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ABSTRACT

Binary subcomplexes in proteins database (BISC) is
a new protein–protein interaction (PPI) database
linking up the two communities most active in their
characterization: structural biology and functional
genomics researchers. The BISC resource offers
users (i) a structural perspective and related infor-
mation about binary subcomplexes (i.e. physical
direct interactions between proteins) that are either
structurally characterized or modellable entries
in the main functional genomics PPI databases
BioGRID, IntAct and HPRD; (ii) selected web
services to further investigate the validity of
postulated PPI by inspection of their hypothetical
modelled interfaces. Among other uses we envision
that this resource can help identify possible false
positive PPI in current database records. BISC is
freely available at http://bisc.cse.ucsc.edu.

INTRODUCTION

Structural biological techniques have advanced in recent
years and are able to resolve the quaternary structures of
increasingly large, transient or permanent, protein
complexes. Functional genomics experiments to investi-
gate protein–protein interaction (PPI) have diversified
and new technologies are emerging rapidly. Most
laboratories submit their findings to literature and
publicly available databases. While integration of such
repositories is urgently needed and improving, different
criteria for data selection and curation can be of interest
to specialist users and a large number of different PPI
databases will prevail [for a recent review, see Ref. (1)].

Here, we introduce a new database resource: BInary
SubComplexes in proteins (BISC). BISC allows users to
explore known and modellable subcomplex (SC) structures
in current functional genomics PPI databases in user-
friendly manner. BISC is organized in three main sections:

Characterized subcomplexes (BISCHom+BISCHet)

This section contains binary substructures extracted from
crystallographically determined structures in the Protein

Data Bank (PDB) (2) and the predicted biological
assemblies based on their coordinates by PISA (3).
Homodimeric and heterodimeric interfaces are separated
for further analysis, since the latter are evolutionarily
more constrained with respect to mutations, due to their
symmetry. Users can search by keyword or sequence
similarity (with either of two suspected interaction
partners or both) (Figure 1A) to retrieve an informative
BISC page for each SC of interest (Figure 1B). Alongside
fully interactive, embedded Jmol (4) displays emphasising
the interface, structural information and links are provided,
e.g. SCOP (5) classification of both partners; interface size
and residues [the buried surface area computed by
NACCESS (6)] and energy scores by PISA (3).
Importantly the SCs can serve as potential template struc-
tures for modelling protein complexes by homology
(see below).

Modellable interactions in functional genomics
databases (BISC-MI)

BISC-MI features a list of modellable interactions (MIs)
in three of the most widely used databases of experimen-
tally reported PPI (1): the BioGRID (7), IntAct (8) and
the Human Protein Reference Database (HPRD) (9).
Modellable PPI share sequence similarity between both
partners and a template structure in BISCHom or
BISCHet (Figure 1C). Users can generate protein struc-
tural models dynamically, by an automated procedure
using the program MODELLER (10). Multiple sequence
alignments (MSAs) for each partner family are generated
beforehand because MSA-based modelling generally
delivers better models than pairwise alignment procedures.
A link to the output page (Figure 1D) is returned by email
reply. It provides embedded interactive displays of the two
protein family MSAs [using Jalview (11)] and the model as
well as a link for downloading the atomic coordinates.
Athough it is important to stress the speculative and
unproven nature of any such model, it can often serve as
a valuable starting point for further validation.

Data and tool linkouts for validative analyses using
structural bioinformatics

The user may want to inspect the surface properties of the
template and/or modelled SCs, e.g. electrostatic charge and
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hydrophobicity. Validation programs can help evaluate
the feasibility of a hypothetical PPI, e.g. by evaluating
complementarity of the two interacting protein
surfaces. However, some require specialized input files
[e.g. the web/Java tool MolSurfer (12) and the valid-
ation program SCOTCH (13)] or produce output too
difficult to interpret for non-experts [e.g. PISA (3)].
Information from these programs are easily obtained
from BISC pages.

Currently BISC is fully updated three times each year.
Help documentation and a tutorial example are available
at the BISC web site.

