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Background: Abnormal epigenetic alterations can contribute to the development

of human malignancies. Identification of these alterations for early screening and

prognosis of clear cell renal cell carcinoma (ccRCC) has been a highly sought-after goal.

Bioinformatic analysis of DNA methylation data provides broad prospects for discovery

of epigenetic biomarkers. However, there is short of exploration of methylation-driven

genes of ccRCC.

Methods: Gene expression data and DNA methylation data in metastatic ccRCC were

sourced from the Gene Expression Omnibus (GEO) database. Differentially methylated

genes (DMGs) at 5′-C-phosphate-G- 3′ (CpG) sites and differentially expressed genes

(DEGs) were screened and the overlapping genes in DMGs and DEGs were then subject

to gene set enrichment analysis. Next, the weighted gene co-expression network analysis

(WGCNA) was used to search hub DMGs associated with ccRCC. Cox regression and

ROC analyses were performed to screen potential biomarkers and develop a prognostic

model based on the screened hub genes.

Results: Three hundred and fourteen overlapping DMGs were obtained from two

independent GEO datasets. The turquoise module contained 79 hub DMGs, which

represent the most significant module screened by WGCNA. Furthermore, a total of 12

hub genes (CETN3, DCAF7, GPX4, HNRNPA0, NUP54, SERPINB1, STARD5, TRIM52,

C4orf3, C12orf51, and C17orf65) were identified in the TCGA database by multivariate

Cox regression analyses. All the 12 genes were then used to generate the model for

diagnosis and prognosis of ccRCC. ROC analysis showed that these genes exhibited

good diagnostic efficiency for metastatic and non-metastatic ccRCC. Furthermore, the

prognostic model with the 12 methylation-driven genes demonstrated a good prediction

of 5-year survival rates for ccRCC patients.

Conclusion: Integrative analysis of DNA methylation data identified 12 signature genes,

which could be used as epigenetic biomarkers for prognosis of metastatic ccRCC. This

prognostic model has a good prediction of 5-year survival for ccRCC patients.

Keywords: clear cell renal cell carcinoma, data integration, DNA methylation, gene expresssion, ROC (receiver

operating characteristic curve)

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.556018
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.556018&domain=pdf&date_stamp=2020-10-08
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenmingseu@126.com
mailto:zgy0879@qq.com
https://doi.org/10.3389/fonc.2020.556018
https://www.frontiersin.org/articles/10.3389/fonc.2020.556018/full


Qian et al. 12 Metastatic ccRCC-Specific Signature Genes

BACKGROUND

Clear cell renal carcinoma (ccRCC) is the major type of
renal tumor in the human urinary system (1). Many patients
with ccRCC have distant metastasis to lymphoid or other
organs (2). The 5-year survival rate was lower in patients
with distant metastatic ccRCC than with non-metastatic
ccRCC (3). Over the past decade, the therapeutic strategies
for advanced ccRCC have evolved rapidly from a non-
specific immune approach to targeted therapy against vascular
endothelial growth factor (VEGF), and recently to novel
immunotherapy. Multiple agents like immune checkpoint
inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) show
promising results in the clinical trials and have been approved
as the second-line even the first-line treatment for advanced
ccRCC (4–7). Moreover, targeted combination therapies
have been explored as the first-line treatment in pioneer
trials (8).

However, to enhance the efficacy and prognosis always
underscores a need for new therapeutic targets and drug
combinations (9). An increasing number of studies prove
that epigenetic alterations such as DNA methylation and
histone modifications are associated with cancer progression
and occurrence. Therefore, they could be exploited as
biomarkers for cancer diagnosis and prognosis (10–14).
However, epigenetic biomarkers underlying metastatic ccRCC
remain to be elucidated. Epigenetic biomarkers have been
testified in certain malignancies and allowed their potential use
in differentiation between metastatic and non- metastatic
ccRCC. In this study, we profiled methylation patterns
of metastatic and primary non-metastatic ccRCC and
identified potential biomarkers associated with the cancer
progression. We measured the gene methylation levels at
CpG sites throughout the genome and found that a subset
of genes presented with aberrant methylation and expression
in metastatic ccRCC when compared with primary non-
metastatic ccRCC. We further created the criteria to screen
hub DMGs and defined the pathological stages of ccRCC
accordingly. Finally, we applied the survival analysis to evaluate
the hub DMGs as potential biomarkers for the prognosis of
ccRCC patients.

METHODS

Data Collection
The gene methylation datasets (GSE113501 and GSE105260)
were downloaded from the GEO database. GSE113501 and
GSE105260 were generated on the platform GPL13534
(Illumina HumanMethylation450 BeadChip). In total, 54
metastatic tumor samples and 96 non-metastatic tumor
samples were included in the study. GSE105261 was used
for screening of DEGs in non-metastatic and metastatic
ccRCC. TCGA-KIRC dataset was used for analysis of
correlation between gene expression and methylation
levels. All ccRCC-related clinical data in this study were
obtained from the GEO and the Cancer Genome Atlas
(TCGA) database.

