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Abstract

Background: The gene duplication (GD) problem seeks a species tree that implies the fewest gene duplication
events across a given collection of gene trees. Solving this problem makes it possible to use large gene families
with complex histories of duplication and loss to infer phylogenetic trees. However, the GD problem is NP-hard,
and therefore, most analyses use heuristics that lack any performance guarantee.

Results: We describe the first integer linear programming (ILP) formulation to solve instances of the gene
duplication problem exactly. With simulations, we demonstrate that the ILP solution can solve problem instances
with up to 14 taxa. Furthermore, we apply the new ILP solution to solve the gene duplication problem for the
seed plant phylogeny using a 12-taxon, 6, 084-gene data set. The unique, optimal solution, which places Gnetales
sister to the conifers, represents a new, large-scale genomic perspective on one of the most puzzling questions in
plant systematics.

Conclusions: Although the GD problem is NP-hard, our novel ILP solution for it can solve instances with data sets
consisting of as many as 14 taxa and 1, 000 genes in a few hours. These are the largest instances that have been
solved to optimally to date. Thus, this work can provide large-scale genomic perspectives on phylogenetic
questions that previously could only be addressed by heuristic estimates.

Background
With recent advances in DNA sequencing technology,
there is much interest in using genomic data sets to
infer phylogenetic trees. However, evolutionary events
such as gene duplication and loss, incomplete lineage
sorting (deep coalescence), and lateral gene transfer can
produce discordance between gene trees and the phylo-
geny of the species in which the genes evolve (e.g., [1]).
The gene tree parsimony (GTP) problem [1-4] provides
a direct approach to infer a species phylogeny from dis-
cordant gene trees. Given a collection of gene trees, this
problem seeks a species tree that implies the minimum
reconciliation cost, i.e., the fewest number of evolution-
ary events that can explain discordance in the gene
phylogenies.
One of the most widely studied variants of the GTP

problems is the gene duplication (GD) problem, in
which the reconciliation cost is based on gene

duplication events. The GD problem is W[2]-hard when
parameterized by the number of gene duplications
events and hard to approximate better than a logarith-
mic factor [5]. One way to cope with this intractability
in practice is using heuristics [6,7]. Although these heur-
istics do not guarantee optimal solutions or any non-
trivial theoretical bound, in many cases they appear to
have produced credible estimates [8-11]. However, the
lack of performance guarantees makes the pursuit of
exact solutions for the GD problem desirable.
Exact solutions can be found by exhaustive search for

every NP-complete problem, but run times typically
become prohibitively large for even rather small sized
instances. However, exact algorithms that are substan-
tially faster than exhaustive search have been progres-
sively developed (e.g. [12,13]). Unfortunately, little work
has focused on such algorithms for the GD problem
[14]. Here, we describe an ILP formulation solving the
GD problem exactly and demonstrate its performance
on both simulated and empirical data sets.
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Related work
Exact solutions to the GD problem were obtained by
exhaustively searching all possible species trees in data
sets with up to 8 taxa [15,16]. More recently, a branch-
and-bound algorithm to identify exact solutions for the
GD problem was introduced [14]. This algorithm was
applied to a data-set consisting of 1, 111 gene trees with
29-taxa, but it did not run to completion. However, the
branch-and-bound algorithm was able to solve this
instance on reduced search spaces that resulted from
providing some of the relationships in the species tree.
Although constraining the search space for a species
tree can help solving difficult instances of the GD pro-
blem, there are no theoretical guarantees to support this
approach.
ILP formulations have provided an effective strategy to

solve moderately sized instances of several NP-hard phy-
logenetic problems (e.g. [17-22]). Most similar to the
GD problem, ILP formulations have been introduced for
the deep coalescence problem, the variant of the GTP
problem in which the reconciliation cost is based on the
deep coalescence events [23]. These formulations solved
instances with up to 8 taxa. However, perhaps due to
the difficulty of directly expressing gene duplications in
terms of linear equations, there have been no ILP for-
mulations for the DP problem.