DATA SOURCES AND SELECTION

Figure 2 shows an overview schematic of how BISC
content is selected. Below we provide further

Figure 1. Screenshots of selected BISC output pages. (A) In this example, a user searched the Characterized SC Section with the keyword ‘prote-
asome’. (B) An excerpt of the output page for one of the binary SCs of the known proteasome a-ring structure from the archaeon Archaeoglobus
fulgidus (PDB:1J2P) is shown to illustrate BISC page layout, Jmol (4) displays and options. Links at the top of the page indicate that MIs are
available (in the BISC-MI Section) in all three functional genomics PPI databases, the BioGRID (7), HPRD (9) and IntAct (8). (C) Models of the
hypothetical SCs relating to these PPI (in various species) can be requested by a web form. (D) An excerpt of the results page for one of these
requests. Validative scores from MODELLER (10) and SCOTCH (13) are displayed at the top of the page, MolSurfer (12) can be launched to
compute compatibility scores ECC and HCC. One of the family alignments for each interaction partner is visible in the interactive Jalview (11)
display, scrolling down would reveal the other.
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implementation details. For technically interested users
additional method diagrams within the BISC online docu-
mentation offer further detail on depicting data extraction
from PDB and PISA and the BISC-MI modelling pipeline.

Characterized subcomplexes (BISCHom+BISCHet)

BISCHom and BISCHet are generated by extracting
binary SCs from crystallographic protein structures in
the PDB (2) (Figure 2, top left). Generally we retain PPI
between partner proteins from the same species. To
capture all plausible binary interfaces (even those not
present in the PDB co-ordinate file, for example
PDB:1JL5 contains only one subunit of the homo-
tetrameric protein complex), we run PISA (3) on the set
and extract the top-ranked predicted stable assembly for
each structure as an alternative source of SCs. Interfaces
present in both PDB and PISA assemblies are identified by
cross-matching their ATOM records because chain iden-
tifiers may differ. If the top-ranked PISA assembly
contains more protein subunits than the PDB record it
is carried forward. Next, multi-protein complexes are
carried forward (separately for PDB and PISA-derived
complexes) if several partner proteins are longer than 40
amino acids. Buried surface area is calculated by
NACCESS (6) to identify direct interfaces (values listed

are half the total buried area on both subunits). All inter-
acting subunit pairs are extracted originally. However, we
only return SCs with buried surface area >200 A2 in
standard uses of BISC (searches and browsing), to
prevent that non-expert users are misled by peripheral
contacts. Homodimeric and heterodimeric SCs are then
separated to produce BISCHom and BISCHet, respective-
ly, after the sets are redundancy filtered to <95% pairwise
identity using PISCES scripts (14) on the corresponding
pdbaa sequence file (this is provided by the Dunbrack
group for weekly PDB updates). To prevent that
non-identical interfaces in homo-oligomeric structures
(from PDB and PISA) are removed from BISCHom, all
interfaces are checked for size differences before PISCES.
A list of all PISCES-eliminated structures is retained and
included in keyword and PDB-ID searches by default.

Modellable interactions (BISC-MI)

For BISC-MI, the data source are PPI records from the
three functional genomics databases: the BioGRID (7),
IntAct (8) and HPRD (9) (Figure 2, top right).
Currently only PPI with SWISS-PROT (SP) accession
codes among the list of protein identifiers are carried
forward. A postulated PPI is listed in BISC-MI if (i)
both partners elicit E-values <10�10 to different chains

Figure 2. BISC design and content in schematic overview. The main data sources for the two BISC database sections described in the text
[BISC(Hom+Het) and BISC-MI] are shown with the numbers of records that were processed and collated in the most recent update (October
2010; interface sizes >200 Å2). PISA, protein interfaces, surfaces and assemblies Protein Interfaces Surfaces and Assemblies (3); SP, SWISS-PROT
(15); BioGRID (7); IntAct (8); HPRD, Human Protein Interaction Database (9). For inclusion in BISC-MI section, all selection criteria must be met.
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in the same SC in BISCHom or BISCHet (which would be
used as a template structure for modelling); (ii) the
BLAST local alignments with this template SC span at
least 50% of each of its partner sequences; and (iii) are
at least 50 amino acids long. MIs are reported in separate
tables depending on their PPI-database source. Systematic
species names are obtained from the National Center for
Biotechnology Information (NCBI) via the TaxID
annotation in their SP sequence records.

