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Abstract: Over the years, imaging and therapeutic modalities have seen considerable progress as
a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy,
has increasingly been employing nano-based approaches to treat cancer. While first-generation
nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and
non-specific distribution hindered their true potential. More recently, multistage nanovectors have
been strategically designed to shield and carry a payload to its intended site. However, detection by
the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major
obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration
from biology. These bioinspired approaches often involve the use of biologically-derived cellular
components in the design and fabrication of biomimetic nanoparticles. In this review, we provide
insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches
to increase their theranostic potential.

Keywords: biomimetic; bioinspired; cancer; multistage nanovectors; nanomedicine; nanoparticles;
theranostics

1. Introduction

Over the past several decades, medicine has benefitted significantly from the use of imaging
modalities to help guide diagnosis and treatment. While our ability to look inside the body was initially
largely limited to what could be felt, the introduction of more advanced imaging systems (e.g., X-ray
imaging) helped revolutionize the field of imaging and is now among medicine’s leading diagnostic
tools. Since then, imaging modalities to treat diseases have evolved from simple X-rays to high
resolution computer augmented virtual environments that allow physicians to navigate the various
layers of the body in greater detail [1–4]. However, despite imaging systems evolving to generate great
detail and delineate the complexity of the body, diagnosis and treatment algorithms continue to remain
a two-step process, consequently limiting the onset of therapy [5]. More so, although nanotechnology
has been introduced as an effective utility to concentrate a payload to a target site [6–8], thereby limiting
toxicity to healthy tissue and other side effects, this approach continues to require two distinct steps
to diagnose and treat disease. To mitigate these shortcomings, significant interest has been sparked
towards the development of therapies that aim to combine diagnostic and therapeutic capabilities into
a single agent.

This new class of treatment, referred to as theranostics, has led to the development of a large
arsenal of therapeutic agents that offer a viable one-step treatment solution [9–11]. For example,
nanomaterials capable of enhancing tumor imaging while concurrently delivering a therapy is only
one application in which theranostic-based technologies are being exploited [12,13]. With the urgency
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required in the timely diagnosis and subsequent treatment of cancer, time-saving theranostic treatments
have garnered tremendous support [5,14–16].

Recently, in an effort to further strengthen the effectiveness of theranostics, bioinspired approaches
have been developed with a goal of providing biological-like behaviors to synthetic theranostic vectors.
In this review, we outline the fundamental imaging modalities that have largely contributed to the
development of theranostic-based therapies followed with a discussion on multi-step delivery vectors
that have contributed to furthering efficacy for these imaging modalities. Lastly, a brief overview of
bioinspired theranostic strategies is discussed.

2. Nanoparticle-Based Theranostics

2.1. Iron Oxide Nanoparticles

Iron Oxide nanoparticles (IONP) have generated tremendous momentum in nanomedicine due to
their many beneficial properties [17]. Distinctive elements such as superparamagnetism, susceptibility
to surface-modifications (e.g., polyethylene glycol, dextran, polypeptides, etc.), and high surface
to volume ratios have proven highly useful, particularly for magnetic resonance imaging (MRI)
and drug delivery [18–20]. Composed of ferrite nanocrystallites of magnetite and their oxidized
counterpart maghemite, the last decade has witnessed considerable interest in these particles for
theranostic applications. Specifically, it has been found that when IONP are reduced to a size of
<20 nm, they become superparamagnetic in the presence of a magnetic field [21]. Conversely, when the
magnetic field is turned off, the particles become highly dispersed [22]. In clinical applications,
this feature is critical as the aggregation of particles can lead to detection and sequestration by the
mononuclear phagocyte system (MPS), inhibiting IONP from reaching their target and significantly
lowering their efficacy [23].

