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Abstract Decision-making is often interpreted in terms of normative computations that

maximize a particular reward function for stable, average behaviors. Aberrations from the reward-

maximizing solutions, either across subjects or across different sessions for the same subject, are

often interpreted as reflecting poor learning or physical limitations. Here we show that such

aberrations may instead reflect the involvement of additional satisficing and heuristic principles. For

an asymmetric-reward perceptual decision-making task, three monkeys produced adaptive biases

in response to changes in reward asymmetries and perceptual sensitivity. Their choices and

response times were consistent with a normative accumulate-to-bound process. However, their

context-dependent adjustments to this process deviated slightly but systematically from the

reward-maximizing solutions. These adjustments were instead consistent with a rational process to

find satisficing solutions based on the gradient of each monkey’s reward-rate function. These

results suggest new dimensions for assessing the rational and idiosyncratic aspects of flexible

decision-making.

DOI: https://doi.org/10.7554/eLife.36018.001

Introduction
Normative theory has played an important role in our understanding of how the brain forms deci-

sions. For example, many perceptual, memory, and reward-based decisions show inherent trade-offs

between speed and accuracy. These trade-offs are parsimoniously captured by a class of sequential-

sampling models, such as the drift-diffusion model (DDM), that are based on the accumulation of

noisy evidence over time to a pre-defined threshold value, or bound (Ratcliff, 1978; Gold and Shad-

len, 2002; Bogacz et al., 2006; Krajbich et al., 2010). These models have close ties to statistical

decision theory, particularly the sequential probability ratio test that can, under certain assumptions,

maximize expected accuracy for a given number of samples or minimize the number of samples

needed for a given level of accuracy (Barnard, 1946; Wald, 1947; Wald and Wolfowitz, 1948).

However, even when these models provide good descriptions of the average behavior of groups of

subjects, they may not capture the substantial variability under different conditions and/or across

individual subjects. The goal of this study was to better understand the principles that govern this

variability and how these principles relate to normative theory.

We focused on a perceptual decision-making task with asymmetric rewards. For this task, both

human and animal subjects tend to make decisions that are biased towards the percept associated

with the larger payoff (e.g., Maddox and Bohil, 1998; Voss et al., 2004; Diederich and Busemeyer,

2006; Liston and Stone, 2008; Serences, 2008; Feng et al., 2009; Simen et al., 2009;

Nomoto et al., 2010; Summerfield and Koechlin, 2010; Teichert and Ferrera, 2010; Gao et al.,

2011; Leite and Ratcliff, 2011; Mulder et al., 2012; Wang et al., 2013; White and Poldrack,

2014). These biases are roughly consistent with a rational strategy to maximize a particular reward

function that depends on both the speed and accuracy of the decision process, such as the reward

rate per trial or per unit time (Gold and Shadlen, 2002; Bogacz et al., 2006). This strategy can be
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accomplished via context-dependent adjustments in a DDM-like decision process along two primary

dimensions (Figure 1A): (1) the momentary sensory evidence, via the drift rate; and (2) the decision

rule, via the relative bound heights that govern how much evidence is needed for each alternative

(Ratcliff, 1985). Subjects tend to make adjustments along one or both of these dimensions to pro-

duce overall biases that are consistent with normative theory, but with substantial individual variabil-

ity (Voss et al., 2004; Cicmil et al., 2015; Bogacz et al., 2006; Simen et al., 2009;

Summerfield and Koechlin, 2010; Leite and Ratcliff, 2011; Mulder et al., 2012; Goldfarb et al.,

2014).

To better understand the principles that govern these kinds of idiosyncratic behavioral patterns,

we trained three monkeys to perform a response-time (RT), asymmetric-reward decision task with

mixed perceptual uncertainty (Figure 1B). Like human subjects, the monkeys showed robust decision

biases toward the large-reward option. These biases were sensitive not just to the reward asymme-

try, as has been shown previously, but also to experience-dependent changes in perceptual sensitiv-

ity. These biases were consistent with adjustments to both the momentary evidence and decision

rule in the DDM. However, these two adjustments favored the large- and small-reward choice,

respectively, leading to nearly, but not exactly, maximal reward rates. We accounted for these

adjustments in terms of a satisficing, gradient-based learning model that calibrated biases to bal-

ance the relative influence of perceptual and reward-based information on the decision process.

Together, the results imply complementary roles of normative and heuristic principles to understand
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Figure 1. Theoretical framework and task design. (A) Schematics of the drift-diffusion model (DDM). Motion evidence is modeled as samples from a

unit-variance Gaussian distribution (mean: signed coherence, Coh). Effective evidence is modeled as the sum of motion evidence and an internal

momentary-evidence bias (me). The decision variable starts at value a � z, where z governs decision-rule bias and accumulates effective evidence over

time with a proportional scaling factor (k). A decision is made when the decision variable reaches either bound. Response time (RT) is assumed to be

the sum of the decision time and a saccade-specific non-decision time. (B) Response-time (RT) random-dot visual motion direction discrimination task

with asymmetric rewards. A monkey makes a saccade decision based on the perceived global motion of a random-dot kinematogram. Reward is

delivered on correct trials and with a magnitude that depends on reward context. Two reward contexts (LR-Left and LR-Right) were alternated in blocks

of trials with signaled block changes. Motion directions and strengths were randomly interleaved within blocks.

DOI: https://doi.org/10.7554/eLife.36018.002
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how the brain combines uncertain sensory input and internal preferences to form decisions that can

vary considerably across individuals and task conditions.

Results
We trained three monkeys to perform the asymmetric-reward random-dot motion discrimination

(‘dots’) task (Figure 2A). All three monkeys were initially trained on a symmetric-reward version of

the task for which they were required to make fast eye movements (saccades) in the direction con-

gruent with the global motion of a random-dot kinematogram to receive juice reward. They then

performed the asymmetric-reward versions that were the focus of this study. Specifically, in blocks of

30 – 50 trials, we alternated direction-reward associations between a ‘LR-Right’ reward context (the

large reward was paired with a correct rightward saccade and the small reward was paired with a

correct leftward saccade) and the opposite ‘LR-Left’ reward context. We also varied the ratio of

large versus small reward magnitudes (‘reward ratio’) across sessions for each monkey. Within a

block, we randomly interleaved motion stimuli with different directions and motion strengths

(expressed as coherence, the fraction of dots moving in the same direction). We monitored the mon-

key’s choice (which saccade to make) and RT (when to make the saccade) on each trial.

