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Abstract: Low-grade vanadiferous titanomagnetite ore (LVTM) is as an important mineral resource
for sintering ore manufacturing. Furthermore, TiO2 has a significant effect on the sintering process
of iron ore fines. The effects of TiO2 on the metallurgical properties, microstructure, and mineral
composition of LVTM sinter were investigated by sintering pot tests, X-ray diffraction (XRD), scanning
electron microscopy (SEM), and mineral phase microanalysis. The results were as follows: as the
TiO2 content increased from 1.75% to 4.55%, the flame front speed and productivity decreased, while
the reduction degradation index (RDI) and softening properties deteriorated. In addition, the tumbler
index (TI) values reached a maximum at TiO2 = 1.75%. In addition, with increasing TiO2 content, an
increase in the magnetite and perovskite phase, and a decrease in calcium ferrite and hematite were
found with an increase in TiO2 content. Thus, the lower the TiO2 content, the better the quality of
the sinter.

Keywords: low-grade vanadiferous titanomagnetite ore; sinter; perovskite; mineral phase

1. Introduction

Vanadiferous titanomagnetite ore (VTM) provides an important source of iron, and
the associated vanadium, titanium, chromium, cobalt, nickel, platinum, and scandium com-
ponents are of high economic value. The VTM is distributed globally with large reserves,
mainly in China’s Panzhihua and Chengde regions, exceeding five billion tons [1–5]. How-
ever, after years of mining, Chengde’s main mining areas have been emptied of high-grade
VTM and there is little prospect of finding ore in the periphery of the mine. Recently, with
the continuous advancement of mining technology and soaring mineral resource prices, the
value of the large amount of low-grade vanadiferous titanomagnetite ore (LVTM) identified
within the mine production areas has been highlighted by steel companies. The LVTM
resources in the Chengde area have been estimated to exceed 10 billion tons [6–9]. Multiple
studies have been done on conventional VTM, while fewer studies on LVTM with complex
phase compositions and different properties are available [5,6]. Therefore, it is crucial to
study the utilization of LVTM to reduce the production costs of steel enterprises and for
the sustainable development of China’s steel industry.

To use LVTM efficiently, the authors’ laboratory proposed the sintering behaviors
of LVTM [7–10]. In the blast furnace (BF) process where iron ore is reduced to molten
iron, the LVTM sinter with different basicity, coke ratios, and MgO contents have been
studied. Yang [8,9] studied the effects of coke ratios and MgO on the sintering behaviors
and the metallurgical properties of LVTM. Yang [10] surveyed the effect of basicity on the
mineral compositions and element migration of LVTM sinters. Particularly, titanium is one
of the main elements in LVTM, influencing its sintering properties. The perovskite was
generally cubic or octahedral, with an ideal cubic microstructure and a slightly twisted
octahedron. The titanium ions were at the body center of the cubic cell, the oxygen ions
was at the face center, and the calcium ions were at the top of the corners. The perovskite
cubic crystals often had parallel crystal edges, which was the result of flake bicrystals at
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the process of the high-temperature variant changes to the low-temperature variant [11,12].
Perovskite has a high melting point (2243 K) and is the first to precipitate during the
cooling process, and it does not have a bonding effect itself, however, it acts as a sort
of “crystalline” interface between magnetite and hematite particles. This “continuous
crystal” interface is easily destroyed. Controlling and limiting the formation of calcium
ferrite is important to improve the quality of the vanadiferous titanomagnetite ore sinter.
However, the TiO2 contents in these studies were lower than 2 wt%, and the sintering
behaviors with a relatively higher TiO2 content have not been studied comprehensively.
Therefore, it is necessary to investigate the sintering behavior of LVTMs with high titanium
dioxide content.

As part of continuing work to study the utilization of LVTM in the BF process, this
paper explores the effect of TiO2 on the sintering behavior of LVTM. First, the yield (+5 mm),
weight loss, flame front speed, productivity, tumbler index (TI), reduction degradation
index (RDI), reduction index (RI), and softening properties were examined. The mineral
compositions and microstructures of the LVTM sinter with different TiO2 contents were
studied. Furthermore, the sinter with different TiO2 content was evaluated. These results
will provide theoretical and technical bases for the effective production of the LVTM sinter
and facilitate its exploitation.