These features, coupled with the use of a magnetic field as a guiding mechanism, can be beneficial
in a number of ways. For example, the total drug amount needed to achieve a clinical effect can
be reduced, resulting in a decrease in the frequency of administration and minimal cytotoxic effects
on healthy tissue [24]. Furthermore, when subjected to an alternating magnetic field, IONP have
also been shown to dissipate heat, resulting in an increase in temperature in the surrounding area.
This feature has been exploited in magnetic hyperthermia to kill cancer cells, resulting in an increase
of over 10 ◦C at the injection site (Figure 1) [25]. Meanwhile, surface modifications (e.g., antibodies,
dyes, chemotherapeutics) garnered beneficial properties for IONP by prolonging circulation [26]
and increasing cancer-targeting abilities [27]. In one case, IONP were functionalized with cystine,
the oxidized dimer of cysteine, to achieve improved biocompatibility and hydrophilicity [28].
In addition, cystine-functionalized IONP demonstrated versatility as a viable contrast agent for
MRI, as well as ultrasonography, further exhibiting its potential for theranostic applications.
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Figure 1. (A) Transmission electron microscope image of IONP fabricated with a dopamine-anchored
shell, scale bar, 100 nm; (B) Quantitative analysis depicted the temperature changes at the nanoparticle
injection site versus the body core as measured with a fiber optic temperature probe. Images reproduced
from [25], with permission from BioMed Central Ltd., 2010.
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While multifunctional nanoparticles have recently gained significant attention, improvements
still need to be made in the loading ability of nanoparticles into the drug carrier. Yoon et al. reported
that IONP co-loaded with the chemotherapeutic, paclitaxel, into micelles, showed promising results
as a candidate for the combined imaging and treatment of cancer [29]. These results show micelles,
encapsulated with both a chemotherapeutic payload and imaging agent, were able to inhibit the
growth of a tumor in vivo by more than 50% compared to a control group, thereby demonstrating
this coupled approach as a promising theranostic tool. Nevertheless, limitations of IONP continue
to exist. For example, the physiological environment of the body causes drug-conjugated IONP to
suddenly release the payload upon administration, thereby limiting its effectiveness at the intended
site. Efforts to mitigate the adverse release of payloads have been achieved through the incorporation
of layer-by-layer fabrication using oppositely charged polymers [30]. This attempt exhibited the
development of a stabilized IONP formulation while also achieving the simultaneous loading of
naturally-derived compounds.

In general, multi-modal systems incorporating IONP have drawn considerable attention for
their magnetic and photothermal properties. In more recent efforts, merging polymer responsive
materials with IONP have exhibited desirable properties through the manipulation of environmental
factors to achieve therapeutic potency and imaging potential [31]. A more comprehensive analysis has
recently been conducted by Pellegrino and coworkers discussing the current state of magnetic-based
stimuli-responsive systems [32]. Nevertheless, the cytotoxicity of IONP is still debated, with some
reports revealing increased toxicity (i.e., disruption of cell cytoskeleton) [33] and others demonstrating
no toxicity (i.e., no increase of reactive oxygen species) [34]. Additionally, although IONP were
successful in generating initial buzz under familiar names such as Feridex, they ultimately failed
commercially due to adverse side effects and lack of diagnostic utility [35]. Despite this, a resurgence
of their use has been found in the treatment of iron deficiency with more recent efforts exploiting the
use of ferromagnetic IONP (i.e., permanent magnetism) for diagnostic imaging, thereby reaffirming
the multitude of applications possible with IONP.

2.2. Gold Nanoparticles

Similar to IONP, gold-based nanoparticles have also gained significant popularity over the past
decade, seeing applications ranging from optical bioimaging to detection of cancer. Features such
as high surface area to volume ratio coupled with cytocompatibility and stability have made gold
an ideal candidate for photothermal therapy [36]. In addition to these properties, ease of synthesis
and conversion of heat using near-infrared (NIR) light have enabled the use of gold (e.g., nanoshells,
nanorods, hollow gold) [37] for a variety of photo-triggered treatments. Specifically, using surface
plasmon resonance for photodynamic therapy has drawn particular interest. In particular, exploitation
of the combined resonant oscillation of free electrons present on the particle surface, thereby outputting
a sharp absorption band, has led to the use of gold nanoparticles in a variety of imaging and therapeutic
applications [38]. More so, the ability to conjugate antibodies onto the nanoparticle surface paved
the way for direct electron microscopic visualization while minimal toxicity and light scattering
efficiency opened the door for a multitude of biomedical applications. Khlebtsov et al. have shown
promising results of multifunctional nanoparticles consisting of gold-loaded hematoporphyrin-doped
silica particles as an antimicrobial therapeutic [39]. Others have also shown promising applications of
gold-based nanoparticles as antibiotic [40] and vaccine [41] delivery systems.