The monkeys’ biases reflected changes in reward context and
perceptual sensitivity
For the asymmetric-reward task, all three monkeys tended to make more choices towards the large-

reward option, particularly when the sensory evidence was weak. These choice biases corresponded

to horizontal shifts in the psychometric function describing the probability of making a rightward

choice as a function of signed motion coherence (negative for leftward motion, positive for right-

ward motion; Figure 2A). These functions showed somewhat similar patterns of behavior but some

differences in detail for the three monkeys. For example, each monkey showed steady increases in

perceptual sensitivity (steepness of the psychometric function), which initially dropped relative to val-

ues from the symmetric-reward task then tended to increase with more experience with asymmetric

rewards (Figure 2B, top; H0: partial Spearman’s � of sensitivity versus session index after accounting

for session-specific reward ratios = 0, p<0.01 in all cases, except LR-Left for monkey C, for which

p = 0.56). Moreover, lapse rates were near zero across sessions (Figure 2B, bottom), implying that

the monkeys knew how to perform the task. The monkeys differed in terms of overall bias, which

was the smallest in monkey F. Nevertheless, for all three monkeys bias magnitude tended to

decrease over sessions, although this tendency was statistically significant only for monkey C after

accounting for co-variations with reward rate (Figure 2B, middle). There was often a negative corre-

lation between choice bias and sensitivity, consistent with a general strategy of adjusting bias to

obtain more reward (Figure 2C; Figure 2—figure supplement 1C). Monkeys F and C used subopti-

mal biases that were larger than the optimal values, whereas monkey A showed greater variations

(Figure 2D). The monkeys showed only negligible or inconsistent sequential choice biases (Fig-

ure 2—figure supplement 2), and adding sequential terms did not substantially affect the best-fit-

ting values of the non-sequential terms in the logistic regression (spearman’s � >0.8 comparing

session-by-session best-fitting values of the terms in Equation 1 with and without additional sequen-

tial terms from Equation 2). Therefore, all subsequent analyses did not include sequential choice

effects.

To better understand the computational principles that governed these idiosyncratic biases, while

also taking into account systematic relationships between the choice and RT data, we fit single-trial

RT data (i.e., we modeled full RT distributions, not just mean RTs) from individual sessions to a

DDM. We used a hierarchical-DDM (HDDM) method that assumes that parameters from individual

sessions of the same monkey are samples from a group distribution (Wiecki et al., 2013). The

HDDM was fit to data from each monkey separately. The HDDM had six parameters for each reward

context. Four were from a basic DDM (Figure 1A): a, the total bound height, representing the dis-

tance between the two choice bounds; k, a scaling factor that converts sensory evidence (motion

strength and direction) to the drift rate; and t0 and t1, non-decision times for leftward and rightward

choices, respectively. The additional two parameters provided biases that differed in terms of their

effects on the full RT distributions (Figure 3—figure supplement 1): me, which is additional momen-

tary evidence that is added to the motion evidence at each accumulating step and has asymmetric
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Figure 2. Relationships between sensitivity and bias from logistic fits to choice data. (A) For each monkey, the

probability of making a rightward choice is plotted as a function of signed coherence (–/+indicate left/right

motion) from all sessions, separately for the two reward contexts, as indicated. Lines are logistic fits. (B) Top row:

Motion sensitivity (steepness of the logistic function) in each context as a function of session index (colors as in A).

Solid lines indicate significant positive partial Spearman correlation after accounting for changes in reward ratio

across sessions (p<0.05). Black dashed lines indicate each monkey’s motion sensitivity for the task with equal

rewards before training on this asymmetric reward task. Middle row: DBias (horizontal shift between the two

psychometric functions for the two reward contexts at chance level) as a function of session index. Solid line

indicates significant negative partial Spearman correlation after accounting for changes in reward ratio across

Figure 2 continued on next page
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effects on the two choices and on correct versus error trials (positive values favor the rightward

choice); and z, which determines the decision rules for the two choices and tends to have asymmetric

effects on the two choices but not on correct versus error trials (values > 0.5 favor the rightward

choice). The HDDM fitting results are shown in Figure 3, and summaries of best-fitting parameters

and goodness-of-fit metrics are provided in Table 1. A DDM variant with collapsing bounds pro-

vided qualitatively similar results as the HDDM (Figure 3—figure supplement 2). Thus, subsequent

analyses use the model with fixed bounds, unless otherwise noted.

The DDM fits provided a parsimonious account of both the choice and RT data. Consistent with

the results from the logistic analyses, the HDDM analyses showed that the monkeys made systematic

improvements in psychometric sensitivity (H0: partial Spearman’s � of sensitivity versus session index

after accounting for session-specific reward ratios = 0, p<0.01 in all cases except p=0.06 for LR-Left

for monkey A). Moreover, there was a negative correlation between psychometric sensitivity and

choice bias (H0: partial Spearman’s � of sensitivity versus total bias after accounting for session-spe-

cific reward ratios = 0, p<0.001 in all cases). These fits ascribed the choice biases to changes in both

the momentary evidence (me) and the decision rule (z) of the decision process, as opposed to either

parameter alone (Table 2). These fits also indicated context-dependent differences in non-decision

times, which were smaller for all large-reward choices for all three monkeys except in the LR-Right

context for monkeys C and A (t-test, p<0.05). However, the differences in non-decision times were

relatively small across reward contexts, suggesting that the observed reward biases were driven pri-

marily by effects on decision-related processes.

The monkeys’ bias adjustments were adaptive with respect to optimal
reward-rate functions
To try to identify common principles that governed these monkey- and context-dependent decision

biases, we analyzed behavior with respect to optimal benchmarks based on certain reward-rate func-

tions. We focused on reward per unit time (RR) and per trial (RTrial), which for this task are optimized

in a DDM framework by adjusting momentary-evidence (me) and decision-rule (z) biases, such that

both favor the large-reward choice. However, the magnitudes of these optimal adjustments depend

on other task parameters (a, k, t0, and t1, non-bias parameters from the DDM, plus the ratio of the

two reward sizes and inter-trial intervals) that can vary from session to session. Thus, to determine

the optimal adjustments, we performed DDM simulations with the fitted HDDM parameters from

each session, using different combinations of me and z values (Figure 4A). As reported previously

(Bogacz et al., 2006; Simen et al., 2009), when the large reward was paired with the leftward

choice, the optimal strategy used z < 0.5 and me < 0 (Figure 4B, top panels, purple and orange

Figure 2 continued

sessions (p<0.05). Bottom row: Lapse rate as a function of session index (median = 0 for all three monkeys). (C)

DBias as a function of motion sensitivity for each reward context (colors as in A). Solid line indicates a significant

negative partial Spearman correlation after accounting for changes in reward ratio across sessions (p<0.05). (D)

Optimal versus fitted Dbias. Optimal Dbias was computed as the difference in the horizontal shift in the

psychometric functions in each reward context that would have resulted in the maximum reward per trial, given

each monkey’s fitted motion sensitivity and experienced values of reward ratio and coherences from each session

(see Figure 2—figure supplement 1). Solid lines indicate significant positive Spearman correlations (p<0.01).

Partial Spearman correlation after accounting for changes in reward ratio across sessions are also significant for

moneys F and C (p<0.05).

DOI: https://doi.org/10.7554/eLife.36018.003

The following source data and figure supplements are available for figure 2:

Source data 1. Task parameters and the monkeys’ performance for each trial and each session.

DOI: https://doi.org/10.7554/eLife.36018.006

Source data 2. Source data for Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.36018.007

Figure supplement 1. Relationship between bias and sensitivity.

DOI: https://doi.org/10.7554/eLife.36018.005

Figure supplement 2. Monkeys showed minimal sequential choice biases.

DOI: https://doi.org/10.7554/eLife.36018.004
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Figure 3. Comparison of choice and RT data to HDDM fits with both momentary-evidence (me) and decision-rule (z) biases. (A) Psychometric data

(points as in Figure 2A) shown with predictions based on HDDM fits to both choice and RT data. B, RT data (circles) and HDDM-predicted RT

distributions (lines). Both sets of RT data were plotted as the session-averaged values corresponding to the 20th, 40 th, 60th, and 80th percentiles of the

full distribution for the five most frequently used coherence levels (we only show data when > 40% of the total sessions contain >4 trials for that

combination of motion direction, coherence, and reward context). Top row: Trials in which monkey chose the left target. Bottom row: Trials in which

monkeys chose the right target. Columns correspond to each monkey (as in A), divided into choices in the large- (left column) or small- (right column)

reward direction (correct/error choices are as indicated in the left-most columns; note that no reward was given on error trials). The HDDM-predicted

RT distributions were generated with 50 runs of simulations, each run using the number of trials per condition (motion direction � coherence � reward

context � session) matched to experimental data and using the best-fitting HDDM parameters for that monkey.

