, 1243–1249. doi: 10.1093/cercor/bhi007

Frontiers in Neuroscience | www.frontiersin.org 15 January 2017 | Volume 10 | Article 579

http://journal.frontiersin.org/article/10.3389/fnins.2016.00579/full#supplementary-material
https://doi.org/10.1016/j.heares.2007.01.011
https://doi.org/10.1016/j.neuroimage.2013.06.064
https://doi.org/10.1093/cercor/bhl167
https://doi.org/10.1016/j.cub.2014.01.058
https://doi.org/10.1111/j.1749-6632.2001.tb05717.x
https://doi.org/10.1017/s0140525x05000038
https://doi.org/10.1016/j.bandl.2009.10.001
https://doi.org/10.1016/j.neuroimage.2008.07.033
https://doi.org/10.1146/annurev.psych.59.103006.093639
https://doi.org/10.1016/S1364-6613(02)00029-3
https://doi.org/10.1126/science.1157632
https://doi.org/10.3389/fnint.2013.00005
https://doi.org/10.1006/nimg.2000.0737
https://doi.org/10.1098/rspb.2007.1460
https://doi.org/10.1038/35002078
https://doi.org/10.1152/jn.00884.2007
https://doi.org/10.1016/j.neuroimage.2005.06.018
https://doi.org/10.1093/cercor/bhp055
https://doi.org/10.1093/cercor/10.5.512
https://doi.org/10.1016/j.tics.2014.12.008
https://doi.org/10.1046/j.1460-9568.2001.01385.x
https://doi.org/10.1162/089892900562309
https://doi.org/10.1073/pnas.1212956110
https://doi.org/10.1093/cercor/bhi007
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Webster et al. Animal Action Sounds vs. Vocalizations

Canessa, N., Borgo, F., Cappa, S. F., Perani, D., Falini, A., Buccino, G.,

et al. (2007). The Different neural correlates of action and functional

knowledge in semantic memory: an fMRI study. Cereb. Cortex 18, 740–751.

doi: 10.1093/cercor/bhm110

Capitani, E., Laiacona, M., Mahon, B., and Caramazza, A. (2003). What are the

facts of semantic category-specific deficits? A critical review of the clinical

evidence. Cogn. Neuropsychol. 20, 213–261. doi: 10.1080/02643290244000266

Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C., and Lenzi, G. L. (2003).

Neural mechanisms of empathy in humans: a relay from neural systems

for imitation to limbic areas. Proc. Natl. Acad. Sci. U.S.A. 100, 5497–5502.

doi: 10.1073/pnas.0935845100

Cerri, G., Cabinio, M., Blasi, V., Borroni, P., Iadanza, A., Fava, E., et al. (2015). The

mirror neuron system and the strange case of Broca’s area. Hum. Brain Mapp.

36, 1010–1027. doi: 10.1002/hbm.22682

Chouchourelou, A., Golden, A., and Shiffar, M. (2012). What Does “Biological

Motion” Really Mean? Differentiating Visual Percepts of Human, Animal and

Non-Biological Motion. Oxford: Oxford University Press.

Cohen, Y. E., Theunissen, F., Russ, B. E., and Gill, P. (2007). Acoustic features

of rhesus vocalizations and their representation in the ventrolateral prefrontal

cortex. J. Neurophysiol. 97, 1470–1484. doi: 10.1152/jn.00769.2006

Corballis, M. C. (1989). Laterality and human evolution. Psychol. Rev. 96, 492–505.

doi: 10.1037/0033-295X.96.3.492

Corballis, M. C. (1999). The gestural origins of language. Am. Sci. 87, 138–145.

doi: 10.1511/1999.2.138

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional

magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173.

doi: 10.1006/cbmr.1996.0014

Craig, A. D. (2009). How do you feel–now? The anterior insula and human

awareness. Nat. Rev. Neurosci. 10, 59–70. doi: 10.1038/nrn2555

Desai, R., Liebenthal, E., Possing, E. T., Waldron, E., and Binder, J. R. (2005).