Despite numerous advantageous features, concern over their cytotoxicity still remains. A study
designed to evaluate the cytotoxic effects by Soenen et al. [42] revealed that high concentrations
(200 nM) led to the formation of reactive oxygen species, resulting in a 20% decrease in cell viability
after 24 h. Nevertheless, the same study exhibited that a concentration of 100 nM showed negligible
toxicity. To mitigate toxicity, Choi et al. [43] designed a gold-loaded nanocarrier that was shown to
increase circulation time and tumor accumulation while minimizing disruption of metabolic activity
and cell viability. The ability to localize more gold to the tumor site through an increase in circulation
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enables a hyperthermia-based approach to be more effective and reveals a promising tool for translation
into the clinic.

Although great success has been observed with gold nanoparticles using in vitro and in vivo
models, lack of homogeneity in human cancer prevents gold from showing the same success in
the clinic. In addition, the high cost associated with development of gold nanoparticles remains as
another barrier preventing clinical translation [35,44]. For this reason, continued investigation in the
scale-up for commercialization and clinical trials needs to be re-evaluated and optimized to meet the
demand of the clinic. However, as is often the case with nanoparticles, delineation of nanoparticle
accumulation at the target site can often be difficult to assess in clinical trials, serving as a barrier to
their proper investigation.

2.3. Quantum Dots

Showing similar rise in popularity are non-metal theranostics such as quantum dots (QD),
colloidal particles that can range in size from 1 to 10 nm in diameter [45,46]. These semiconductor
nanocrystals, synthesized using a cadmium selenide (CdSe) core with a zinc sulfide layer to maintain
desirable crystallinity and homogeneity, are able to emit light and exhibit distinctive optical qualities
that are not found in organic dyes or florescent probes [47]. These qualities include exhibiting high
luminescence, a more stable and restricted emission spectrum, and a broader excitation field [45,48].
This is helpful in monitoring long-term studies such as the interactions of multi-labeled biological
markers in cells. Additionally, the ability to fine-tune the fluorescence emission of QD from ultraviolet
to near-infrared wavelengths has exhibited beneficial properties for studying the extravasation of
cancer cells in vivo. For example, conjugating antibodies that target different tumor markers onto QD
allows for the real-time imaging of cancer cells as they metastasize [47].

Additionally, surface modification of QD can provide further benefits. To create water-stabilized
QD with increased photostability and enhanced functionality, Medintz et al. were able to use
ligand exchange to replace hydrophobic capping ligands with hydrophilic bifunctional ligands [49].
These aqueous QD can be used for fluorescence imaging or to trace receptor mediated trafficking in live
cells and for long term labeling of endosomes without any drastic harmful effects [50]. After successful
in vitro studies, Gao et al. developed a copolymer coated QD to target and image prostate cancer
in vivo [51]. Using this method, the tumor could be actively probed by the antibody conjugated
QDs and imaged in live animals. Further tuning the size to favor rapid clearance from the body and
applications calling for high sensitivity have the potential to make QD an integral part of imaging the
human body.

Nevertheless, caution must be taken when using QD in vivo. Many studies indicate that the use
of cadmium is toxic and that it possesses DNA-damaging properties. Other groups suggest that the
use of cadmium in the cellular environment also results in the formation of reactive oxygen species
that contributes to cell death. Thus to prevent or reduce these harmful effects, passivation can be
used to protect the core from oxidation and lower the toxic effects [52]. Nevertheless, more recent
efforts have aimed to harness the diagnostic potential of QD and couple them with a chemotherapeutic
such as doxorubicin, a commonly used anthracycline drug. In a study performed by Bagalkot et al.,
QD were used to develop a QD-aptamer-doxorubicin conjugate capable of targeting cancer cells
(Figure 2) [53]. This approach harnesses the targeting potential of the aptamer specifically selected to
localize at prostate cancer cells expressing the antigen. Following binding to the target, the conjugated
doxorubicin is released, resulting in the activation of the QD core, consequently allowing for the
simultaneous imaging of the cancer cells. However, to be properly translated into the clinic, significant
work still needs to be performed investigating the toxicity of QD. As it currently stands, QD translation
into in vivo models often portrays difficulty in identifying the dominant and compensation mechanism
employed [54], spurring a need for a multi-modal QD system. In addition, further evaluation of toxicity
is needed before QD can reach clinical translation status.
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Figure 2. (A) Schematic illustration demonstrating the Bi-FRET-based QD-aptamer-doxorubicin
nanoparticle. This approach results in the simultaneous quenching of QD and doxorubicin;
QD fluorescence is quenched by doxorubicin while doxorubicin fluorescence is quenched by
QD; (B) Schematic illustration depicting the internalization via the PSMA endocytosis pathway.
Internalization results in the release of doxorubicin from the conjugated nanoparticle, thereby resulting
in cell death and the triggering of QD fluorescence. Images reproduced from [53], with permission
from American Chemical Society, 2007.