DOI: https://doi.org/10.7554/eLife.36018.008

The following source data and figure supplements are available for figure 3:

Source data 1. Source data for Figure 3—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.36018.011

Figure supplement 1. Qualitative comparison between the monkeys’ RT distribution and DDM predictions.

DOI: https://doi.org/10.7554/eLife.36018.009

Figure 3 continued on next page
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circles for RR and RTrial, respectively). Conversely, when the larger reward was paired with the right-

ward choice, the optimal strategy used z > 0.5 and me > 0 (Figure 4B, bottom panels).

The monkeys’ adjustments of momentary-evidence (me) and decision-rule (z) biases showed both

differences and similarities with respect to these optimal predictions (Figure 4B, black circles; similar

results were obtained using fits from a model with collapsing bounds, Figure 4—figure supplement

1). In the next section, we consider the differences, in particular the apparent use of shifts in me in

the adaptive direction (i.e., favoring the large-reward choice) but of a magnitude that was larger

than predicted, along with shifts in z that tended to be in the non-adaptive direction (i.e., favoring

the small-reward choice). Here we focus on the similarities and show that the monkeys’ decision

biases were adaptive with respect to the reward-rate function in four ways (RTrial provided slightly

better predictions of the data and thus are presented in the main figures; results based on RR are

presented in the Supplementary Figures).

First, the best-fitting me and z values from each monkey corresponded to near-maximal reward

rates (Figure 5A). We compared the optimal values of reward per trial (RTrialmax) to the values pre-

dicted from the monkeys’ best-fitting me and z adjustments (RTrialpredict). Both RTrialpredict and

RTrialmax depended on the same non-bias parameters in the HDDM fits that were determined per

session (a, k, t0, and t1) and thus are directly comparable. Their ratios tended to be nearly, but

slightly less than, one (mean ratio: 0.977, 0.984, and 0.983 for monkeys F, C, and A, respectively)

and remained relatively constant across sessions (H0: slopes of linear regressions of these ratios ver-

sus session number = 0, p>0.05 for all three monkeys). Similar results were also obtained using the

monkeys’ realized rewards, which closely matched RTrialpredict (mean ratio: 0.963, 0.980, and 0.974;

across-session Spearman’s � = 0.976, 0.995, and 0.961, for monkeys F, C, and A, respectively,

p<0.0001 in all three cases). These results reflected the shallow plateau in the RTrial function near its

peak (Figure 5B), such that the monkeys’ actual adjustments of me and z were within the contours

for 97% RTrialmax in most sessions (Figure 5C; see Figure 5—figure supplement 1 for results using

RR). Thus, the monkeys’ overall choice biases were consistent with strategies that lead to nearly opti-

mal reward outcomes.

Second, the across-session variability of each monkey’s decision biases was predicted by idiosyn-

cratic features of the reward functions. The reward functions were, on average, different for the two

reward contexts and each of the three monkeys (Figure 6A). These differences included the size of

Figure 3 continued

Figure supplement 2. Fits to a DDM with collapsing bounds.

DOI: https://doi.org/10.7554/eLife.36018.010

Table 1. Best-fitting parameters of HDDM.

Monkey F (26079 trials) Monkey C (37161 trials) Monkey A (21089 trials)

LR-Left LR-Right LR-Left LR-Right LR-Left LR-Right

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

a 1.67 0.16 1.43 0.12 1.77 0.09 1.53 0.13 1.33 0.13 1.36 0.09

k 10.22 1.87 9.91 2.11 6.58 0.51 5.08 0.92 4.04 0.33 3.45 0.46

t1 0.31 0.03 0.29 0.03 0.35 0.04 0.33 0.05 0.29 0.04 0.27 0.04

t0 0.28 0.04 0.31 0.05 0.33 0.04 0.31 0.03 0.21 0.08 0.26 0.04

z 0.60 0.03 0.57 0.04 0.62 0.03 0.40 0.04 0.57 0.06 0.39 0.04

me �0.06 0.04 0.08 0.05 �0.14 0.04 0.21 0.06 �0.22 0.05 0.27 0.09

DOI: https://doi.org/10.7554/eLife.36018.012

The following source data is available for Table 1:

Source data 1. HDDM model fitting parameters for each session.

The same data are also used in Figures 3, 4, 5, Figure 5—figure supplement 1, Figure 6, Figure 6—figure supplements 1, 2, 3, Figure 8 and Fig-

ure 8—figure supplement 1)

DOI: https://doi.org/10.7554/eLife.36018.013
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Figure 4 continued on next page
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the near-maximal plateau (red patch), which determined the level of tolerance in RTrial for deviations

from optimal adjustments in me and z. This tolerance corresponded to the session-by-session vari-

ability in each monkey’s me and z adjustments (Figure 6B). In general, monkey F had the smallest

plateaus and tended to use the narrowest range of me and z adjustments across sessions. In con-

trast, monkey A had the largest plateaus and tended to use the widest range of me and z adjust-

ments (Pearson’s � between the size of the 97% RTrial contour, in pixels, and the sum of the across-

session variances in each monkeys’ me and z adjustments = 0.83, p=0.041). Analyses using the RR

function produced qualitatively similar results (Figure 6—figure supplement 1).

Third, the session-by-session adjustments in both me and z corresponded to particular features of

each monkey’s context-specific reward function. The shape of this function, including the orientation

of the plateau with respect to z and me, depended on the monkey’s perceptual sensitivity and the

reward ratio for the given session. The monkeys’ me and z adjustments varied systematically with

this orientation (Figure 6C and D for RTrial, Figure 6—figure supplement 1C and D for RR). This

result was not an artifact of the fitting procedure, which was able to recover appropriate, simulated

bias parameter values regardless of the values of non-bias parameters that determine the shape of

the reward function (Figure 6—figure supplement 2).

Fourth, the monkeys’ me and z adjustments were correlated with the values that would maximize

RTrial, given the value of the other parameter for the given session and reward context (Figure 6E

for RTrial, Figure 6—figure supplement 1E for RR). These correlations were substantially weakened

by shuffling the session-by-session reward functions (Figure 6—figure supplement 3). Together,

these results suggest that all three monkeys used biases that were adaptively calibrated with respect

to the reward information and perceptual sensitivity of each session.

The monkeys’ adaptive adjustments were consistent with a satisficing,
gradient-based learning process
Thus far, we showed that all three monkeys adjusted their decision strategies in a manner that

matched many features of the optimal predictions based on their idiosyncratic, context-specific

reward-rate functions. However, their biases did not match the optimal predictions exactly. Specifi-

cally, all three monkeys used shifts in me favoring the large-reward choice (adaptive direction) but of

a magnitude that was larger than predicted, along with shifts in z favoring the small-reward choice

(non-adaptive direction). We next show that these shifts can be explained by a model in which the

monkeys are initially over-biased, then adjust their model parameters to increase reward and stop

learning when the reward is high enough, but not at its maximum possible value.