Our contributions
We introduce a novel approach to solve the GD pro-
blem exactly by describing the first ILP formulation for
this problem. This solution is made possible by revealing
an alternate description of the GD problem, called the
triple inconsistency problem, which expresses gene
duplications in terms of rooted triples. Rooted triples
are rooted full binary trees with three leaves, and are
the smallest unit of phylogenetic information. They,
together with an equivalent presentation of species trees
through cluster hierarchies, provide the fundamental
elements of our ILP solution.
We demonstrate that our ILP formulation can solve

non-trivial instances with up to 14 taxa and 1,000 gene
trees. This greatly improves upon the largest (uncon-
strained) instances of the GD problem that have been
solved exactly to date. Finally, we use the ILP formula-
tion to address the relationships among the major seed
plant lineages.Our ILP formulation was able to solve the
GD problem exactly for a 12-taxon data set using 6,084
gene trees.

Methods
Preliminaries
Basic definitions
A rooted tree T is a connected and acyclic graph con-
sisting of a vertex set V(T), an edge set E(T), and that

has exactly one distinguished vertex called root, which
we denote by Rt(T). Let T be a rooted tree. We define
≤T to be the partial order on V(T), where u ≤T v if v is a
vertex on the path between Rt(T) and u. Moreover, we
write u <>T v if neither u ≤T v nor v ≤T u is true. The
set of minima under ≤T is denoted by L(T) and its ele-
ments are called leaves. We call u a child of v if u ≤ v
and {u,v} Î V(E). The set of all children of v is denoted
by ChT(v). For a vertex v Î V(T) we denote by T(v) the
subtree of T that consists of all vertices u ≤T v. The
least common ancestor of a non-empty subset X ⊆ V(T),
denoted as LCAT(X), is the unique smallest upper
bound of X under ≤T. T is called full binary if every ver-
tex has either two or zero children. Throughout this
work, the term tree refers to a full and rooted binary
tree.
Gene duplication (GD) problem
The terms species tree and gene tree refer to trees that
represent the evolutionary history of a gene family or
species respectively.
To compare a gene tree with a species tree, a mapping

from each gene in the gene tree to the most recent spe-
cies in the species tree that could have contained the
gene is required.
Definition 1 (Mapping). Let G be a gene tree and S a

species tree. A leaf-mapping from G to S is a functionLG,
S : L(G) ® L(S). The extension MG,S: V(G) ® V(S) of
the leaf-mapping LG,S is the mapping defined by MG,S(u)
:= LCAS(LG,S(G(u)).
To simplify the exposition we shall assume that leaf-

mappings are injections, and w.l.o.g. we identify the
genes with the species from which they were sampled.
After describing our ILP solution for identity leaf-map-
pings, we extend this formulation to cover non-injective
leaf-mappings.
Definition 2 (Comparable). Let S be a species tree. A

gene tree G is comparable to S, denoted by G ⊢ S, ifLG,S
exists. A set of gene trees is comparable to S, denoted
byG ⊢ S, if G ⊢ S for each gene tree G Î G.
We shall adopt the following notation: we use S for a

species tree, G for a set of gene trees that is comparable
to S, and G for an gene tree in G.
Definition 3 (Duplication). A node g Î V(G) is a

duplication (w.r.t. S) ifMG,S(g) Î MG,S(ChG(g)).
For consistency we follow the common practice to call

what is stated above a definition, even though it is actu-
ally a theorem [24] that follows from the gene duplica-
tion model [2].
Definition 4 (Duplication cost). We define the follow-

ing duplication costs:
1. Dup(G, S) := |{g Î V(G): g is a duplication}| is the

duplication cost from G to S.
2. Dup(G, S) := ∑GÎG Dup(G, S) is the duplication cost

from G to S.
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3. Dup(G) := minG⊢T Dup(G, T) is the duplication cost
ofG.
Problem 1 (Gene-Duplication (GD)).
Instance: A set of gene trees G.
Find: The duplication cost Dup(G), and a species tree

S* such that Dup(G, S*) = Dup(G).