3. Multistage Nanovectors

Despite all the advantages first-generation nanoparticles provide [55,56], the many biological
obstacles they are required to overcome have led to the development of several delivery
vectors designed to decouple the multitude of tasks required to bypass these barriers [57–59].
Previously, our group introduced multistage nanovectors (MSV) [60,61], engineered to systemically
shield, transport and reliably deliver therapeutic and imaging agents, thereby making them ideal
for theranostics applications [62,63]. Designed using porous silicon due to its biocompatibility and
degradability [64,65], well-established fabrication techniques make it possible to uniquely control
parameters such as shape, size, and porosity that can aid in the strategic negotiation of biological
barriers [56,57,66]. As one example, mathematical modeling has revealed that MSV exhibit superior
margination and adhesion during systemic circulation, favoring the release of a payload into the
extracellular space [67,68]. In addition, functionalization of the MSV surface with biological moieties
(e.g., antibodies, aptamers, phages) can further aid in the negotiation of biological barriers such as
avoidance of MPS and targeting of inflamed vasculature [8,69]. This versatility, combined with the
ability to control the release kinetics of a payload [70], makes MSV a promising tool for theranostics
applications [71,72]. Furthermore, porous silicon as a material has been extensively studied for various
medical applications including diagnostics, drug delivery, implantables, and tissue engineering [73,74].

Nanoparticle Loading into Multistage Nanovectors

The nano-sized pores of MSV facilitate the loading and retention of several types of nanoparticles
that effectively bestow MSV with novel therapeutic and diagnostic functions [75]. For example,
loading MSV with liposomes containing small interfering RNA (siRNA) directed against the EphA2
oncoprotein resulted in the sustained delivery of siRNA and silencing of the protein in ovarian
tumors for up to three weeks, substantially extending the silencing impact of free liposomes that
previously required biweekly administration to achieve a similar response [76]. This work was further
expanded to demonstrate an enhanced tumor response by combining chemotherapy (e.g., Paclitaxel
and Docetaxel) with sustained EphA2 siRNA delivery using MSV [77]. This approach resulted in a
significant reduction in tumor burden with complete inhibition of tumor growth when combined with
chemotherapy in two different tumor models, including a highly aggressive and chemoresistant model
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(i.e., HeyA8-MDR). In addition, this approach of MSV/siRNA was validated in treating breast cancer
by delivering siRNA-targeting ataxia telangiectasia mutated (ATM) genes using liposomes [78] or by
modifying the surface of MSV with polyethyleneimine to form nanocomplexes within the pores to
deliver ATM [79], STAT3, and GRP78 siRNA [80] inducing significant reduction in cancer stem cells.
MSV loading with paclitaxel micelles exhibited a similar sustained delivery and suppressed tumor
growth with a single administration, confirming the sustained release characteristics of MSV upon
loading with nanoparticles [81].

Lastly, a cooperative thermal therapy approach for breast cancer was demonstrated by loading
NIR responsive hollow gold nanoparticles into MSV [82]. This approach enabled a two-fold increase in
heat generation and more efficient cell killing independent of genetic mutations expressed by the breast
cancer cells (i.e., HER2 vs triple-negative) (Figure 3). This cooperative effect was generated due to
the collective electromagnetic dipole-dipole coupling of gold nanoparticles within MSV, resulting in a
coherent thermal spot-source allowing for more efficient heat dissipation and increased energy transfer
and heat production.
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Figure 3. (A) Schematic illustration depicting the mesoporous silica nanoparticle matrix functionalized
with a folate targeting moieties and fluorescent dyes; (B) Dorsal (top) and abdominal (bottom) in vivo
images of tumor-bearing mice treated with non-conjugated mesoporous silica nanoparticles (PEI)
and folate conjugated nanoparticles (FA) over a 72 h time period. Dorsal images depict nanoparticle
accumulation in the tumor while abdominal images depict accumulation in the bladder. Mice were
each inoculated with two tumors. Images reproduced from [82], with permission from Cell Press, 2011.
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The diagnostic potential of MSV was further evaluated by investigating emerging properties
upon loading with contrast agents. The loading of MSV with gadolinium-based contrast agents
(Magnevist, spherical fullerenes and carbon nanotubes encapsulating gadolinium ions) revealed a
50-fold increase in the relaxivity of MRI compared to clinically available contrast agents and, thus,
significantly enhanced the T1 contrast possible [83]. This improved relaxivity and contrast enhancement
was attributed to geometric confinement of the contrast agents within the pores of MSV. This confining
effect resulted in an increased tumbling rate, thus inhibiting the ability of the contrast agents to rotate
freely and effectively, reducing the mobility of the water molecules. The impact of confinement was
studied by loading Magnevist in MSV with various pore sizes and demonstrated that smaller pores
bestowed greater relaxivity enhancement [84].