The intuition for this gradient-based satisficing model is shown in Figure 7. The lines on the RTrial

heatmap represent the trajectories of a gradient-tracking procedure that adjusts me and z values to

increase RTrial until a termination point (for illustration, here we used 97% of the maximum possible

value). For example, consider adjusting me and z by following all of the magenta gradient lines until

their end-points. The lines are color-coded by me/z being adaptive vs. non-adaptive, regardless of

Figure 4 continued

function values. For each me and z combination, the predicted probability of left/right choice and RTs were used with the actual task information (inter-

trial interval, error timeout, and reward sizes) to calculate the expected reward rate (RR) and average reward per trial (RTrial). Optimal me/z adjustments

were then identified to maximize RR (purple) or RTrial (orange). (B) Scatterplots of the monkeys’ me/z adjustments (black), predicted optimal

adjustments for maximal RR (purple), and predicted optimal adjustments for maximal RTrial (orange), for the two reward contexts in all sessions (each

data point was from a single session). Values of me > 0 or z > 0.5 produce biases favoring rightward choices. (C) Scatterplots of the differences in me

(abscissa) and z (ordinate) between the two reward contexts for monkeys (black), for maximizing RR (purple), and for maximizing RTrial (orange). Positive

Dme and Dz values produce biases favoring large-reward choices.

DOI: https://doi.org/10.7554/eLife.36018.016

The following source data and figure supplements are available for figure 4:

Source data 1. RTrial and RR function for each session and reward context.

DOI: https://doi.org/10.7554/eLife.36018.019

Figure supplement 1. Estimates of momentary-evidence (me) and decision-rule (z) biases using the collapsing-bound DDM fits.

DOI: https://doi.org/10.7554/eLife.36018.017

Figure supplement 2. Hypothetical neural activity encoding a reward-biased perceptual decision variable.

DOI: https://doi.org/10.7554/eLife.36018.018
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Figure 5 continued on next page
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their relative magnitudes to the optimal values. In other words, as long as the initial me and z values

fall within the area covered by the magenta lines, the positive gradient-tracking procedure would

lead to a good-enough solution with adaptive me and non-adaptive z values similar to what we

found in the monkeys’ data. Figure 7 also illustrates why assumptions about the starting point of

this adaptive process are important: randomly selected starting points would result in learned me

and z values distributed around the peak of the reward function, whereas the data (e.g., Figure 5C)

show distinct clustering that implies particular patterns of starting points.

We simulated this process using: (1) different starting points; (2) gradients defined by the reward

function derived separately for each reward context, session, and monkey; and (3) a termination rule

corresponding to achieving each monkey’s average reward in that session (RTrialpredict) estimated

from the corresponding best-fitting model parameters and task conditions. This process is illustrated

for LR-Left blocks in an example session from monkey C (Figure 8A). We estimated the unbiased me

and z values as the midpoints between their values for LR-Left and LR-Right blocks (square). At this

point, the RTrial gradient is larger along the me dimension than the z dimension, reflecting the tilt of

the reward function. We set the initial point at baseline z and a very negative value of me (90% of

the highest coherence used in the session; overshoot in the adaptive direction) and referred to this

setting as the ‘over-me’ model. The me and z values were then updated according to the RTrial gra-

dient (see cartoon insert in Figure 8A), until the monkey’s RTrialpredict or better was achieved

(magenta trace and circle). The endpoint of this updating process was very close to monkey C’s

actual adjustment (gray circle). For comparison, three alternative models are illustrated. The ‘over-z’

model assumes updating from the baseline me and over-adjusted z values (blue, initial z set as 0.1

for the LR-Left context and 0.9 for the LR-Right context). The ‘over-both’ model assumes updating

from the over-adjusted me and z values (green). The ‘neutral’ model assumes the same updating

process but from the baseline me and baseline z (black). The endpoints from these alternative mod-

els deviated considerably from the monkey’s actual adjustment.

The ‘over-me’ model produced better predictions than the other three alternative models for all

three monkeys. Of the four models, only the ‘over-me’ model captured the monkeys’ tendency to

bias me toward the large-reward choice (positive Dme) and bias z toward the small-reward choice

(negative Dz; Figure 8B). In contrast, the ‘over-z’ model predicted small adjustments in me and large

adjustments in z favoring the large-reward choice; the ‘over-both’ model predicted relatively large,

symmetric me and z adjustments favoring the large-reward choice; and the ‘neutral’ model predicted

relatively small, symmetric adjustments in both me and z favoring the large-reward choice. Accord-

ingly, for each monkey, the predicted and actual values of both Dme and Dz were most strongly pos-

itively correlated for predictions from the ‘over-me’ model compared to the other models

(Figure 8C). The ‘over-me’ model was also the only one of the models we tested that recapitulated

the measured relationships between both me- and z-dependent biases and session-by-session

changes in the orientation of the RTrial function (Figure 8D). Similar results were observed using RR

function (Figure 7—figure supplement 1 and Figure 8—figure supplement 1). We also examined

whether the shape of the reward surface alone can explain the monkeys’ bias patterns. We repeated

the simulations using randomized starting points, with or without additional noise in each updating

step. These simulations could not reproduce the monkeys’ bias patterns (data not shown), suggest-

ing that using ‘over-me’ starting points is critical for accounting for the monkeys’ suboptimal

behavior.

Figure 5 continued

under-biased quadrants (except Monkey F in the LR-Right blocks). The contours and monkeys’ adjustments are centered at the optimal adjustments for

each session.

DOI: https://doi.org/10.7554/eLife.36018.020

The following figure supplement is available for figure 5:

Figure supplement 1. Predicted versus optimal reward rate (RR).

DOI: https://doi.org/10.7554/eLife.36018.021
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Figure 6 continued on next page
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Discussion
We analyzed the behavior of three monkeys performing a decision task that encouraged the use of

both uncertain visual motion evidence and the reward context. All three monkeys made choices that

were sensitive to the strength of the sensory evidence and were biased toward the larger-reward

choice, which is roughly consistent with results from previous studies of humans and monkeys per-

forming similar tasks (Maddox and Bohil, 1998; Voss et al., 2004; Diederich and Busemeyer,

2006; Liston and Stone, 2008; Serences, 2008; Feng et al., 2009; Simen et al., 2009;

Nomoto et al., 2010; Summerfield and Koechlin, 2010; Teichert and Ferrera, 2010; Gao et al.,

2011; Leite and Ratcliff, 2011; Mulder et al., 2012; Wang et al., 2013; White and Poldrack,

2014). However, we also found that these adjustments differed considerably in detail for the three

monkeys, in terms of overall magnitude, dependence on perceptual sensitivity and offered rewards,

and relationship to RTs. We quantified these effects with a logistic analysis and a commonly used

model of decision-making, the drift-diffusion model (DDM), which allowed us to compare the under-

lying decision-related computations to hypothetical benchmarks that would maximize reward. We

found that all three monkeys made reward context-dependent adjustments with two basic compo-

nents: (1) an over-adjustment of the momentary evidence provided by the sensory stimulus (me) in

favor of the large-reward option; and (2) an adjustment to the decision rule that governs the total

evidence needed for each choice (z), but in the opposite direction (i.e., towards the small-reward

option). Similar to some earlier reports of human and monkey performance on somewhat similar

tasks, our monkeys did not optimize reward rate (Starns and Ratcliff, 2010Starns and Ratcliff,

2012; Teichert and Ferrera, 2010). Instead, their adjustments tended to provide nearly, but not

exactly, maximal reward intake. We proposed a common heuristic strategy based on the monkeys’

individual reward functions to account for the idiosyncratic adjustments across monkeys and across

sessions within the same monkey.