2. Materials and Methods
2.1. Materials

The raw materials used in the sintering pot test including LVTM, high titanium iron
ore powder (HT ore), ordinary iron ore (Indian ore, Malaysian ore, Zirong ore), dolomite,
gas ash, vanadium extraction tailings (V tailings), quicklime, and coke were purchased
from the Jianlong Iron and Steel Co. Ltd. (Chengde, China). Table 1 shows the chemical
composition of the raw materials used for the sintering experiments. Table 2 shows the
proximate analysis of the coke breeze and the ash composition. The total iron content
(TFe) of LVTM was 63.50%, the Cr2O3 content of LVTM was 0.08%, and the TiO2 content
of LVTM was 2.18% lower than that of Panzhihua VTM [8,9]. The Cr2O3 content of the
LVTM was 0.08%. The TiO2 content of the blended material was adjusted by preparing
high titanium (HT) ore with a 6.22% TiO2 content.

Table 1. Chemical compositions of the raw materials (wt, %).

Item TFe SiO2 CaO MgO Al2O3 TiO2 V2O5 Cr2O3

LVTM 63.50 3.96 1.46 1.25 1.57 2.18 0.50 0.08
HT ore 59.61 4.11 0.87 1.68 2.26 6.22 0.70 -

Indian ore 56.06 5.57 0.06 0.15 5.63 0.21 - -
Malaysian ore 51.71 6.57 0.21 0.15 8.48 0.33 - -

Zirong ore 65.55 3.04 0.46 3.50 0.65 0.09 - -
Gas ash 33.28 7.26 5.65 1.98 4.55 1.32 0.25 -

V tailings 30.68 16.97 2.44 2.82 1.53 9.81 1.22 -
Dolomite - 2.38 45.14 32.05 - - - -
Quicklime - 2.49 83.17 3.48 - - - -

Table 2. Proximate analysis of the coke breeze and the ash composition (wt, %) [8].

Fixed Carbon Total Sulfur Volatile
Ash (14.00)

∑
FeO Al2O3 SiO2 CaO MgO Others

84.00 0.50 1.50 0.14 2.72 7.50 0.48 0.15 2.89 100.00

2.2. Sintering Pot Test

Figure 1 shows the sintering pot experimental apparatus diagram, which performs
the sintering operation using air extraction and negative pressure. The detailed sintering
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parameters for the sintering pot test and the sintering experimental programs are shown
in Tables 3 and 4, respectively. The raw material ratios were determined from production
data provided by Jianlong Steel Co(Chengde China). The quicklime basicity (w (CaO)/w
(SiO2)) was adjusted to 1.9, the carbon content was 3.2%, and the return fines added were
18%. The mass percentage content of Indian ore, Malaysian ore, Zirong ore, return fine, ash,
V tailings, and dolomite for all experimental groups was 5%, 4%, 5%, 18%, 1%, 2%, and
1%, respectively, while the mass percentage content of LVTM ranged from 0% to 64% and
the mass percentage content of HT ore ranged from 0% to 60%. The TiO2 content of the
experimental feedstock was adjusted by adjusting the mass percentage content of LVTM
and HT ore. The effect of different TiO2 contents (1.75–4.55%) on the sintering process
and metallurgical properties of LVTM was investigated in experimental steps of 0.7%. The
sintering pot test steps are, in order, burdening, mixing, granulation, ignition, sintering,
cooling, and crushing [2]. The raw material mixture (100 kg) was placed in a sintering
pot, ignited with natural gas to 1373 K, and held at a negative pressure of 6 kPa for 120 s.
Sintering was carried out at a negative pressure of 10 kPa and ended when the sinter tail gas
temperature reached a maximum. After sintering, the sinter was air-cooled for 10 min, then
poured out of the sintering pot for crushing. The sintering process parameters included
flame front speed (V, mm/min), weight loss (L, %), yield (+5 mm) (Y, %), and productivity
(P, t/(m2·h). The flame front speed reflects the speed of sintering time. The weight loss
reflects the mass loss of ore during sintering. The yield (+5 mm) reflects the number of
finished sintered ores with a passable particle size of >5 mm. The productivity of sinter is
an important indicator to measure the production capacity of sintering production. The
flame front speed (V, mm/min) was calculated by Equation (1):