The Triple-Inconsistency problem and its equivalence to
the GD problem
A rooted triple is a tree with three leaves. The rooted
triple with leaves x, y, and z is denoted xy|z if the path
between x and y does not intersect with the path
between z and the root. A rooted triple is displayed by a
tree T if LCAT(x, y) ≤T LCAT(x, z) (= LCAT(y, z)). The
set of rooted triples xy|z displayed by tree T that are
rooted at vertex u Î V(T), (i.e., u = LCAT({x, y, z})) is
denoted by TripT(v), and the set of all triples displayed
by T is denoted by Trip(T).
Definition 5 (T(riple)-inconsistency). A rooted triple t

Î Trip(G) is said to be inconsistent with S if t ∉ Trip(S).
A vertex v Î V(G) is called t(riple)-inconsistent with S if
there is a rooted triple in TripG(v) that is inconsistent
with S.
Definition 6 (T-inconsistency cost). We define the fol-

lowing t-inconsistency costs:
1. Tin(G,S) := |{v Î V(G): v is t-inconsistent with S}| is

the t-inconsistency cost from G to S.
2. Tin(G, S) := ∑GÎG Tin(G, S) is the t-inconsistency

cost from G to S.
3. Tin(G) := minG⊢T Tin(G,T) is the t-inconsistency

cost of G.
Problem 2 (T(riple)-inconsistency).
Instance: A set of gene trees G.
Find: The t-inconsistency cost Tin(G), and species tree

S* such that Tin(G, S*) = Tin(G).
Theorem 1 (Equivalence between duplication and t-

inconsistency). Let u Î (G). Then u is a duplication w.r.
t. S if and only if u is t-inconsistent with S.
Proof. Let x := MG,S(u).
Suppose u is a not a duplication. Let ab|c Î TripG(u).

We will show that ab|c Î Trip(S). By the definition of
ab|c Î TripG(u) we know that LCAG({a, b,c}) = u, and
together with our assumption that G is fully binary it
follows that u has two children v and w, where w.l.o.g.
a, b Î L(G(v)) and c Î L(G(w)). Let v′ := MG,S(v) and w′
:= MG,S(W). From a, b Î L(G(v)) and c Î L(G(w)) fol-
lows that a, b Î L(S(v′)) and c Î L(S(w′)) respectively.
Now, since u is not a duplication we have v′ <>S w′.
Otherwise, we would have w′ ≤S v′ or v′ ≤S w′ from
which x = v′ or x = w′ would follow respectively; contra-
dicting that v is not a duplication. Hence, from v′ <>S w′
and a, b Î L(S(v′)) and c Î L(S(w′)) follows that ab|c Î
Trip(S).

Suppose u is a duplication, and thus we have x = MG,S

(v) for a child v Î Ch(u). So u is not a leaf in G, and
since G is fully binary it follows that there are two dis-
tinct vertices a, b Î L(G(u)) such that LCAS({a,b}) = x.
Therefore, x has two children y and z such that a ≤S y
and b ≤S z. Now we distinguish different cases for the
vertices a and b based on their possible order relation
to the children of u. Since G is fully binary and v is a
child of u, there exists a child w Î Ch(u) where w ≠ v.
Now, we have the following cases.
Case 1: a ≤G v, b ≤G v: Let c ≤G w. Then ab|c Î TripG