Considerations for assessing optimality and rationality
Assessing decision optimality requires a model of the underlying computations. In this study, we

chose the DDM for several reasons. First, it provided a parsimonious account of both the choice and

RT data (Palmer et al., 2005; Ratcliff et al., 1999). Second, as discussed in more detail below, the

DDM and related accumulate-to-bound models have provided useful guidance for identifying neural

substrates of the decision process (Roitman and Shadlen, 2002; Ding and Gold, 2010; Ding and

Gold, 2012a; Hanks et al., 2011; Ratcliff et al., 2003; Rorie et al., 2010; Mulder et al., 2012;

Summerfield and Koechlin, 2010; Frank et al., 2015). Third, these models are closely linked to nor-

mative theory, including under certain assumptions matching the statistical procedure known as the

sequential probability ratio test that can optimally balance the speed and accuracy of uncertain deci-

sions (Barnard, 1946; Wald, 1947; Wald and Wolfowitz, 1948; Edwards, 1965). These normative

links were central to our ability to use the DDM to relate the monkeys’ behavior to different forms of

Figure 6 continued

separately for the two reward blocks (circles for LR-Left blocks, squares for LR-Right blocks). (C, D) The monkeys’ session- and context-specific values of

me (C) and z (D) co-varied with the orientation of the >97% heatmap patch (same as the contours in Figure 5B). Orientation is measured as the angle

of the tilt from vertical. Circles: data from LR-Left block; squares: data from LR-Right block; lines: significant correlation between me (or z) and patch

orientations across monkeys (p<0.05). Colors indicate different monkeys (see legend in B). E, Scatterplots of conditionally optimal versus fitted Dme (top

row) and Dz (bottom row). For each reward context, the conditionally optimal me (z) value was identified given the monkey’s best-fitting z (me) values.

The conditionally optimal Dme (Dz) was the difference between the two conditional optimal me (z) values for the two reward contexts. Grey lines

indicate the range of conditional Dme (Dz) values corresponding to the 97% maximal RTrial given the monkeys’ fitted z (me) values.

DOI: https://doi.org/10.7554/eLife.36018.022

The following figure supplements are available for figure 6:

Figure supplement 1. The monkeys’ momentary-evidence (me) and decision-rule (z) adjustments reflected RR function properties.

DOI: https://doi.org/10.7554/eLife.36018.023

Figure supplement 2. The HDDM model fitting procedure does not introduce spurious correlations between patch orientation and me value.

DOI: https://doi.org/10.7554/eLife.36018.025

Figure supplement 3. The correlation between fitted and conditionally optimal adjustments was stronger for the real, session-by-session data (red

lines) than for unmatched (shuffled) sessions (bars).

DOI: https://doi.org/10.7554/eLife.36018.024
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reward optimization. The particular form of DDM that we used produced reasonably good, but not

perfect, fits to the monkeys’ data. These results support the utility of the DDM framework but also

underscore the fact that we do not yet know the true model, which could impact our optimality

assessment.

Assessing optimality also requires an appropriate definition of the optimization goal. In our study,

we focused primarily on the goal of maximizing reward rate (per trial or per unit of time). Based on

this definition, the monkeys showed suboptimal reward-context-dependent adjustments. It is possi-

ble that the monkeys’ were optimizing for a different goal, such as accuracy or a competition

between reward and accuracy (‘COBRA,’ Maddox and Bohil, 1998). However, the monkeys’ behav-

ior was not consistent with optimizing for these goals, either. Specifically, none of these goals would

predict optimal z adjustment that favors the small reward choice: accuracy maximization would

require unbiased decisions (me = 0 and z = 0.5), whereas COBRA would require z values with smaller

Figure 7. Relationships between starting and ending values of the satisficing, reward function gradient-based updating process. Example gradient lines

of the average RTrial maps for the three monkeys are color coded based on the end point of gradient-based me and z adjustments in the following

ways: (1) me biases to large reward whereas z biases to small reward (magenta); (2) z biases to large reward whereas me biases to small reward (blue);

(3) me and z both bias to large reward (green), and (4) me and z both bias to small reward (yellow). The gradient lines ended on the 97% RTrialmax

contours. Top row: LR-Left block; bottom row: LR-Right block.

DOI: https://doi.org/10.7554/eLife.36018.026

The following figure supplement is available for figure 7:

Figure supplement 1. RR gradient trajectories color-coded by the end points of the me/z patterns.

DOI: https://doi.org/10.7554/eLife.36018.027

Fan et al. eLife 2018;7:e36018. DOI: https://doi.org/10.7554/eLife.36018 14 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.36018.026
https://doi.org/10.7554/eLife.36018.027
https://doi.org/10.7554/eLife.36018


magnitude (between 0.5 and those predicted for reward maximization alone), but still in the adap-

tive direction. Therefore, the monkeys’ strategies were not consistent with simply maximizing com-

monly considered reward functions.

Deviations from optimal behavior are often ascribed to a lack of effort or poor learning. However,

these explanations seem unlikely to be primary sources of suboptimality in our study. For example,

lapse rates, representing the overall ability to attend to and perform the task, were consistently near

zero for all three monkeys. Moreover, the monkeys’ reward outcomes (RTrial or RR with respect to

optimal values) did not change systematically with experience but instead stayed close to the opti-

mal values. These results imply that the monkeys understood the task demands and performed con-

sistently well over the course of our study. Suboptimal performance has also been observed in

human subjects, even with explicit instructions about the optimality criteria (Starns and Ratcliff,

2010; Starns and Ratcliff, 2012), suggesting that additional factors need to be considered to

understand apparent suboptimality in general forms of decision-making. In our study, the monkeys

made adjustments that were adapted to changes in their idiosyncratic, context-dependent reward

functions, which reflected session-specific reward ratios and motion coherences and the monkeys’

daily variations of perceptual sensitivity and speed-accuracy trade-offs (Figure 6, Figure 6—figure

supplement 1). Based on these observations, we reasoned that the seemingly sub-optimal behaviors

may instead reflect a common, adaptive, rational strategy that aimed to attain good-enough (satis-

ficing) outcomes.

The gradient-based, satisficing model we proposed was based on the considerations discussed

below to account for our results. We do not yet know how well this model generalizes to other tasks

and conditions, but it exemplifies an additional set of general principles for assessing the rationality

of decision-making behavior: goals that are not necessarily optimal but good enough, potential heu-

ristic strategies based on the properties of the utility function, and flexible adaptation to changes in

the external and internal conditions.

Assumptions and experimental predictions of the proposed learning
strategy
In general, finding rational solutions through trial-and-error or stepwise updates requires a sufficient

gradient in the utility function to drive learning (Sutton and Barto, 1998). Our proposed scheme

couples a standard gradient-following algorithm with principles that have been used to explain and

facilitate decisions with high uncertainties, time pressures, and/or complexity to achieve a satisficing

solution (Simon, 1966; Wierzbicki, 1982; Gigerenzer and Goldstein, 1996; Nosofsky and Palmeri,

1997; Goodrich et al., 1998; Sakawa and Yauchi, 2001; Goldstein and Gigerenzer, 2002; Stir-

ling, 2003; Gigerenzer, 2010; Oh et al., 2016). This scheme complements but differs from a previ-

ously proposed satisficing strategy to account for human subjects’ suboptimal calibration of the

speed-accuracy trade-off via adjustments of the decision bounds of a DDM that favor robust

Table 2. The difference in deviance information criterion (DDIC) between the full model (i.e., the model that includes both me and z)

and either reduced model (me-only or z-only), for experimental data and data simulated using each reduced model.