V =
h1 − h2

t
(1)

where h1 is the total height of the sintered pot (mm); h2 is the height of the material-free
cup after filling (mm); and t is the sintering test time (min). The weight loss (L, %) was
calculated by Equation (2):

L =
m1 − (m2 + m3)

m1
× 100% (2)

where m1 is the mass of the raw material (kg); m2 is the mass of the sinter (kg); and m3 is
the mass of the bedding material (kg). In this test, m3 was 4.0 kg. The yield (+5 mm) (Y, %)
was calculated by Equation (3):

Y =
W1

m2
(3)

where W1 is the mass of the sinter with a particle size greater than 5 mm (kg). The
productivity (P, t/(m2 h) was calculated by Equation (4):

P =
m2 × Y

S × t
(4)

where S is the cross-section area of the sintering pot (m2).
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Figure 1. Schematic of sintering pot test equipment.

Table 3. Parameters of the sintering test.

Item Parameter Item Parameter

Sintering pot size Φ320 mm × 700 mm Ignition suction 6.0 kPa
Sintering suction 10.0 kPa Granulation time 10 min

Ignition temperature 1373 K Ignition time 1200 S
Moisture 7.5 ± 0.3%

Table 4. Experimental scheme of the sinter materials.

Item w (TiO2)/%
Mixed Sinter Materials/(100%)

LVTM HT Ore Indian Ore Malaysian
Ore

Zirong
Ore

Return
Fine Ash V Tailings Dolomite

1 1.75 64.0 0 5 4 5 18 1 2 1
2 2.45 48.7 15.3 5 4 5 18 1 2 1
3 3.15 33.7 30.3 5 4 5 18 1 2 1
4 3.85 18.8 45.2 5 4 5 18 1 2 1
5 4.55 4.0 60 5 4 5 18 1 2 1

The sinter cake was crushed using a jaw crusher, and then the material was crushed
and tested by dropping it three times from 2000 mm. Finally, the sinter material was
divided by an automatic sieving device into six sizes: >40 mm, 25–40 mm, 16–25 mm,
10–16 mm, 5–10 mm, and <5 mm.

2.3. Metallurgical Properties Test and Mineral Phase Analysis

The sinter were tested for tumble and abrasion (TI), reduction-disintegration (RDI),
and reduction (RI) indexes, according to ISO-3271, ISO-4696 and ISO-7215, respectively.
The TI of sinter reflects the ability of the sinter to resist extrusion at room temperature. The
RDI reflects the BF in the upper stack regions where it is mildly reducing, and temperatures
are low. The particle sizes (+6.3 mm, +3.15 mm, 0.5 mm) of sinter after reduction were used
to calculate the RDI and expressed as RDI+6.3, RDI+3.15, and RDI−0.5, respectively. The RI
for sinter reflects the reduction of sinter in the blast furnace at 1173 K. The mineral phases
of the samples were observed by polarized light microscopy (Cambridge Q500, Leica
Microsystems, Germany), X-ray diffraction (XRD) analysis (MPD/PW3040, Panalytical,
Netherlands), and scanning electron microscopy (SEM) (S-3400N, JEOL Ltd., Tokyo, Japan).
XRD analysis was quantified using Cu Kα radiation (λ = 0.15406 nm) (40 kV, 50 mA,
2θ = 10–90◦).

Figure 2 shows a diagram of the softening properties of the experimental apparatus.
According to the actual temperature and atmosphere of sinter in the blast furnace and
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considering the safety of the experimental equipment, the experimental atmosphere and
temperature parameters were formulated, as shown in Table 5. The temperature at which
the height of the test specimen shrinks by 10% was defined as the softening start temper-
ature (T10%). The temperature at which the height of the specimen shrinks by 40% was
defined as the softening end temperature (T40%). The softening temperature range (∆T)
was T10% to T40%. The specimen sample consists of a 40 mm high cylinder of sintered ore
with a particle size range of 2.5–3.2 mm and a load of 1 kg/cm2.
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Figure 2. Schematic diagram of the softening properties experimental apparatus [9]. 1—Si-C heater;
2—shell; 3—Al2O3 pedestal; 4—sample; 5-Si—C bar; 6—fastening screws; 7—load; 8—m; 9—steel
bar; 10—bracket; 11—graphite crucible; 12—thermocouple; 13—temperature program controller.