Volumetric vs. surface-based alignment for localization of auditory cortex

activation. Neuroimage 26, 1019–1029. doi: 10.1016/j.neuroimage.2005.03.024

DeWitt, I., and Rauschecker, J. P. (2013). Wernicke’s area revisited:

parallel streams and word processing. Brain Lang. 127, 181–191.

doi: 10.1016/j.bandl.2013.09.014

Doehrmann, O., Naumer, M. J., Volz, S., Kaiser, J., and Altmann, C.

F. (2008). Probing category selectivity for environmental sounds

in the human auditory brain. Neuropsychologia 46, 2776–2786.

doi: 10.1016/j.neuropsychologia.2008.05.011

Eklund, A., Nichols, T. E., and Knutsson, H. (2016). Cluster failure: why fMRI

inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad.

Sci. U.S.A. 113, 7900–7905. doi: 10.1073/pnas.1602413113

Elliott, T. M., and Theunissen, F. E. (2009). The modulation transfer

function for speech intelligibility. PLoS Comput. Biol. 5:e1000302.

doi: 10.1371/journal.pcbi.1000302

Engel, L. R., Frum, C., Puce, A., Walker, N. A., and Lewis, J. W. (2009).

Different categories of living and non-living sound-sources activate distinct

cortical networks. Neuroimage 47, 1778–1791. doi: 10.1016/j.neuroimage.2009.

05.041

Engelien, A., Tüscher, O., Hermans, W., Isenberg, N., Eidelberg, D., Frith, C., et al.

(2006). Functional neuroanatomy of non-verbal semantic sound processing

in humans. J. Neural Transm. 113, 599–608. doi: 10.1007/s00702-005-

0342-0

Ethofer, T., Pourtois, G., and Wildgruber, D. (2006). Investigating audiovisual

integration of emotional signals in the human brain. Prog. Brain Res. 156,

345–361. doi: 10.1016/S0079-6123(06)56019-4

Falk, D. (2004). Prelinguistic evolution in early hominins: whence motherese?

Behav. Brain Sci. 27, 491–503. doi: 10.1017/S0140525X04000111

Fecteau, S., Armony, J. L., Joanette, Y., and Belin, P. (2004). Is voice processing

species-specific in human auditory cortex? An fMRI study. Neuroimage 23,

840–848. doi: 10.1016/j.neuroimage.2004.09.019

Fecteau, S., Belin, P., Joanette, Y., and Armony, J. L. (2007). Amygdala

responses to nonlinguistic emotional vocalizations. Neuroimage 36, 480–487.

doi: 10.1016/j.neuroimage.2007.02.043

Fiebach, C. J., Friederici, A. D., Müller, K., von Cramon, D. Y., and Hernandez,

A. E. (2003). Distinct brain representations for early and late learned words.

Neuroimage 19, 1627–1637. doi: 10.1016/S1053-8119(03)00227-1

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., and

Noll, D. C. (1995). Improved assessment of significant activation in functional

magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn.

Reson. Med. 33, 636–647. doi: 10.1002/mrm.1910330508

Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K.,

and Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary

auditory cortex. Neuron 40, 859–869. doi: 10.1016/S0896-6273(03)00669-X

Friederici, A. D., and Alter, K. (2004). Lateralization of auditory language

functions: a dynamic dual pathway model. Brain Lang. 89, 267–276.

doi: 10.1016/S0093-934X(03)00351-1

Friederici, A. D., Kotz, S. A., Scott, S. K., and Obleser, J. (2010). Disentangling

syntax and intelligibility in auditory language comprehension. Hum. Brain

Mapp. 31, 448–457. doi: 10.1002/hbm.20878

Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis,

S., et al. (2008). A selective representation of the meaning of actions

in the auditory mirror system. Neuroimage 40, 1274–1286. doi: 10.1016/

j.neuroimage.2007.12.044

Gallese, V., and Goldman, A. (1998). Mirror neurons and the simulation

theory of mind-reading. Trends Cogn. Sci. 2, 493–501. doi: 10.1016/

S1364-6613(98)01262-5

Gandour, J., Tong, Y., Wong, D., Talavage, T., Dzemidzic, M., Xu, Y., et al.