Negative/positive values favor the full/reduced model. Note that the DDIC values for the experimental data were all strongly negative,

favoring the full model. In contrast, the DDIC values for the simulated data were all positive, implying that this procedure did not sim-

ply prefer the more complex model.

Experimental data Simu: me model Simu: z model

DDIC: full - me DDIC: full - z DDIC: full - me DDIC: full - z

Mean Std Mean Std Mean Std Mean Std

Monkey F �124.6 2.3 �2560.4 5.2 3.1 9.8 0.2 11.8

Monkey C �1700.4 2.1 �6937.9 1.3 17.5 11.3 1.8 1.3

Monkey A �793.6 3.4 �2225.7 4.0 25.4 9.0 1.2 3.4

DOI: https://doi.org/10.7554/eLife.36018.014

The following source data is available for Table 2:

Source data 1. DIC for model fitting to the monkeys’ data and to the simulated data.

DOI: https://doi.org/10.7554/eLife.36018.015
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Figure 8 continued on next page
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solutions given uncertainties about the inter-trial interval (Zacksenhouse et al., 2010). In contrast,

our proposed strategy focuses on reward-biased behaviors for a given speed-accuracy tradeoff and

operates on reward per trial, which is, by definition, independent of inter-trial-interval.

Our scheme was based on four key assumptions, as follows. Our first key assumption was that the

starting point for gradient following was not the unbiased state (i.e., me = 0 and z = 0.5) but an

over-biased state. Notably, in many cases the monkeys could have performed as well or better than

they did, in terms of optimizing reward rate, by making unbiased decisions. The fact that none did

so prompted our assumption that their session-by-session adjustments tended to reduce, not inflate,

biases. Specifically, we assumed that the initial experience of the asymmetric reward prompted an

over-reaction to bias choices towards the large-reward alternative. In general, such an initial over-

reaction is not uncommon, as other studies have shown excessive, initial biases that are reduced or

eliminated with training (Gold et al., 2008; Jones et al., 2015; Nikolaev et al., 2016). The over-

reaction is also rational because the penalty is larger for an under-reaction than for an over-reaction.

For example, in the average RTrial heatmaps for our task (Figure 6A), the gradient dropped faster

in the under-biased side than in the over-biased side. This pattern is generally true for tasks with sig-

moid-like psychometric functions (for example, the curves in Figure 2—figure supplement 1). Our

model further suggests that the nature of this initial reaction, which may be driven by individually

tuned features of the reward function that can remain largely consistent even for equal-reward tasks

(Figure 8—figure supplement 2) and then constrain the end-points of a gradient-based adjustment

process (Figure 8), may help account for the extensive individual variability in biases that has been

reported for reward-biased perceptual tasks (Voss et al., 2004; Summerfield and Koechlin, 2010;

Leite and Ratcliff, 2011; Cicmil et al., 2015).

The specific form of initial over-reaction in our model, which was based on the gradient asymme-

try of the reward function, makes testable predictions. Specifically, our data were most consistent

with an initial bias in momentary evidence (me), which caused the biggest change in the reward func-

tion. However, this gradient asymmetry can change dramatically under different conditions. For

example, changes in the subject’s cautiousness (i.e., the total bound height parameter, a) and per-

ceptual sensitivity (k) would result in a steeper gradient in the other dimension (the decision rule, or

z) of the reward function (Figure 8—figure supplement 3). Our model predicts that such a subject

would be more prone to an initial bias along that dimension. This prediction can be tested by using

speed-accuracy instructions to affect the bound height and different stimulus parameters to change

perceptual sensitivity (Palmer et al., 2005; Gegenfurtner and Hawken, 1996).

Figure 8 continued

reward exceeded the average reward the monkey received in that session (RTrialpredict), estimated from the corresponding best-fitting model

parameters and task conditions. Open circles indicate the end values. Grey filled circle indicates the monkey’s actual me and z. Note that the end

points differ among the four assumptions, with the magenta circle being the closest to the monkey’s fitted me and z of that session. (B) Scatterplots of

the predicted and actual Dme and Dz between reward contexts. Grey circles here are the same as the black circles in Figure 4C. Colors indicate model

identity, as in (A). (C) Average regression coefficients between each monkey’s Dme (left four bars) and Dz (right four bars) values and predicted values

for each of the four models. Filled bars: t-test, p<0.05. (D) Covariation of me (top) and z (bottom) with the orientation of the >97% maximal RTrial

heatmap patch for monkeys and predictions of the four models. Blue: data from LR-Left blocks, red: data from LR-Right blocks. Data in the ‘Monkey’

column are the same as in Figure 6C and D. Note that predictions of the ‘over-me’ model best matched the monkey data than the other models.

DOI: https://doi.org/10.7554/eLife.36018.028

The following figure supplements are available for figure 8:

Figure supplement 1. Predictions of a RR gradient-based model.

DOI: https://doi.org/10.7554/eLife.36018.029

Figure supplement 2. Dependence of the orientation and area of the near-optimal RTrial patch on parameters reflecting internal decision process and

external task specifications.

DOI: https://doi.org/10.7554/eLife.36018.030

Figure supplement 3. The joint effect of DDM model parameters a (governing the speed-accuracy trade-off) and k (governing perceptual sensitivity)

on the shape of the reward function.

DOI: https://doi.org/10.7554/eLife.36018.031

Figure supplement 4. Effects of the shape of the reward function on deviations from optimality.

DOI: https://doi.org/10.7554/eLife.36018.032
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Our second key assumption was that from this initial, over-biased state, the monkeys made

adjustments to both the momentary evidence (me) and decision rule (z) that generally followed the

gradient of the reward function. The proposed step-wise adjustments occurred too quickly to be evi-

dent in behavior; for example the estimated biases were similar for the early and late halves in a

block (data not shown). Instead, our primary support for this scheme was that the steady-state biases

measured in each session were tightly coupled to the shape of the reward function for that session.

It would be interesting to design tasks that might allow for more direct measurements of the updat-

ing process itself, for example, by manipulating both the initial biases and relevant reward gradient

that might promote a longer adjustment process.

Our third key assumption was that the shallowness of the utility of the function around the peak

supported satisficing solutions. Specifically, gradient-based adjustments, particularly those that use

rapid updates based on implicit knowledge of the utility function, may be sensitive only to relatively

large gradients. For our task, the gradients were much smaller around the peak, implying that there

were large ranges of parameter values that provided such similar outcomes that further adjustments

were not used. In principle, it is possible to change the task conditions to test if and how subjects

might optimize with respect to steeper functions around the peak. For example, for RTrial, the most

effective way to increase the gradient magnitude near the peak (i.e., reducing the area of the dark

red patch) is to increase sensory sensitivity (k) or cautiousness (a; i.e., emphasizing accuracy over

speed; Figure 8—figure supplement 2). For RR, the gradient can also be enhanced by increasing

the time-out penalty. Despite some practical concerns about these manipulations (e.g., increasing

time-out penalties can decrease motivation), it would be interesting to study their effects on perfor-

mance in more detail to understand the conditions under which satisficing or ‘good enough’ strate-

gies are used (Simon, 1956; Simon, 1982).