Model building

Modelling requests from BISC-MI are processed by an
automated template-based modelling (homology
modelling) protocol using the popular MODELLER
program (10) (Figure 2). To ensure that the two
required pairwise alignments (between the target and
template proteins) are as accurate as possible, each is
based on a MSA. Homologues are collected by
BLASTing each target sequence against species with
complete proteomes in SP (15) and including the most
similar protein in each species with E-values �10�10.
Both partner families are filtered so they include the
same species set (this is so that future implementations
can model all likely orthologues simultaneously). The
two MSAs are generated, and the respective template se-
quences added, with MUSCLE (16) using the alignment
and sequence-to-profile alignment options, respectively.
Aligning full-length protein sequences with the often
shorter template sequences automatically can produce
unsatisfactory results with any method. To pre-empt
sub-standard models being derived in such instances, we
apply empirical criteria to either generate a warning (but
still return a model) or abort the process. These criteria
look for excessive gapping in the MSA and length differ-
ences; their specifics are documented at the BISC web site.
Finally the requested co-ordinate model is produced by
MODELLER through a standard multi-chain template
protocol and returned by email. To stress the speculative
and unproven nature of any such model our results pages
carry a warning to reflect this. By offering MSA and
model production as a service, rather than a pre-computed
section within BISC, we account for the possibility that
additional homologues become available in between
regular BISC updates. However, all request results are
stored. If a request is made for a model that was
produced previously, the user can either produce a new
model or gain immediate access to a previously produced
MI results page.

Validative interface scores and methods

It is currently impossible to discern true PPI from artefac-
tual PPI with certainty, computationally, even if a crystal
structure is available. However, BISC provides interface
scores and methodology that should be helpful in this
regard, e.g. by flagging outliers. For PPI in the
Characterized SC Section, BISC provides information
through: direct contact in a crystal structure; inclusion
(or not) in the PDB or PISAs top-ranked assembly or
both; PISA-interface scores; a MolSurfer launch option
to derive electrostatic correlation coefficients (ECCs) and

hydrophobicity correlation coefficients (HCC); see below.
For a hypothetical PPI in the MI Section of BISC,
validative clues come through: experiment (the basis for
its record in a functional genomics database);
MODELLER objective function score; SCOTCH
and SCOTCH+RP scores; MolSurfer launch (ECC
and HCC). Among these, the SCOTCH and MolSurfer
web servers are less well-known but helpful (see also the
usage example, below). MolSurfer (12) calculates the elec-
trostatic surface potential of each partner and projects the
result onto a planar interpolation of the interface between
the two protein subunits forming a binary complex.
This enables computing a correlation coefficient
score (ECC). A HCC is also returned. By contrast the
SCOTCH (13) web server uses a given SC structure to
discern which amino acids are located at the interface
and investigates statistical correlation between the
mutations found at relevant alignment positions within
the family. SCOTCH evaluates interface complementarity
based on standardized amino acid properties of the
residues that come in proximity of one another at the
potential interface. Neither MolSurfer nor SCOTCH
depend on precise atom positions for a rudimentary
assessment of the feasibility of a binary complex. Our
threshold value recommendations for their scores are
based on simple calibration experiments and experience
(Quan, X. and Gerloff, D.L., unpublished data);
R. Guerois, personal communication).

CURRENT CONTENT (OCTOBER 2010 RELEASE)

Currently the core of BISCHom (SCs with interface sizes
>200 Å2) contains 14 864 records relating to 11 636 unique
sequences and 11 433 PDB records (homooligomeric
complexes sometimes contain several interfaces on the
same subunit; we record these separately); 1423 species
(TaxIDs) are represented. BISCHet core contains 10 541
entries from 3060 PDB-records; 446 species are repre-
sented. The current BISC-MI fragments resulted from a
screen of 231 330 records with SP accession codes in the
BioGRID; 228 024 in IntAct; and 30 033 in HPRD. A
total of 12 237 MI with interface sizes >200 Å2 were
found from 107 species (BioGRID: 3518 MI; IntAct:
4853 MI; HPRD: 4949 MI).