(2004). Hemispheric roles in the perception of speech prosody. Neuroimage 23,

344–357. doi: 10.1016/j.neuroimage.2004.06.004

Gazzola, V., Aziz-Zadeh, L., and Keysers, C. (2006). Empathy and the

somatotopic auditory mirror system in humans. Curr. Biol. 16, 1824–1829.

doi: 10.1016/j.cub.2006.07.072

Giordano, B. L., McAdams, S., Zatorre, R. J., Kriegeskorte, N., and Belin, P. (2013).

Abstract encoding of auditory objects in cortical activity patterns. Cereb. Cortex

23, 2025–2037. doi: 10.1093/cercor/bhs162

Giordano, B. L., McDonnell, J., and McAdams, S. (2010). Hearing living symbols

and nonliving icons: category specificities in the cognitive processing of

environmental sounds. Brain Cogn. 73, 7–19. doi: 10.1016/j.bandc.2010.01.005

Grafton, S. T., Fadiga, L., Arbib, M. A., and Rizzolatti, G. (1997). Premotor cortex

activation during observation and naming of familiar tools. Neuroimage 6,

231–236. doi: 10.1006/nimg.1997.0293

Grossmann, T., Oberecker, R., Koch, S. P., and Friederici, A. D. (2010). The

developmental origins of voice processing in the human brain. Neuron 65,

852–858. doi: 10.1016/j.neuron.2010.03.001

Hackett, T. A., De LaMothe, L. A., Ulbert, I., Karmos, G., Smiley, J., and Schroeder,

C. E. (2007). Multisensory convergence in auditory cortex, II. Thalamocortical

connections of the caudal superior temporal plane. J. Comp. Neurol. 502,

924–952. doi: 10.1002/cne.21326

Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V., Weiller, C., and

Büchel, C. (2003). The human action recognition system and its

relationship to Broca’s area: an fMRI study. Neuroimage 19, 637–644.

doi: 10.1016/S1053-8119(03)00087-9

Hamzei, F., Vry, M.-S., Saur, D., Glauche, V., Hoeren, M., Mader, I., et al. (2016).

The dual-loop model and the human mirror neuron system: an exploratory

Combined fMRI and DTI study of the inferior frontal gyrus. Cereb Cortex 26,

2215–2224. doi: 10.1093/cercor/bhv066

Han, Z., Bi, Y., Chen, J., Chen, Q., He, Y., and Caramazza, A. (2013).

Distinct regions of right temporal cortex are associated with biological

and human-agent motion: functional magnetic resonance imaging

and neuropsychological evidence. J. Neurosci. 33, 15442–15453.

doi: 10.1523/JNEUROSCI.5868-12.2013

Hauser, M. (2000). A primate dictionary? Decoding the function and

meaning of another species’ vocalizations. Cogn. Sci. 24, 445–475.

doi: 10.1207/s15516709cog2403_5

Herdener, M., Esposito, F., Scheffler, K., Schneider, P., Logothetis, N.

K., Uludag, K., et al. (2013). Spatial representations of temporal and

spectral sound cues in human auditory cortex. Cortex 49, 2822–2833.

doi: 10.1016/j.cortex.2013.04.003

Hewes, G. W. (1992). Primate communication and the gestural origin of language.

Curr. Anthropol. 33, 65–84. doi: 10.1086/204019

Hickok, G., and Poeppel, D. (2004). Dorsal and ventral streams: a framework for

understanding aspects of the functional anatomy of language. Cognition 92,

67–99. doi: 10.1016/j.cognition.2003.10.011

Frontiers in Neuroscience | www.frontiersin.org 16 January 2017 | Volume 10 | Article 579