In addition to gadolinium, MSV loaded with superparamagnetic iron oxide nanoparticles (SPION)
demonstrated increased negative contrast suitable for T2-weighted MRI compared to free SPION [85].
Furthermore, MSV have been successfully loaded with fluorescent QD [86] and carbon nanotubes [87]
with their surface allowing for the covalent attachment of NIR fluorescent dyes, radioactive molecules,
and therapeutic agents [88]. The flexible and versatile nature of MSV has the potential to generate
theranostic agents by co-loading nanoparticles that individually provide therapeutic (e.g., siRNA,
micelles, gold) or diagnostic (e.g., gadofullerenes, gadonanotubes, SPION, QD) action and thus whose
combination would result in treatment and imaging. Alternatively, the surface of MSV could be used
to attach diagnostic and therapeutic agents, permitting one to use the full porous matrix to load a
nanoparticle payload. Furthermore, any current or future theranostic nanoparticle smaller than 100 nm
can be incorporated into MSV with relative ease, enabling advanced generations of theranostic agents.

4. Bio-Inspired Theranostics

Recently, bio-inspired approaches have gained increasing popularity in overcoming the current
limitations of drug delivery systems such as biocompatibility, toxicity, and targeting [89,90].
FDA-approved Abraxane, albumin-bound paclitaxel, represents the first example of a bio-inspired
approach and has been shown to improve circulation time while reducing unwanted side effects
of chemotherapy. Harnessing albumin’s innate ability to transport hydrophobic molecules and
interact with endothelial cells has led to Abraxane exhibiting increased efficacy of paclitaxel,
thereby demonstrating itself as an effective adjuvant therapy. This manipulation of biological matter
and its incorporation into synthetic carriers and payloads was proposed to both improve the delivery
of drugs and assist in accumulation of imaging agents. As such, theranostics based on the mimicry or
incorporation of biological components were developed to exploit all levels of biological complexity.

It is therefore not only important to select a material that works compatibly when administered
but to also consider rational design when engineering drug delivery vectors. Although nanoparticle
design has traditionally centered on the use of spherically-shaped particles due to ease of synthesis,
more recent efforts have been biologically inspired, leading to the design of vehicles that are
strategically shaped to optimally travel within the blood stream and overcome biological barriers.
In the preceding case (Section 3), MSV were designed to mimic the size and shape of red blood cells
to increase margination towards vessel walls. Similarly, other efforts have drawn inspiration from
bacteria’s worm-like structure (e.g., filomicelles) [91]. Specifically, the elongated shape of filomicelles
and nanoworms have shown great promise as delivery vehicles both for chemotherapeutic delivery [92]
and imaging applications [93]. In addition, hyper-branched polymeric structures have also been
designed to covalently link drug molecules to a substrate, providing controlled drug release mediated
through degradable linkages [94]. Nevertheless, although shape has played a pivotal role in drug
delivery carrier design, other efforts have leveraged physical incorporation of biological components.
As such, this section will highlight some key aspects of bio-inspired theranostics such as enzymatic
substrates, natural-derived transporters, viruses, and cells.
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4.1. Proteases

Proteases (e.g., caspases, metalloproteases (MMP), furin) have been identified as a component
of the tumor environment that is commonly overexpressed and, thus, is a prime tool to exploit
for the development of bio-inspired strategies. Recently, nanoformulated protease substrates were
proposed as a new research tool to investigate proteolytic activity in the intra- and extra-cellular space.
These substrates work by taking advantage of the cleavage of monomeric units that polymerize after
cleavage, functioning as an enhanced fluorescent signal or theranostic agent [95,96]. Another strategy
designed by Kim et al. involved the use of MMP and cathepsin B as an activation mechanism for
fluorescent nanoprobes [97]. In this way, the imaging of a tumor area can be enhanced knowing that
proteolitic enzymes are readily present in the tumor microenvironment, thereby leading to the cleavage
of the imaging probe and higher specificity of imaging agents. Wong et al. developed a QD-loaded
gelatin multistage nanoparticle designed to degrade in the presence of MMP-2, a protease highly
expressed in the tumor microenvironment, thereby releasing smaller sized QD that readily diffuse into
the tumor [98].