(u). Further c ≤S y or c ≤Sz and with a ≤Sy and b ≤S z, it
follows that either ac|b Î Trips(x) or bc|a Î TripS(x).
Hence, u is t-inconsistent as desired.
Case 2: a ≤G v, b ≤G w: We know that x has two chil-

dren y and z and that MG,S(v) = x. Therefore there exist
c ≤S y and d ≤S z such that LCAs(c, d) = M(v) where c,d
Î L(G(v)). From the order relations a ≤S y, d ≤S z and d
≤G v, b ≤G w and a ≤G v, b ≤G w, it follows that a, b
and d are pairwise different. Therefore the rooted triples
ad|b Î TripG(u) and bd|a Î TripS(x) are well defined,
from which follows that the vertex u is t-inconsistent.
Case 3: a ≤G W, b ≤G w or b ≤G v, a ≤G w: Similarly to

the previous cases it follows that u is t-inconsistent
From Theorem 1, the next corollary follows.
Corollary 1 (Equivalence between the GD problem

and the T-Inconsistency problem). The t-inconsistency
problem is a mathematical equivalent formulation of the
duplication problem (i.e. Dup(G,S) = Tin(G,S)).

An ILP solution for the T-Inconsistency problem
Table 1 lists the variables used, and their meaning. To
explain our ILP solution, we first formulate all possible
candidate trees in the solution space of the t-inconsis-
tency problem. Next we formulate the t-inconsistency
objective to identify an optimal t-inconsistency cost and
an optimal candidate tree.
Let X := ∪GÎG L(G) be the taxon set, n := |X|, m :=

|∪GÎGTrip(G)|, and k := |G|. It follows that ΣGÎG|G| =
O(kn).
Formulating candidate species trees in terms of cluster
hierarchies
Here we formulate constraints that describe all species
trees that are possible candidates for solving the t-
inconsistency problem, that is, all trees to which the
given gene tree set G is compatible. Based on our
assumption that the leaf label function is the identity
function, these are all trees with the leaf set X. Our ILP
formulation is based on an alternative way of describing
trees by specifying their clusters through a hierarchy of
subsets of X.
Definition 7 (Clusters). Let T be a tree. For each ver-

tex v Î V(T) we define the cluster at v as {u Î L(T) : u
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≤T v}, i.e., L(T(u)). We shall denote the set of all clusters
of T byH(T).
Definition 8 ((Full) Binary hierarchy). Let F be a finite

set. We call a set H of non-empty subsets of F a (full)
binary hierarchy on F if the following properties are
satisfied:
1. Trivial set property: F Î H and {v} Î H for each v

Î F
2. Compatibility property: every pair of sets A and B in

H is compatible; that is A ∩ B Î {A, B, Ø}.
3. Cardinality property: |H|= 2|F| –1
A hierarchy is defined as a binary hierarchy without

requiring the cardinality property. There is a well-
known and fundamental equivalence between hierar-
chies and trees that are not necessarily binary (e.g. [25]).
The next result follows from this equivalence and the
fact that a binary tree over l leaves has exactly 2l – 1
clusters.
Theorem 2 (Equivalence between binary hierarchies

and binary trees). Let H be a set of non-empty subsets of
a set F. Then there is a binary tree T such thatH = H(F)
if and only if H is a binary hierarchy on F.
Since trees and binary hierarchies are equivalent, we

use these terms interchangeably from now on. Now we
formulate constraints that describe the hierarchies on X
using the binary matrix presentation.
Binary matrix. We describe 2n – 1 subsets of a hierar-

chy on X using a binary matrix M with a row for each
species in X and 2n – 1 columns, where each column p
represents the set {a Î X: M(a,p) = 1}.
Excluding sets satisfying the trivial set property.

We consider only the n – 2 non-trivial sets that can be
part of a binary hierarchy on X. To do this, we add the
following constraints that allow only non-trivial sets. For
each column p of M, we require
2 ≤ ΣaÎXM(a, p) ≤ (n – 1).
Uniqueness. To ensure that a set of subsets is

uniquely represented by the columns of M, we enforce a
linear order of a binary interpretation of these columns.
Suppose that X = {a1,…,an} are the rows of M, then this
order is achieved by adding the following (n – 3) con-
straints that apply to all pairs of adjacent columns p and
q in M.

2 2 11 1i
i

a X

j
j

a X
M a p M a q

i j

−
∈

−
∈∑ ∑≥ +( , ) ( , ) .