https://doi.org/10.1093/cercor/bhm110
https://doi.org/10.1080/02643290244000266
https://doi.org/10.1073/pnas.0935845100
https://doi.org/10.1002/hbm.22682
https://doi.org/10.1152/jn.00769.2006
https://doi.org/10.1037/0033-295X.96.3.492
https://doi.org/10.1511/1999.2.138
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1038/nrn2555
https://doi.org/10.1016/j.neuroimage.2005.03.024
https://doi.org/10.1016/j.bandl.2013.09.014
https://doi.org/10.1016/j.neuropsychologia.2008.05.011
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1371/journal.pcbi.1000302
https://doi.org/10.1016/j.neuroimage.2009.05.041
https://doi.org/10.1007/s00702-005-0342-0
https://doi.org/10.1016/S0079-6123(06)56019-4
https://doi.org/10.1017/S0140525X04000111
https://doi.org/10.1016/j.neuroimage.2004.09.019
https://doi.org/10.1016/j.neuroimage.2007.02.043
https://doi.org/10.1016/S1053-8119(03)00227-1
https://doi.org/10.1002/mrm.1910330508
https://doi.org/10.1016/S0896-6273(03)00669-X
https://doi.org/10.1016/S0093-934X(03)00351-1
https://doi.org/10.1002/hbm.20878
https://doi.org/10.1016/j.neuroimage.2007.12.044
https://doi.org/10.1016/S1364-6613(98)01262-5
https://doi.org/10.1016/j.neuroimage.2004.06.004
https://doi.org/10.1016/j.cub.2006.07.072
https://doi.org/10.1093/cercor/bhs162
https://doi.org/10.1016/j.bandc.2010.01.005
https://doi.org/10.1006/nimg.1997.0293
https://doi.org/10.1016/j.neuron.2010.03.001
https://doi.org/10.1002/cne.21326
https://doi.org/10.1016/S1053-8119(03)00087-9
https://doi.org/10.1093/cercor/bhv066
https://doi.org/10.1523/JNEUROSCI.5868-12.2013
https://doi.org/10.1207/s15516709cog2403_5
https://doi.org/10.1016/j.cortex.2013.04.003
https://doi.org/10.1086/204019
https://doi.org/10.1016/j.cognition.2003.10.011
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Webster et al. Animal Action Sounds vs. Vocalizations

Hillis, A. E., and Caramazza, A. (1991). Category-specific naming and

comprehension impairment: a double dissociation. Brain 114 (Pt 5),

2081–2094. doi: 10.1093/brain/114.5.2081

Hopfield, J. J., and Tank, D. W. (1985). “Neural” computation of decisions in

optimization problems. Biol. Cybern. 52, 141–152.

Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C.,

and Rizzolatti, G. (2005). Grasping the intentions of others with one’s

own mirror neuron system. PLoS Biol. 3:e79. doi: 10.1371/journal.pbio.0

030079

Imai, M., Miyazaki, M., Yeung, H. H., Hidaka, S., Kantartzis, K., Okada, H., et al.

(2015). Sound symbolism facilitates word learning in 14-month-olds. PLoS

ONE 10:e0116494. doi: 10.1371/journal.pone.0116494

Indovina, I., and Sanes, J. N. (2001). Combined visual attention and finger

movement effects on human brain representations. Exp. Brain Res. 140,

265–279.

Kaas, J. H., and Hackett, T. A. (1998). Subdivisions of auditory cortex and levels

of processing in primates. Audiol. Neurootol. 3, 73–85. doi: 10.1159/0000

13783

Kaas, J. H., and Hackett, T. A. (2000). Subdivisions of auditory cortex and

processing streams in primates. Proc. Natl. Acad. Sci. U.S.A. 97, 11793–11799.

doi: 10.1073/pnas.97.22.11793

Keysers, C., Kohler, E., Umiltá, A., Nanetti, L., Fogassi, L., and Gallese, V. (2003).

Audiovisual mirror neurons and action recognition. Exp. Brain Res. 153,

628–636. doi: 10.1007/s00221-003-1603-5

Kohler, E., Keysers, C., Umiltá, A., Fogassi, L., Gallese, V., and Rizzolatti, G.

(2002). Hearing sounds, understanding actions: action representation inmirror

neurons. Science 297, 846–848. doi: 10.1126/science.1070311

Kotz, S. A., Meyer, M., Alter, K., Besson, M., von Cramon, D. Y., and

Friederici, A. D. (2003). On the lateralization of emotional prosody:

an event-related functional MR investigation. Brain Lang. 86, 366–376.

doi: 10.1016/S0093-934X(02)00532-1

Kumar, S., Stephan, K. E., Warren, J. D., Friston, K. J., and Griffiths, T. D. (2007).

Hierarchical processing of auditory objects in humans. PLoS Comput. Biol.

3:e100. doi: 10.1371/journal.pcbi.0030100
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