Cathepsins, monomeric proteases, have also been identified as viable targets to be employed in
targeted-based therapies. Typically activated in low pH environments such as lysosomes, cathepsins
have been abundantly expressed in various malignant tumors and are known to increase cancer
cell recruitment. In one strategy, PEG was combined with cathepsin B to form a liposomal
nanoparticle that facilitates the targeting of cathepsin B expressing cancer cells, allowing the release
of a therapeutic payload at a target site [99]. Cathepsin was similarly used in an effort to mitigate
the unwanted side effects of chemotherapeutic camptothecin derivatives [100]. When cathepsin B
was conjugated onto a camptothecin derivative, similar anti-tumor effects were observed without any
toxic effects. This method demonstrates considerable promise in the use of proteases to develop viable
bioinspired strategies.

4.2. Lipoproteins

Similar to proteases, lipoprotein-based nanoparticles have also been extensively evaluated as a
suitable bioinspired approach for the transport of theranostic payloads [101]. This class of nanoparticles
is biochemically synthesized by the body and governs the transport of lipids, enabling fats to be carried
in the blood stream. Additionally, lipoproteins possess innate biocompatibility properties, inspiring the
design of long circulating particles aimed at improving the transport of hydrophobic payloads. Unique
properties such as their small size (<40 nm) and amphiphilic nature favor their diffusion, in addition
to their payload, deeper into the tumor mass. As such, low-density (LDL) and high-density (HDL)
lipoprotein-based carriers have been developed to exploit these properties and increase the delivery
of therapeutic and imaging agents through weak chemical interactions (i.e., covalent bonds) and the
exchange of a hydrophobic core with a payload of interest.

For example, LDL conjugated with radiolabelled tracers was shown to accumulate in the tumor
within 24 h of injection, shedding light to the abnormal traffic of these molecules and lipid metabolism
during cancer [102]. Furthermore, LDL has been shown to possess great propensity in accommodating
a variety of agents for photodynamic therapy (e.g., NIR-molecules [103–105]) and can further be
modified to target cancer cells. For example, Zheng et al. showed that by conjugating a tumor-homing
molecule through a lysine substitution and coupling LDL with folate, accumulation of LDL in cancer
cells is improved [106]. Conversely, HDL-based delivery systems rely on the over expression of their
natural receptor, scavenger receptor class B type I, in many cancer cells [107,108]. It was hypothesized
that HDL could represent a major source of cholesterol for growing neoplastic lesions [109]. This led to
increased interest in HDL-based carriers and the loading of chemotherapeutics (e.g., paclitaxel) [110]
and NIR agents capable of generating reactive oxygen species under light irradiation, resulting in the
killing of cancer cells.
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4.3. Viral & Cellular Vesicles

Further inspiration for suitable bioinspired approaches was found by imitating the working
mechanism of viruses. Their enhanced ability to target and integrate their genome into the
DNA of human cells makes them a promising tool for drug delivery. In particular, adenoviral
particles were investigated as ideal carriers for gene therapy in vivo with recent efforts focused
on coupling these carriers with metallic particles for improved imaging and curative properties.
Specifically, iron particles were shown to readily absorb onto the adenovirus surface resulting in
a hybrid particulate with promising theranostic properties. To further refine and standardize
the hybridization process, Everts et al. modified the surface of adenoviral vectors with gold
nanoparticles [111]. This led to the ability to use the adenoviral vector for its tumor-associated
antigen homing ability and the gold nanoparticles for their ablation properties.