Table 5. Temperature and atmosphere of the softening properties test.

Item Parameter

Temperature Room temperature–1173 K 1173–1293 K 1293–1823 K
Time 87.5 min 40 min 106 min

Atmosphere 3 L/min N2
9 L/min N2, 3.9 L/min CO,

and 2.1 L/min CO2
10.5 L/min N2 and 4.5 L/min CO

3. Results and Discussion
3.1. Sintering Process Parameters

The composition of sinter with different TiO2 contents was obtained by sinter pot
experiments according to the experimental scheme in Table 4, as shown in Table 6. The
X-ray fluorescence (XRF, ZSXPrimus II; Rigaku, Tokyo, Japan) was used to test the chemical
compositions of raw materials. As the TiO2 content increased, the sinter showed a slight
decrease in total iron (TFe) and MgO and a slight increase in CaO, SiO2, Al2O3, and V2O5.

Table 6. Chemical composition of the sinter (wt, %).

Items TiO2 TFe CaO MgO SiO2 Al2O3 V2O5

1 1.75 56.35 7.562 2.08 3.98 1.61 0.32
2 2.45 56.13 7.657 2.09 4.03 1.64 0.36
3 3.15 56.04 7.885 2.11 4.15 1.73 0.39
4 3.85 55.57 8.094 2.13 4.26 2.11 0.44
5 4.45 55.37 8.398 2.19 4.42 2.35 0.51

Figure 3 shows the process parameters of the LVTM sintering process at different
TiO2 contents. With the TiO2 content increase, the flame front speed decreased from
16.67 mm/min to 12.00 mm/min and the yield (+5 mm) decreased from 77.02% to 69.79%.
The flame front speed decreased mainly due to the increase in viscosity of the sintering
liquid phase, the decrease in the permeability of the material layer, and the material
resistance increase. In addition, as the flame front speed decreased, the sintering time
increased, and the material loss in the sintering process increased slightly, therefore, the
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weight loss also increased gradually from 9.08% to 10.27%. Combining all these factors, the
productivity decreased from 1.27 t/m2-h to 1.19 t/m2-h as the TiO2 content increased.
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3.2. Size Distribution

Figure 4 shows the particle size distribution of the sinter at different TiO2 contents.
The TiO2 content increased from 1.75% to 4.55%, and the average particle size of the sinter
decreased from 16.94 mm to 12.56 mm. As the TiO2 content increased, the liquid phase
became less mobile, resulting in holes in the sinter after cooling, leading to inferior sintering
ore fall properties and smaller particle size material, while the carbon allocation conditions
remained unchanged.
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3.3. Microstructure and Mineralogy

Figure 5 shows the XRD patterns of sinters with different TiO2 contents. The main
phases of the sinter were magnetite, hematite, perovskite, calcium ferrite, and silicate, with
a small amount of ilmenite. The sinter composition varied with TiO2 content. Under the
current experimental conditions, the sintered mineral composition of the LVTM sinter
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obtained from the sintering pot experiments was determined microscopically, and the
results are shown in Figure 6. As the TiO2 content of the sinter increased, magnetite slightly
increased, hematite slightly decreased, perovskite increased, and calcium ferrite decreased.
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The perovskite can be formed in a variety of ways. Thermodynamic analysis showed
that reactions between CaO-TiO2, CaO-FeO-TiO2, CaO-2FeO-TiO2, CaO-Fe2O3-TiO2, CaO-
Fe2O3-FeO-TiO2, and CaO-Fe2O3-2FeO-TiO2 all produced perovskite (CaO-TiO2) [13,14].
In practice, however, the perovskite formation was determined by the kinetic conditions of
the reaction. The above reactions can be divided into solid–solid and liquid–solid phase
reactions, where liquid–liquid phase reactions are also possible. Through the solid–solid
reaction, perovskite is formed at a slow rate and high temperatures (1593–1693 K), the solid-
phase reaction between CaO and TiO2 was accelerated, and the sinter showed perovskite
formation. It should be noted that other low-melting liquid phases may partially or entirely
melt this solid-phase reaction at high temperatures, and the calcium-titanium ore phase
precipitates first during cooling, which is different from the solid-phase reaction-generated
calcium-titanium ore. In addition, in LVTM concentrates, TiO2 mainly exists as FeO-TiO2
and 2FeO-TiO2, with melting points of 1633 K and 1743 K, respectively. CaO reacts with
Fe2O3 to form low melting point calcium ferrites, so that reactions may occur between the
liquid–solid (reactions 11 and 12) and liquid–liquid phases (reactions 10 and 11) to produce
stable, high melting point calcium ferrite precipitates from the liquid phase. Under high
temperature and reducing atmospheric conditions, calcium ferrite decomposes and reduces,
allowing more CaO to react with TiO2-containing minerals to form perovskite. Therefore,
under constant basicity and carbon content, the TiO2 content of the mixture should be
reduced, reducing the formation of calcium titanite and improving the performance of
the sinter.