Version numbers or download dates for all third-party
software and data sets other than the PDB, used
in the most recent update of BISC (October 2010)
are listed below. PISA 01 May 2009; BioGRID 3.0.67;
IntAct 28 Jul 2010; HPRD Release 9; BLAST 2.2.19;
PISCES Dec 142005; NACCESS 2.1.1; PDB2PQR 1.6.0
(input files for MolSurfer); MUSCLE 3.7; MODELLER
9.6; MolSurfer web server http://projects.villa-bosch.de/
dbase/molsurfer/submit-elec.html; SCOTCH web ser-
ver http://biodev.extra.cea.fr/scotch/; Jmol 11.6.24;
JalView 2.4.

USAGE EXAMPLE

BISC content can be exploited in systematic searches, for
example for possible false positive PPI in literature reports
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(Juettemann, T. and Gerloff, D.L., manuscript in prepar-
ation). In contrast, the benefits of BISC as an interactive
resource are best illustrated through an example. In this
hypothetical scenario a user is interested in PPI within the
proteasome. For the sake of argument we will assume that
the crystal structure of an eukaryotic proteasome is still
not available at the time of investigation. [The first
eukaryotic proteasome structure was deposited in the
PDB in April 1998 (PDB:1RYP).] More detailed
documentation of this example and additional figures
relating to the first part can be found in the online
tutorial at the BISC web site.

Using either the keyword or BLAST search option, the
user found characterized SCs in BISC. These were derived
from archaeal proteasome structures, e.g. from
Thermoplasma acidophilum. [The first T. acidophilum
proteasome structure was deposited in the PDB in June
1996 (PDB:1PMA).] Of the 28 protein subunits making up
the core particle structure, only one heterodimeric SC and
one homodimeric SC of structure 1PMA, were present in
BISC. This is because the particle is highly sequence re-
dundant. Its barrel shape is built of four heptameric rings
with 14 identical subunits making up the inner rings and
the 14 other subunits making up the outer rings.

Linking to the corresponding two SC pages in BISC
(1PMA:I:J and 1PMA:Y:Z) revealed that several MIs
were recorded in the functional genomics PPI databases.
The BISC-MI lists made apparent that many MIs are
eukaryotic, most are from budding yeast (Saccharomyces
cerevisiae). Unexpectedly, the user encountered multipli-
city compared with the archaeal structure—13 unique
yeast interactions were modellable onto the template
1PMA:I:J and 6 onto 1PMA:Y:Z. The user noted that a
plausible explanation for this observation is that,
probably, eukaryotic proteasome particles are composed
of chains that are similar in structure but different in
sequence. While this fact would have been known by pro-
teasome experts before the first eukaryote structure
appeared, this scenario illustrates how browsing a
resource like BISC can provide interesting clues to a
novice.

Next, hypothetical structures were requested by the user
for all S. cerevisiae PPIs using the BISC modelling
pipeline. Links to the result pages were returned by
email and reported various third-party scores for each
model (Figure 3A; see references and BISC documenta-
tion for more specific information on each score).
Additionally, the result web sites displayed the MSAs
used to create each model using Jalview (Figure 3B) and
the model using Jmol (not shown).

Given the similar degrees of sequence identity (Seq id)
of all target sequences to the template, all models were
expected to be of similar quality. However, when
examining the SCOTCH+RP scores and electrostatic
complementarity using MolSurfer (ECC), one notices
that the last modelled PPI in the list (P40302:P32379,
both are component proteins of the yeast proteasome ac-
cording to SP) obtained exceptionally unfavourable scores
compared with the others: SCOTCH 7.33; SCOTCH+RP
8.48; ECC 0.003 (Figure 3A). A look at the multiple
sequence alignment created during the modelling process

for target sequence P32379) points to a possible explan-
ation. P32379 carries an insertion (sequence: SGEERLM),
which was placed at positions 119–125. Upon visual
inspection, the location of the insertion within the align-
ment seems adequate. However, MODELLER created
novel electrostatically unfavourable atomic interactions
in this hypothetical model to accommodate the loop,
which impacted on the deviating scores (albeit not that
provided by MODELLER itself).
It is known, meanwhile, that these two protein subunit

form a direct physical PPI in the yeast proteasome
particle. Thus it would have been incorrect to dismiss
the postulated PPI solely due to the deviating scores.
However, the example illustrates how exploring unusual
or aberrant scores in BISC can uncover unusual features
in PPIs such as the inserted loop. To follow up on such
clues more thoroughly, expert users can download all files
created during the modelling process, e.g. to refine models
using a local MODELLER installation or to run addition-
al validative methods.