Conversely, inspiration drawn directly from cells found in the body (i.e., erythrocytes, leukocytes,
mesenchymal stem cells) have also gained increasing prominence. Over the past two decades,
erythrocytes have been investigated for their biocompatibility, prolonged circulation, and their
desirable isolation and manipulation properties. In addition, the ability to load a payload
into the cellular body through concentration gradients makes erythrocytes a promising carrier.
Methotrexate, a chemotherapeutic used to treat inflammatory diseases, loaded into erythrocytes,
represents one of the first examples to successfully inhibit cancer growth. The loading of
photo-triggered hematoporphyrin derivatives into erythrocytes has also been shown to provide
antibody-mediated delivery of the derivatives with increased efficacy [112]. For prolonged circulation
and decreased clearance of IONP, Markov et al. designed a protocol that incorporates IONP into
erythrocytes that demonstrated considerable improvements in imaging properties of IONP for
MRI [113]. In a similar strategy, Hu et al. incorporated erythrocyte cellular membrane to coat
poly (lactic-co-glycolic acid) (PLGA) particles (Figure 4) [114]. Following functionalization with an
erythrocyte shell, it was reported that PLGA particles remained in circulation for three days following
administration in vivo, demonstrating promising potential as a delivery vector. This approach was later
further optimized to combine a hybrid erythrocyte/platelet-derived membrane to provide increased
circulation and marry the two distinct functions of each donor cell source [115].

Similarly, cell-derived vesicles known as exosomes have also garnered significant interest due to
their small size and protein function. As such, exosomes have been reported as vesicles that facilitate
transport of biological materials (e.g., proteins, mRNA) to different tissues by utilizing vascular
systems [116]. This has led to attempts to isolate exosomes and load them with therapeutic payloads
(e.g., siRNA) to exploit their natural tropism, in addition to their biocompatibility and prolonged
circulation, thereby making them a promising tool for theranostics [117]. Despite this, exosomes still
lack many of the proteins needed for targeting cancer and overcoming biological barriers to actively
target inflammation. Leukocytes, on the other hand, are decorated with many essential proteins needed
for bypassing the MPS, communicating with the endothelial layer, and reaching an inflammatory site.

Mesenchymal stem cells (MSC), often favored due to their innate ability to home to inflammation,
have also been considering as a unique tool for drug delivery and as a theranostic system.
When previously doped with hyaluronic acid, MSC displayed a substantial increase in homing
to inflammation when evaluated in vivo using an inflamed ear animal model [118]. To exploit the
innate homing observed with MSC, our group functionalized MSV with a photosensitizer and allowed
MSC to internalize our nanoparticles [119]. In a breast cancer animal model, MSC demonstrated
successful homing to the tumor, thereby facilitating precise photodynamic therapy using a low power
laser source. This method resulted in a 70% decrease in tumor cell viability following photodynamic
activation, demonstrating cell-based drug delivery as a versatile therapeutic strategy.

Inspired by the innate biological properties of leukocytes, our group developed a tool designed to
mimic leukocytes while exploiting the MSV as our foundation. By coating MSV with freshly isolated
leukocyte membranes, our group was able to prolong circulation, avoid MPS uptake, and communicate
with the endothelium through critical surface markers [72]. Specifically, it was demonstrated that
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over 150 transmembrane proteins were successfully grafted onto the MSV particle [120] while still
maintaining the bioactivity necessary to facilitate vascular permeability [121]. In addition, it was
demonstrated that when MSV were functionalized with cellular membrane derived from a syngeneic
cell source, prolonged circulation was achieved with a delay in sequestration in vivo [122].
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Figure 4. (A) Schematic illustration demonstrating the fabrication of erythrocyte-coated PLGA
nanoparticles; (B) Transmission electron microscope images of erythrocyte-functionalized PLGA
nanoparticles and DLS measurements depicted nanoparticle size (black), PDI (red), and zeta potential
over 14 d; (C) Fluorescent microscope images depicting the colocalization of erythrocyte membranes
(green) and PLGA cores (red) following internalization by cervical cancer HeLa cells after 6 h.
Images reproduced from [114], with permission from National Academy of Sciences, 2011.