2FeO (s) + TiO2 (s) = 2FeO·TiO2 (s) (5)

FeO (s) + TiO2 (s) = FeO·TiO2 (s) (6)

CaO (s) + 2FeO·TiO2 (s) = CaO·TiO 2 + 2FeO (7)

CaO (s) + FeO·TiO2 (s) = CaO·TiO2 (s) + FeO (8)

CaO·Fe2O3 (s) + TiO2 (s) = CaO·TiO2 (s) + Fe2O3 (9)

2FeO·TiO2 (s) + CaO·Fe2O3 (s) = CaO·TiO2 (s) + Fe3O4 + FeO (10)

CaO·Fe2O3 (s) + FeO·TiO2 (s) = CaO·TiO2 (s) + Fe2O3 + FeO (11)

CaO·Fe2O3 (s) + SiO2 (s) = CaO·SiO2 (s) + Fe2O3 (12)

The crystallization pattern of the LVTM sinter was complex. The microstructure of the
sinter was shown to be mostly granular, interwoven fused, and partially wrecked crystal
structures (Figure 7), needle-like interwoven structures were rare, and the porosity was
high. With the increase in TiO2 content, the liquid phase and fused structures decreased
and the porosity increased. The microstructure data show that with TiO2 content, the
iron-bearing minerals were still dominated by a crystal shape. However, the uniformity of
distribution in the sintered ore decreased, the perovskite increased significantly, and grains
became coarser. The calcium ferrate changed to short plate-like and columnar structures,
and the content decreased further.

3.4. Metallurgical Performance

Figure 8 shows the metallurgical performance of the sinter at different TiO2 contents.
As shown in Figure 8a,b, the RDI+3.15 index decreased and the RI index increased slightly as
the TiO2 content increased. The conversion of the hematite present in the titanium-bearing
sinter from a tricrystalline hexagonal lattice to magnetite in an equiaxed tetragonal lattice
is generally accepted as the main reason for the deterioration of the RDI properties of
sintered ores by TiO2. Moreover, the lattice transformation causes structural distortion
and volume expansion, resulting in significant internal stresses leading to severe rupture
under physical action [15–18]. Second, perovskite is dispersed between the silicate and iron
minerals, weakening the bonding effect of silicate and the crystallization effect of hematite
and magnetite. Finally, TiO2 and Al2O3 were completely dissolved in the silicate phase,
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significantly destroying the fracture toughness, and enlarging the crack. Additionally, the
higher the TiO2 content, the stronger these destructive effects. On the other hand, with
the increase in TiO2 content, hard-to-reduce magnetite increased, and the easy-to-reduce
titanic hematite and calcium ferrite decreased. In contrast, the content of high melting
point vein-like mineral phases and calcium titanite increased, so that the RI of sinter
decreased. However, with the increase of TiO2 content, the liquid phase decreased, the
porosity increased, conducive to reduction, so the RI of sintered ore increased slightly.
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As shown in Figure 8c, the TI of the sinter decreased with an increase in TiO2 content.
The liquid phase generated during the melting of the mixture had high liquidity, high
content, and low viscosity, which is beneficial to particle bonding, thus improving the
strength of the sinter [19–22]. At a constant fuel level, as the TiO2 content increased, the
amount of liquid phase produced decreased, the liquid phase became less fluid and less
uniformly distributed, the bonding force weakened, and the pore space of sintered ore
increased, leading to the deterioration of the performance of sintered ore. In addition, with
the increase in TiO2 content, the brittle and hard perovskite content increased, leading to
the deterioration of sinter drum strength.