DISCUSSION AND FUTURE DIRECTIONS

We will soon make it possible for BISC users to request
models for all likely orthologues within the target families,
not only the specific target PPI; this should enable add-
itional research into the feasibility of a potential PPI. We
welcome feedback regarding further existing methods that
would be helpful for validating the approximate interfaces
in our models, and additional PPI databases to include.
Previously published resources exist that feature similar

content as the Characterized SC Section in BISC, e.g.
PROTCOM (17), PISA (3) and some of the many data-
bases focusing on known interfaces (18–23). However, to
the best of our knowledge, BISC is currently unique in
that it makes extensive use of PISA-predicted assemblies
alongside those delivered in the downloadable co-ordinate
files from the PDB. Thereby BISC provides additional
binary SCs that other databases (e.g. PROTCOM)
would miss. The recently developed IBIS resource (24)
also used structurally characterized PPI as template struc-
tures and infers PPI between closely homologous partner
pairs if such inference is supported by a set of verification
criteria. Some other published databases and servers offer
modelling-by-request services as we do within the
Modellable Interaction Section in BISC, e.g.
MODBASE (25) and SWISS-MODEL DB (26),
although these resources do not specialize in modelling
binary complexes and do not provide additional validative
services besides modelling scores.
The most important practical distinction between

BISC-MI and other databases is its emphasis on PPI
suggested by functional genomics experiments. By
offering structural bioinformatics follow-up in an
easy-to-use resource BISC will help ensure that probable
false-positive laboratory results are identified,
reinvestigated and corrected. Conversely, existing bio-
informatics methodology attempting to validate hypothet-
ical complexes is often sufficient to provide informative
clues, but insufficient in most cases to discriminate
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between interacting and non-interacting hypothetical
complexes on its own. Recently the database developers
of the new genome-wide docking database (GWIDD) (27)
have also linked up structural bioinformatics and func-
tional PPI databases. Since GWIDD and BISC differ in
their selection of data sources and structural bioinformat-
ics techniques they are currently different in content and
could be integrated in the future. Like everyone in the
field, BISC will greatly benefit from further standardiza-
tion and consistency in PPI-annotation and curation. This
is driven forward by several professional organizations,
such as the proteomics standards initiative (PSI) by the

Human Proteome Organization (HUPO) (28) and/or the
IMEx (29) and MIMIx standards (30).

AVAILABILITY

Access to BISC and the services it provides is free to
anyone at http://bisc.cse.ucsc.edu, and does not require
registration or login. Some of the optional requests
deliver the link to a results page by email and thus
require a valid email address. Results are readily
viewable in any web browser with enabled Java. Rare
minor differences are attributable to bugs in the browser

Figure 3. Usage scenario: proteasome. (A) Validative scores returned for each modellable hypothetical SC in the S. cerevisiae proteasome (see text);
Acc, accession; sequence identity (with template 1PMA:I:J); HCC, MolSurfer hydrophobicity correlation coefficient (12); ECC, MolSurfer electro-
static correlation Seq id coefficient (12); MODELLER, objective score function (10); SCOTCH score (13); +RP, SCOTCH score with RP (13).
(B) An excerpt of the results page returned by the BISC-MI modelling pipeline for hypothetical PPI P40302:P32379 highlighting the insertion in
the multiple sequence alignment for P32379. (C) The position of the corresponding loop segment (red) in the MODELLER (10) model is shown in
context of the surrounding protein structure.
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software (e.g. Mozilla Firefox on Mac OS X) and are
easily resolved (e.g. by clicking onto the scroll bar to
complete launching the molecular viewer Jmol). Users
interested in downloading the entire database please
contact the authors.
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