Our fourth key assumption was that the monkeys terminated adjustments as soon as they reached

a good-enough reward outcome. This termination rule produced end points that approximated the

monkeys’ behavior reasonably well. Other termination rules are likely to produce similar end points.

For example, the learning rate for synaptic weights might decrease as the presynaptic and postsyn-

aptic activities become less variable (Aitchison et al., 2017; Kirkpatrick et al., 2017). In this

scheme, learning gradually slows down as the monkey approaches the plateau on the reward sur-

face, which might account for our results.

The satisficing reward gradient-based scheme we propose may further inform appropriate task

designs for future studies. For example, our scheme implies that the shape of the reward function

near the peak, particularly the steepness of the gradient, can have a strong impact on how closely a

subject comes to the optimal solution for a given set of conditions. Thus, task manipulations that

affect the shape of the reward-function peak could, in principle, be used to control whether a study

focuses on more- or less-optimal behaviors (Figure 8—figure supplement 4). For example, increas-

ing perceptual sensitivity (e.g., via training) and/or decisions that emphasize accuracy over speed (e.

g., via instructions) tends to sharpen the peak of the reward function. According to our scheme, this

sharpening should promote increasingly optimal decision-making, above and beyond the perfor-

mance gains associated with increasing accuracy, because the gradient can be followed closer to the

peak of the reward function. The shape of the peak is also affected by the reward ratio, such that

higher ratios lead to larger plateaus, i.e. shallower gradient, near the peak. This relationship leads to

the idea that, all else being equal, a smaller reward ratio may be more suitable for investigating prin-

ciples of near-optimal behavior, whereas a larger reward ratio may be more suitable for investigating

the source and principles of sub-optimal behaviors.

Possible neural mechanisms
The DDM framework has been used effectively to identify and interpret neural substrates of key

computational components of the decision process for symmetric-reward versions of the motion-dis-

crimination task. Our study benefitted from an RT task design that provided a richer set of con-

straints for inferring characteristics of the underlying decision process than choice data alone

(Feng et al., 2009; Nomoto et al., 2010; Teichert and Ferrera, 2010). The monkeys’ strategy fur-

ther provides valuable anchors for future studies of the neural mechanisms underlying decisions that

are biased by reward asymmetry, stimulus probability asymmetry, and other task contexts.

For neural correlates of bias terms in the DDM, it is commonly hypothesized that me adjustments

may be implemented as modulation of MT output and/or synaptic weights for the connections
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between different MT subpopulations and decision areas (Cicmil et al., 2015). In contrast, z adjust-

ments may be implemented as context-dependent baseline changes in neural representations of the

decision variable and/or context-dependent changes in the rule that determines the final choice

(Lo and Wang, 2006; Rao, 2010; Lo et al., 2015; Wei et al., 2015). The manifestation of these

adjustments in neural activity that encodes a decision variable may thus differ in its temporal charac-

teristics: a me adjustment is assumed to modulate the rate of change in neural activity, whereas a z

adjustment does not. However, such a theoretical difference can be challenging to observe, because

of the stochasticity in spike generation and, given such stochasticity, practical difficulties in obtaining

sufficient data with long decision deliberation times. By adjusting me and z in opposite directions,

our monkeys’ strategies may allow a simpler test to disambiguate neural correlates of me and z. Spe-

cifically, a neuron or neuronal population that encodes me may show reward modulation congruent

with its choice preference, whereas a neuron or neuronal population that encodes z may show

reward modulation opposite to its choice preference (Figure 4—figure supplement 2). These pre-

dictions further suggest that, although it is important to understand if and how human or animal sub-

jects can perform a certain task optimally, for certain systems-level questions, there may be benefits

to tailoring task designs to promote sub-optimal strategies in otherwise well-trained subjects.

Materials and methods

Subjects
We used three rhesus macaques (Macaca mulatta), two male and one female, to study behavior on

an asymmetric-reward response-time random-dot motion discrimination task (Figure 1B, see below).

Prior to this study, monkeys F and C had been trained extensively on the equal-reward RT version of

the task (Ding and Gold, 2010; Ding and Gold, 2012b; Ding and Gold, 2012a). Monkey A had

been trained extensively on non-RT dots tasks (Connolly et al., 2009; Bennur and Gold, 2011), fol-

lowed by >130 sessions of training on the equal-reward RT dots task. All training and experimental

procedures were in accordance with the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and were approved by the University of Pennsylvania Institutional Animal Care

and Use Committee (#804726).

Behavioral task
Our task (Figure 1B) was based on the widely used random-dot motion discrimination task that typi-

cally has symmetric rewards (Roitman and Shadlen, 2002; Ding and Gold, 2010). Briefly, a trial

started with presentation of a fixation point at the center of a computer screen in front of a monkey.

Two choice targets appeared 0.5 s after the monkey acquired fixation. After a delay, the fixation

point was dimmed and a random-dot kinematogram (speed: 6 ˚/s) was shown in a 5˚ aperture cen-

tered on the fixation point. For monkeys F and C, the delay duration was drawn from a truncated

exponential distribution with mean = 0.7 s, max = 2.5 s, min = 0.4 s. For monkey A, the delay was

set as 0.75 s. The monkey was required to report the perceived global motion direction by making a

saccade to the corresponding choice target at a self-determined time (a 50 ms minimum latency was

imposed to discourage fast guesses). The stimulus was immediately turned off when the monkeys’

gaze left the fixation window (4˚, 4˚, and 3˚ square windows for monkey F, C, and A, respectively).

Correct choices (i.e., saccades to the target congruent with actual motion direction) were rewarded

with juice. Error choices were not rewarded and instead penalized with a timeout before the next

trial began (timeout duration: 3 s, 0.5–2 s, and 2.5 s, for monkeys F, C, and A, respectively).

On each trial, the motion direction was randomly selected toward one of the choice targets along

the horizontal axis. The motion strength of the kinematogram was controlled as the fraction of dots

moving coherently to one direction (coherence). On each trial, coherence was randomly selected

from 0.032, 0.064, 0.128, 0.256, and 0.512 for monkeys F and C, and from 0.128, 0.256, 0.512, and

0.75 for monkey A. In a subset of sessions, coherence levels of 0.064, 0.09, 0.35, and/or 0.6 were

also used for monkey A.

We imposed two types of reward context on the basic task. For the ‘LR-Left’ reward context, cor-

rect leftward saccades were rewarded with a larger amount of juice than correct rightward saccades.

For the ‘LR-Right’ reward context, correct leftward saccades were rewarded with a smaller amount

of juice than correct rightward saccades. The large:small reward ratio was on average 1.34, 1.91,
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and 2.45 for monkeys F, C, and A, respectively. Reward context was alternated between blocks and

constant within a block. Block changes were signaled to the monkey with an inter-block interval of 5

s. The reward context for the current block was signaled to the monkey in two ways: 1) in the first

trial after a block change, the two choice targets were presented in blue and green colors, for small

and large rewards, respectively (this trial was not included for analysis); and 2) only the highest

coherence level (near 100% accuracy) was used for the first two trials after a block change to ensure

that the monkey physically experienced the difference in reward outcome for the two choices. For

the rest of the block, choice targets were presented in the same color and motion directions and

coherence levels were randomly interleaved.