Compatibility. Incompatibility can be tested directly
by using the three-gamete condition (e.g., [26]). An
incompatibility occurs for two columns p and q in M if
and only if there exist three rows a, b and c in M that
contain the gametes (0,1), (1,0), and (1,1) in p and q
respectively (i.e. (M(a,p),M(a, q)) = (0,1), (M(b, p),M(b,
q)) = (1,0), and (M(c, p),M(c, q)) = (1,1)). To identify if a
certain gamete (x, y) Î {(0,1), (1,0), (1,1)} exists for p
and q, we define a set of binary variables C(p, q, xy)
under the following constraints over all rows a in M.
C(p, q, 01) ≥ –M(a, p) + M(a, q),
C(p, q, 10) ≥ M(a, p) – M(a, q),
C(p, q, 11) ≥ M(a, p) + M(a, q) – 1.
These constraints capture that C(p, q, xy) = 1 as long

as M(a, p) = x and M(a, q) = y is satisfied for a gamete
(x, y) in a certain row a in M. However, the reverse con-
dition does not necessarily hold true without adding
further constraints. To guarantee that clusters p, q are
compatible, we require the following constraints
C(p, q, 01) + C(p, q, 11) + C(p, q, 10) = 2.
Number of variables and constraints. There are O

(n2) variables for the matrix M, and O(n2) variables of
the type C(p, q, xy). O(n) constraints are needed to
exclude trivial sets and to guarantee uniqueness, and O
(n3) constraints guarantee compatibility. In summary,
there are O(n2) variables and O(n3) constraints to
describe all candidates for the species tree.
Formulating the T-lnconsistency problem. To for-

mulate the t-inconsistency problem, we first describe
variables T(a, b, c, xyz) that detect whether a rooted tri-
ple is displayed by the tree presented by M. Then we
describe variables D(g) that detect if g is t-inconsistent
by using the variables T(a, b, c, xyz). Finally, we formu-
late the objective of the t-inconsistency problem based
on the variables D(g).
Variables T(a, b, c, xyz). We describe the binary vari-

ables T(a, b, c, xyz) that are 1 exactly if a rooted triple
over the leaf set {a, b, c} with topology (x, y, z) Î
{(0,1,1), (1,0,1), (1,1,0)} is displayed by the tree that is
presented by M. The parameters a, b, c are rows in M,

Table 1

Notation Definition

M(i, j) Taxon-cluster representation of (the) species tree: M(i, j) = 1 iff taxon i is in the cluster j. Additional constraints on M require the cluster
set to form a binary hierarchy (tree).

C(p, q, xy) Compatibility: C(p, q, xy) = 1 exactly if the cluster pair (p, q) has the gamete xy Î {01, 10, 11}.

T(a, b, c,
xyz)

Rooted triple: T(a, b, c, xyz) = 1 exactly if the rooted triple with leaf set {a, b, c} and topology xyz is displayed in M. Topologies for xyz
are 011, 101, and 110 and refer to the rooted triples bc|a, ac|b and ab|c respectively.

D(g) t-inconsistency: D(g) = 1 if the gene vertex g is t-inconsistent w.r.t. a tree represented by matrix M.

Notation used in our ILP solution.
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and the settings 011, 101, and 110 of (x, y, z) refer to
the rooted triples bc|a, ac|b and ab|c respectively. For
each column p in M, we introduce the following
constraints.
T(a, b, c, 011) ≥ –M(a, p) + M(b, p) + M(c, p) – 1 ;
T(a, b, c, 101) ≥ M(a, p) – M(b, p) + M(c, p) – 1 ;
T(a, b, c, 110) ≥ M(a, p) + M(b, p) - M(c, p) – 1 ;
T(a, b, c, 011) + T(a, b, c, 101) + T(a, b, c, 110) = 1 ,
since a rooted triple is uniquely resolved in a tree.
Variables T(a, b, c, 011), T(a, b, c, 101), and T(a, b, c,