More recent efforts have incorporated leukocyte proteins directly into a proteolipid formulation,
resulting in proteoliposomal vesicles dubbed leukosomes [123]. In this approach, the targeting
potential and extended circulation of leukocytes can be granted to all classes of drugs capable of
being loaded into liposomal core or within the liposomal bilayer (i.e., hydrophobic, hydrophilic,
and amphiphilic). Using leukosomes, a 5-fold increase in targeting inflamed vasculature was displayed
when compared to liposomes in as little as 1 h following intravenous administration, with an 8-fold
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increase being observed at 24 h (Figure 5). These features ultimately allow for greater accumulation
at the inflammation site with minimal cytotoxicity to healthy cells, making them promising tools for
further evaluation for theranostic-based therapy. Further evaluation of this bioinspired tool revealed
a 16-fold increase in breast cancer accumulation relative to liposomes with similar significance also
observed in an atherosclerotic plaque animal model [124]. In an effort to evaluate the potential
imaging applications using MRI, leukosome bilayers were functionalized with gadolidium chelating
phospholipids. This revealed a linear increase in contrast as the leukosome concentration increased,
representing promise as an imaging modality and theranostic tool.
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nanoparticles; (B) Intravital microscope images comparing liposome and leukosome accumulation
in a lipopolysaccharide-inflamed mouse ear at 1 h and 24 h. Quantitative analysis was performed
by calculating the area fraction covered by nanoparticles. Error bars represent the mean ± SD of a
minimum of ten fields of view from three mice. Images reproduced from [123], with permission from
Springer Nature, 2016.
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As with many clinical therapeutics, ease of translation and scalability remains a valid concern.
As such, our group exhibited development of leukosome particles using a commercially available
microfluidic system did not hinder production and provided similar grafting compared to traditional
thin layer evaporation [125]. Specifically, we demonstrated a comparable transfer of proteins onto the
liposomal surface with more efficiency in protein integration observed (i.e., 90% protein integration).
In addition, leukosomes were found to remain stable up to one month following fabrication,
highlighting the validity of the micro-fluidic system in nanoparticle generation. Particularly, the use
of the NanoAssemblr micro-fluidic system was showcased as a promising tool to be used in
the fabrication of biomimetic nanoparticles up to 5 mL with scalability to larger micro-fluidic
systems (i.e., 1 L batches) made possible with relative ease. Although further studies are still
needed, bioinspired theranostics have displayed great promise as therapeutic and diagnostic tools,
supplementing an already vast arsenal.

5. Conclusions and Future Perspectives

Over the past several years, nanotechnology has spurred the development of a multitude
of delivery vehicles and the exploration of a variety of imaging modalities. Theranostics have
recently been introduced as a means to unify the dual-step process typically required to diagnose
and treat disease. Through the development of one-step theranostic platforms, it is now possible
to visualize the disease while simultaneously providing therapy, allowing for the ability to tailor
a therapeutic regimen to accommodate the adaptations of the disease and minimize toxicity to
healthy tissue. Herein, we briefly highlighted how inorganic nanoparticles have been employed
in the use of theranostic-based application (for further reading on the subject see [126,127]). However,
to further maximize the efficiency of these theranostic platforms, it is critical to incorporate bioinspired
approaches that can be strategically optimized to provide even greater targeting potential and
accumulation of a payload. As mentioned in this review, bioinspired approaches have been created to
not only harness the innate properties typically presented by the cells of the body, but to offer unique
approaches to delivery therapeutic cargoes that display hydrophobic characteristics such as in the case
of Abraxane.

In addition, although this review has focused primarily on a select number of nanotechnologies,
it is important to note that other materials have also shown promising results as theranostic and
biomimetic systems. For example, graphene, carbon nanotubes, and polymeric nanoparticles
have garnered significant interest from the scientific community, with trends on social media also
highlighting their popularity [128]. In the case of graphene, much work has been performed
showcasing the photothermal abilities along with various targeted delivery strategies [129,130].
In addition, the use of other inorganic nanoparticles (e.g., halloysites) have also seen promising
use in the stabilization of otherwise agglomerate-prone nanoparticles [131,132]. Overall, with the
convergence of theranostic technologies and bioinspired approaches, a new wave of one-step solutions
that offer personalized and precision-based technologies can be realized.

Nevertheless, to effectively translate current biomimetic theranostics into the clinic, further
investigation into several components is still needed. First and foremost, the issue of scalability
remains the primary barrier for translation into the clinic. As the incorporation of biological matter
into nanoparticles requires refined and intricate decoration, scalability may not always be a case of
simply doubling the materials required for fabrication. In addition, an issue that currently plagues
nanoparticle success is lack of homogeneity between patient to patient, opposite of what is commonly
observed in small animal models. This is further complicated by the observation of phenomena which
are observed in animal models (e.g., enhanced permeability and retention) yet lack sufficient proof in
humans. Although significant strides have been made in the translation of the various nanoparticles
discussed into preclinical and clinical trials [35], additional work is still needed. Specifically, it is
imperative that to effectively continue investigation, careful selection and examination of animal
models is employed.
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