We only included sessions in which there are more than 200 trials, more than eight coherences

and more than eight trials for each coherence, motion direction and reward context (61, 37, and 43

sessions for monkey F, C, and A, respectively).

Basic characterization of behavioral performance
Eye position was monitored using a video-based system (ASL) sampled at 240 Hz. RT was measured

as the time from stimulus onset to saccade onset, the latter identified offline with respect to velocity

(>40˚/s) and acceleration (>8000˚/s2). Performance was quantified with psychometric and chrono-

metric functions (Figure 2 and Figure 3), which describe the relationship of motion strength (signed

coherence, Coh, which was the proportion of the dots moving in the same direction, positive for

rightward motion, negative for leftward motion) with choice and RT, respectively. Psychometric func-

tions were fitted to a logistic function (Equation 1), in which l is the error rate, or lapse rate, inde-

pendent of the motion information; a0 and (a0 + arew)are the bias terms, which measures the

coherence at which the performance was at chance level, in the LR-Right and LR-Left reward con-

texts, respectively. b0 and (b0 + brew) are the perceptual sensitivities in the LR-Right and LR-Left

reward contexts, respectively.

Prightward choice ¼ lþ 1� 2 lð Þ �
1

e�Sensitivity Coh�Biasð Þ
(1)

Reward-biased drift-diffusion model
To infer the computational strategies employed by the monkeys, we adopted the widely used accu-

mulation-to-bound framework, the drift-diffusion model (DDM; Figure 1A). In the standard DDM,

motion evidence is modeled as a random variable following a Gaussian distribution with a mean line-

arly proportional to the signed coherence and a fixed variance. The decision variable (DV) is mod-

eled as temporal accumulation (integral) of the evidence, drifting between two decision bounds.

Once the DV crosses a bound, evidence accumulation is terminated, the identity of the decision is

determined by which bound is crossed, and the decision time is determined by the accumulation

time. RT is modeled as the sum of decision time and saccade-specific non-decision times, the latter

accounting for the contributions of evidence-independent sensory and motor processes.

To model the observed influences of motion stimulus and reward context on monkeys’ choice

and RT behavior, we introduced two reward context-dependent terms: z specifies the relative bound

heights for the two choices and me specifies the equivalent momentary evidence that is added to

the motion evidence at each accumulating step. Thus, for each reward context, six parameters were

used to specify the decision performance: a: total bound height; k: proportional scaling factor con-

verting evidence to the drift rate; t0 and t1: non-decision times for leftward and rightward choices,

respectively; and z and me. Similar approaches have been used in studies of human and animal deci-

sion making under unequal payoff structure and/or prior probabilities (Voss et al., 2004;

Bogacz et al., 2006; Diederich and Busemeyer, 2006; Summerfield and Koechlin, 2010;

Hanks et al., 2011; Mulder et al., 2012).

To fit the monkeys’ data, we implemented hierarchical DDM fitting using an open-source package

in Python, which performs Bayesian estimates of DDM parameters based on single-trial RTs

(Wiecki et al., 2013). This method assumes that parameters from individual sessions are samples

from a group distribution. The initial prior distribution of a given parameter is determined from pre-

vious reports of human perceptual performance and is generally consistent with monkey perfor-

mance on equal reward motion discrimination tasks (Ding and Gold, 2010; Matzke and
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Wagenmakers, 2009). The posterior distributions of the session- and group-level parameters are

estimated with Markov chain Monte Carlo sampling. The HDDM was fit to each monkey separately.

For each dataset, we performed 5 chains of sampling with a minimum of 10000 total samples

(range: 10000 – 20000; burn-in: 5000 samples) and inspected the trace, autocorrelation and marginal

posterior histogram of the group-level parameters to detect signs of poor convergence. To ensure

similar level of convergence across models, we computed the Gelman-Rubin statistic (R-hat) and

only accepted fits with R-hat <1.01.

To assess whether reward context modulation of both z and me was necessary to account for

monkeys’ behavioral data, we compared fitting performance between the model with both terms

(‘full’) and reduced models with only one term (‘z-only’ and ‘me-only’). Model selection was based

on the deviance information criterion (DIC), with a smaller DIC value indicating a preferred model.

Because DIC tends to favor more complex models, we bootstrapped the expected DDIC values,

assuming the reduced models were the ground truth, using trial-matched simulations. For each ses-

sion, we generated simulated data using the DDM, with single-session parameters fitted by me-only

or z-only HDDM models and with the number of trials for each direction � coherence � reward con-

text combination matched to the monkey’s data for that session. These simulated data were then re-

fitted by all three models to estimate the predicted DDIC, assuming the reduced model as the gen-

erative model.

To test an alternative model, we also fitted monkeys’ data to a DDM with collapsing bounds

(Zylberberg et al., 2016). This DDM was constructed as the expected first-stopping-time distribu-

tion given a set of parameters, using the PyMC module (version 2.3.6) in Python (version 3.5.2). The

three model variants, ’full’, ’me-only’ and ’z-only’, and their associated parameters were the same as

in HDDM, except that the total bound distance decreases with time. The distance between the two

choice bounds was set as

a= 1þ eb t�dð Þ
� �

where a is the initial bound distance, b determines the rate of collapsing, and d determines the

onset of the collapse. Fitting was performed by computing the maximum a posteriori estimates, fol-

lowed by Markov chain Monte Carlo sampling, of DDM parameters given the experimental RT data.

Sequential analysis
To examine possible sequential choice effects, for each monkey and session we fitted the choice

data to three logistic functions. Each function was in the same form as Equation 1 but with one of

four possible additional terms describing a sequential effect based on whether the previous trial was

correct or not, and whether the previous trial was to the large or small reward target. The sequential

effect was assessed via a likelihood-ratio test for H0 : the sequential term in Equation 2 = 0, p<0.05

Prightward choice ¼ lþ 1� 2 lð Þ �
1

e�Sensitivity Coh� BiasþBiasseqð Þð Þ
(2)

Biasseq was determined using indicator variables for the given sequential effect and the reward

context (e.g., LR-Right context, previous correct LR choice): Iseq � Irew � aseq, where

Irew =±1 for LR-Right/LR Left reward contexts.

Iseq = IprevLR-prevCorrect, IprevLR-prevError, IprevSR-prevCorrect, and IprevSR-prevError for the 4 types of

sequential effects (note that there were not enough trials to compute previous error SR choice).

Optimality analysis
To examine the level of optimality of the monkeys’ performance, we focused on two reward func-

tions: reward rate (RR, defined as the average reward per second) and reward per trial (RTrial,

defined as the average reward per trial) for a given reward context for each session. To estimate the

reward functions in relation to me and z adjustments for a given reward context, we numerically

obtained choice and RT values for different combinations of z (ranging from 0 to 1) and me (ranging

from �0.6 to 0.6 coherence unless otherwise specified), given a, k, and non-decision time values fit-

ted by the full model. We then calculated RR and RTrial, using trial-matched parameters, including

the actual ITI, timeout, and large:small reward ratio. RRmax and RTrialmax were identified as the
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maximal values given the sampled me-z combinations, using 1000 trials for each

coherence �direction condition. Optimal me and z adjustments were defined as the me and z values

corresponding to RRmax or RTrialmax. RRpredict and RTrialpredict were calculated with the fitted me and

z values in the full model.
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