110) are constructed for every triple {a, b, c} for which a
rooted triple is displayed by a gene tree in . Thus, there
are O(m) variables of this type. For each variable we
have O(n) constraints, which results in O(nm) con-
straints overall.
Variables D(g). We express the t-inconsistency of each

vertex g Î V(G) where G Î G by the binary variable D(g).
The variable is 1 if g is t-inconsistent with the tree
described by matrix M, given the following constraints
D(g) ≥ 1 – T(a, b, c, xyz) ,
where the rooted triple over the leaf set {a, b, c} and

topology xyz is an element in TripG(g).
Variables D(g) are constructed for each internal vertex

of a gene tree in G, which results in O(kn) variables.
Intuitively, a constraint is constructed for each rooted
triple that is displayed by a gene tree in G, which yields
O(km) constraints. However, the following observation
reduces the number of such constraints to O(kn2).
Let u Î V(G) such that TripG(u) ≠ Ø, {v,w} = Ch(u), a

Î L(G(u)) and b Î L(G(v)). A rooted triple xy|z is in
TripG(u) if and only if all ax|b, ay|b, and bz|a are in
TripG(u). Therefore, instead of enumerating all rooted
triples in TripG(u) (which sums up to O(m) in each
gene tree G), we only need to enumerate a number of O
(n) rooted triples to represent TripG(u) while detecting
if u is t-inconsistent (hence O(kn2) constraints over all).
T-lnconsistency objective. This objective is expressed

by the following expression.
min ΣgÎV(G)D(g).
Once the optimal objective cost is found, a unique

tree corresponding to the cost can be constructed from
M. It is worth noting that an instance of unique optimal
tree does not ensure an unique optimal solution to the
corresponding ILP due to relaxed constraints for vari-
ables C. Although this can be addressed by adding addi-
tional constraints, the correctness of the objective value
and the resulting tree is not affected.
Number of variables and constraints. In summary,

there are O(n2 + m + kn) variables, and the number of
constraints is O(n3+ mn + kn2).
Handling non-injective leaf mappings
A leaf mapping LG,S is non-injective if and only if there
is a vertex u Î V(G) with distinct children v and w such

that LG,S(L(G(v)))ØLG,S(L(G(w))) ≠ Ø; and if the latter
holds true, it follows that u is a duplication. Therefore,
it can be determined if u is a gene-duplication regard-
less of the topology of S. By pre-processing all such
determined duplication vertices, the leaf-mapping over
the remaining internal vertices of G can be made injec-
tive. Hence, the existing ILP formulation solves input
gene trees with non-injective leaf mappings. Since the
input gene tree size can be arbitrary, under the non-
injective leaf mapping assumption, the ILP formulation
has O(n2+ m + l) variables and O(n3+ mn + In) con-
straints where ΣGÎG|G| = l.
Generating optimal species trees
The species tree corresponding to a feasible solution of
an ILP instance can be constructed in O(n2) time [27].
Furthermore, a gene node g is identified as a duplication
if and only if D(g) = l.
Implementation
We implemented an ILP generator in Python that, given
a set of gene trees, outputs the ILP described in the pre-
ceding section. We tested our formulation with both
simulated and empirical gene tree data sets (described
below). All analyses were on a GNU/Linux based PC
with an Intel Core2 Quad 2.4 GHz CPU. We choose
Gurobi 2.0 [28] to solve the ILP directly and CPLEX
12.1 [29] to enumerate optimal solutions when
necessary.
Simulation experiments
We first evaluated the performance of our ILP solution
with simulated gene tree data sets. Our simulation pro-
tocol included the following steps: (1) a species tree S of
n taxa was randomly generated as the template of a
gene tree; (2) a depth-first-search walk starting from Rt
(S) simulated at most one evolutionary event at each
vertex based on given probabilities for each event. These
events could be a duplication (duplicating the whole
current subtree) or a loss (cutting the current subtree).
If there is neither a duplication nor a loss, the process
proceeds to the next vertex. We used the same species
tree to generate k gene trees.
In our simulation experiments, we used a duplication