Figure 9 shows the softening indexes of the sinter with various TiO2 contents. With
the increase in TiO2 content, T10% and T40% of the sinter rose, and ∆T became broad. When
the TiO2 content increased from 1.75% to 4.55%, T10% rose by 24 K, T40% rose by 40 K, ∆T
increased by 16 K, and the softening performance of the sinter worsened. The softening
characteristics of the sinter during the warming reduction process mainly depend on the
amount of high and low melting point minerals produced in the process, and the high
melting point minerals mainly influence the softening temperature of the sinter. As the
content of high melting point minerals including CaO-TiO2 and titanium garnet in sinter
increased, the softening temperature of the sintered ore also increased.

3.5. Comprehensive Index

The TiO2 content in the sinter influences its quality. The objective weights of the
indicators were determined by the Delphi method, and the objective weights of the indica-
tors were determined by the entropy method. The comprehensive weighting score could
accurately obtain the most suitable TiO2 content. The Delphi method was a method of
obtaining consensus through a survey of experts, and the entropy method was a mathemat-
ical method used to determine the degree of dispersion of an indicator; detailed steps can
be found in [23,24]. The steel companies determined the weight coefficients of the selected
indicators (P, TI, RDI, and RI). Let X be the evaluation matrix, Z be the criterion matrix, α
be the subjective weight, β be the objective weight, and W be the total weight. This study
requires P, TI, RDI, and RI to be as large as possible, so X was standardized according to
the criterion that the larger the overall weighted rating value is better, to obtain the final
evaluation matrix Z.
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First, the values of the selected indicators were incorporated into the matrix X = (xij),

Xij =


1.27 61.17 58.83 73.85
1.22 58.63 51.06 75.25
1.24 55.14 41.35 76.24
1.23 53.59 39.19 76.98
1.20 51.5 37.53 77.84

(13)

Second, normalizing X gives Z = (zij),

Zij =


0.44 0.43 0.53 0.00
0.12 0.32 0.34 0.13
0.25 0.16 0.09 0.22
0.19 0.09 0.04 0.29
0.00 0.00 0.00 0.37

(14)

The subjective weight α = (α1, α2, . . . , αm) T.
Define:

m

∑
j=1

αj = 1, α ≥ 0 (j = 1, 2, . . . , m) (15)

The significance coefficients of the indicators, P, TI, RDI, and RI were 0.1, 0.3, 0.5, and
0.1, respectively, yielding α = [0.1, 0.3, 0.5, 0.1]T.

The objective weights of each indicator were determined by the entropy value method β,

β = [0.21, 0.24, 0.43, 0.19]T (16)
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Third, a preference coefficient of 0.5 was set in this study to obtain the combined
weight of each indicator W,

W = [0.16, 0.27, 0.43, 0.14]T (17)

Finally, the comprehensive evaluation fi was calculated according to the following formula:

fi =
m

∑
j=1

zijwj = 1, i = 1, 2, . . . , n (18)

The calculation values are shown in Figure 10. As the TiO2 content of the sinter
gradually increased from 1.75 to 4.55, the comprehensive index was 85.63, 56.71, 35.43,
27.17, and 14.37, respectively. The optimum energy efficiency was obtained at 1.75%
TiO2 content.
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4. Conclusions

The results of this study led to the following conclusions:

• When the LVTM sinter TiO2 content increased from 1.75% to 4.55%, the flame front
speed, P, Y, TI, RDI, and softening properties decreased and RI improved.

• The mineral composition of the LVTM sinter changed considerably when the TiO2
content was varied. As the TiO2 content increased, the magnetite and perovskite
phases increased, while the hematite and calcium ferrite phases decreased.

• As the TiO2 content increased, the comprehensive index of the sinter decreased. In
this study, the appropriate TiO2 content was 1.75%.
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