rate of 0.25 duplications per gene at each spe-ciation
vertex and a loss rate of 0.3. These events produced a
similar tree size distribution and optimal duplication
cost to the gene trees used by Sanderson and McMahon
[16]. We varied the number of taxa in the species tree
from 6 to 14 and the number of input gene trees from
10 to 1000. We performed 10 simulation replicates for
each different combination of species and gene tree
number. For each simulated data set, we also compared
the ILP score to results from DupTree [7], a fast hill-
climbing heuristic implementation for the problem, to
determine if the heuristic finds the optimal solution.
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Seed plant analysis
Next, we tested the ability of the ILP formulation to
solve the seed plant phylogeny problem using a large-
scale genomic data set. First, to build the gene trees,
amino acid alignments for gene families were selected
from Phytome v. 2, an online comparative genomics
database based on publicly available sequence data from
136 plant species [30]. To ensure positional homology
throughout the alignments, columns and sequences of
questionable certainty were masked using default set-
tings of the program REAP [30,31].We sampled
sequences from the nine gymnosperm taxa represented
in Phytome with the most data, including cycad taxon
Cycas rumphii, Gnetales taxa Gnetum gnemon and Wel-
witschia mirabilis, and, from the conifers, Cryptomeria
japonica from Cupres-saceae, and Pseudotsuga menzie-
sii, Picea glauca, Picea sitchensis, Pinus pinaster, and
Pinus taeda from Pinaceae. We also sampled sequences
from two representative angiosperm taxa, Arabidopsis
thaliana and Oryza sativa, and the non-seed plant,
Physcomitrella patens.
We selected all the 6,084 masked amino acid align-

ments from gene families in Phytome that had at least 4
sequences and had sequences from at least 3 of the
selected taxa. All species were found in at least 376
gene families. To build the gene trees, we performed
ML phylogenetic analyses on each of the gene align-
ments using RAxML-VI-HPC version 2.2.3 [32]. The
ML analyses used the JTT amino acid substitution
model [33] with rate variation among sites (the “PROT-
MIX” model; see [32]). The trees were then rooted
using mid-point rooting, as implemented in the Phylip
program retree [34]. We applied the ILP formulation to
solve the GD problem using all 6, 084 gene trees.

Results and discussion
Simulations
In the simulation experiments, the size of the species
tree has a major impact on running time (Table 2), but
we were able to find exact solutions for the GD problem
for data sets with up to 14 taxa (Table 2). On average,
the 14-taxon data sets took less than 2 hours. There is no

clear relationship between the number of gene trees and
the time it takes to solve the GD problem (Table 2).
Although the data sets with 1000 gene trees took, on
average, longer to solve than data sets with fewer gene
trees, in some cases with fewer gene trees (specifically, 10
gene trees) it is difficult to determine an optimal solution
when the optimal species tree is not unique. In compari-
son, the heuristic approach used in Dup-Tree found an
optimal solution in almost all of the simulated data sets
under only a few seconds. However, DupTree reported
suboptimal trees on some data sets with as few as 10 taxa
and 10 gene trees.

Seed plant analysis
The relationships among the major lineages of seed
plants has long been a major question in plant systema-
tics, especially with regard to the position of Gnetales, a
clade of three genera (Gnetum, Ephedra, and Wel-
witschia) that lack obvious morphological links to other
extant seed plants (e.g., [35,36,39]). Cladistic analyses of
morphological characters generally have placed Gnetales
sister to the angiosperms, or flowering plants [36,40-44];
however, early analyses of molecular characters rarely
supported this placement [35,37,39,45]. Most recently,
maximum likelihood (ML) and maximum parsimony
(MP) analysis of 15-17 plastid loci placed Gnetales sister
to the other seed plants [46]. However, a loss of plastid
ndh genes appears to link Gne-tales with Pinaceae [47].
An MP analysis of EST sequences from 43 nuclear
genes similarly linked Gnetales with the conifers [48].
Yet later MP and ML analyses of EST sequences from
over 1,200 nuclear loci placed Gnetales sister to the
other gym-nosperms [49]. All of these molecular ana-
lyses of the seed plant phylogeny have been limited to
puta-tively orthologous genes. However, the GD pro-
blem provides a way to incorporate large gene families
into the phylogenetic inference of seed plants.
Our implementation of the ILP formulation finished

running the data set in approximately two minutes. We
identified a unique optimal solution with 47, 658 dupli-
cations (Figure 1).In the optimal species tree, the seed
plants are split into angiosperm and gymnosperm clades

Table 2

n = 6 n = 8 n = 10 n = 12 n = 14

k time Dup time Dup time Dup time Dup time Dup

10 0.06 34.80 0.34 49.70 22.98 60.10 200.53 68.80 12597.21 78.40

50 0.03 189.50 1.26 265.00 8.74 280.00 159.26 346.40 2953.62 393.10

100 0.06 382.80 0.63 523.30 9.64 598.50 117.38 701.60 2191.65 825.70

200 0.05 788.20 0.54 994.90 11.03 1217.30 168.85 1372.50 2709.91 1627.70

500 0.25 1910.30 0.79 2458.60 13.92 2987.00 220.17 3678.80 4270.05 4001.70

1000 0.57 3842.60 0.96 5283.10 23.54 6140.90 330.34 7026.40 5014.61 8258.80

ILP running time and the optimal duplication cost using k simulated gene trees of n taxa as inputs. At each configuration, the result is the average of 10 trials.
The running time is measured in seconds.
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(Figure 1). In the gymnosperm clade, Gnetales are sister
to a conifer clade. With 6, 084 genes, this GTP analysis
of seed plants includes by far the most genes ever used
to infer the seed plant phylogeny. Our GTP analysis of
this large, previously underutilized, data source provides
a novel line of evidence that angiosperms and all extant
gymnosperms are sister clades. Like most ML analyses
of multi-locus data sets, our results show a close affinity
between Gnetales and conifers (e.g., [35,37,39,50,51]);
however, unlike many of these analyses, GTP does not
place Gnetales sister to Pinaceae. Due to the necessarily
limited taxon sampling, especially among non-Pinaceae
conifers, our results regarding the placement of Gnetales
are neither precise nor definitive. Still, the placement of
Gnetales sister to the conifers, is an intriguing result that
is consistent with some morphological characters, such
as ovulate cone scales and resin canals, which appear to
support conifer monophyly [36]. However, in contrast to
our result, the deletion of the ndh genes in Gnetales and

Pinaceae suggests that these clades are sister. Although
the GTP results are intriguing, they should be interpreted
with caution. For example, the results do not provide any
measures of confidence or suggest the degree to which
alternate phylogenetic hypotheses are sub-optimal.
Furthermore, the gene trees were rooted using mid-point
rooting, which may produce incorrect rootings when the
sequences do not evolve at a constant rate of evolution
[52]. Also, the taxon sampling in this analysis is limited,
and the seed plant phylogeny problem can be sensitive to
taxon sampling [45]. Thus, although our result provides a
novel large-scale genomic perspective on the seed plant
phylogeny, it is not a definitive.

Conclusions
Our ILP formulation provides exact solutions to the lar-
gest instances of the GD problem analyzed to date.
Thus, it can provide a large-scale genomic perspective
on important phylogenetic questions that previously
could only be addressed by heuristics. Furthermore, our
simulation experiments demonstrate that these heuristic
estimates can be misled with as few as 10 taxa. Even
when heuristics identify an optimal solution they cannot,
unlike ILP, determine if the solution is unique. In future
research the ILP implementation will be useful, not only
for solving empirical data sets, but for assessing the per-
formance of different heuristics by comparing their esti-
mates to the exact ILP solution. Ultimately, it also will
be useful to expand the scale of solvable instances
beyond 14 taxa. While this challenge may be addressed
by improved ILP formulations, investigations into other
algorithm concepts might also be effective (e.g., [14,23]).
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