Differential Methylation Analysis
First, the missing methylation values among all samples were
removed. To identify differentially methylated CpGs, two-
sample independent t-test was applied to compare primary
non-metastatic ccRCC and metastatic ccRCC data. Bonferroni
procedure, together with transformed β values, was used to
adjust crude p-values in multiple comparisons. The β value was
calculated by the formula β = M/(M + U + a), where M and
U represent the methylated and unmethylated signal intensities,
respectively. a is usually set as 100 to stabilize β values when M
and U are too small (15). β average were used for evaluation
of global and regional CpG methylations. The delta β value
was calculated to evaluate the methylation difference between
metastatic and non-metastatic ccRCC.M and β values were used
to identify the DMGs and intergenic CpG sites. The adjusted
p < 0.05 and delta β values in 4/10 quantile were used as the
cutoff criteria to screen candidate hub genes or intergenic CpG
sites. R packages “limma” and “lumi” were used for differential
analysis and conversion between β and M values, respectively
(16–22). The DMGs were classified into six types according to
the methylation patterns.

GENE SET ENRICHMENT ANALYSIS

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
implemented by DAVID online tools (23, 24). p < 0.05 was
considered statistically significant. The GO term enrichment
analysis included three categories: biological process (BP),
molecular function (MF), and cellular component (CC). R
package “Venn Diagram” was used to illustrate the overlapping
genes in DMGs and DEGs.

Correlation Between DNA Methylation and
Gene Expression
We examined the correlation between DNA methylation
and gene expression based on the data from the TCGA
database. Spearman correlation coefficients were used to
evaluate the expression value and the methylation level at
all genes CpG sites. The correlation was regarded significant
if the absolute value of correlation coefficient was >0.3 and
FDR was <0.05. Only the overlapping genes in DMGs and
DEGs were evaluated for their biological functions by gene
regulation analysis.

Weighted Co-expression Network
Construction Analysis (WCGNA)
R package “WGCNA” was used for constructing co-expression
networks among genes across microarray samples (25). To
begin with, the power of β (soft thresholding) was defined
to ensure a standard scale-free network. An adjacency matrix
was then constructed with the values of adjacencies between
each pair of node genes in the network and their Pearson’s
correlation coefficients. The adjacency matrix was used to
calculate the topological overlap matrix (TOM) and the
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FIGURE 1 | Integration analysis of DMGs. (A) Barplot for different region

DMGs in GSE113501. The y-axis indicates the number of DMGs and the

x-axis shows the positions around CpG islands: TSS1500, TSS200, 5′UTR,

1stExon, body, and 3′UTR. TSS1500 refers to 200–1,500 bases upstream of

the transcriptional start site (TSS). TSS200 means 0–200 bases upstream of

(Continued)

FIGURE 1 | TSS. 5′UTR stands for the 5′untranslated region located between

the TSS and the ATG start site. 1stExon is short for the first exon of the gene.

Body is the region between ATG start site and stop codon. 3′UTR is short for

3′untranslated region that is between stop codon and poly-A tail. (B) Barplot

for different region DMGs in GSE105260. (C) Barplot for all DMGs based on

different regions. The blue module stands for DMGs in GSE113501. The

yellow module represents for DMGs in GSE105260.

corresponding dissimilarity (1-TOM). Finally, based on TOM-
based dissimilaritymeasures, the dendrogramwas constructed by
average linkage hierarchical clustering. Highly similar modules
were clustered and then merged with a height cut-off of 0.25.

Identification of Modules Corresponding to
Clinical Traits
By WGCNA, the modules most relevant to the clinical
phenotypes of interest could be identified. Here, we differentiated
clinical phenotypes by pathological stages. As a principal
component of the gene expression matrix, module eigengene
(ME) was used to identify modules corresponding to clinically
significant traits. Gene significance was evaluated by log p-value
of each gene in the linear regression between gene expression and
pathological progression. The module significance was used to
evaluate the correlation between module expression patterns and
clinical traits (age, gender, survival time, and disease stage, etc.).
In general, a module was regarded significantly correlating with
certain clinical traits if its absolute module significance ranked
the highest among others.

Identification of DMGs Associated With
Overall Survival Prognosis and Validation
of Potential Epigenetic Biomarkers by
Receiver Operating Characteristic (ROC)
Analysis
To identify module genes associated with prognosis of ccRCC
patients, we analyzed gene methylation data in the turquoise
module from the Cancer Genome Atlas Kidney Renal Clear
Cell Carcinoma (TCGA-KIRC) data collection. Univariate Cox
regression was used to evaluate the prognostic power of
79 individual probes at CpG sites. Furthermore, multivariate
Cox regression analysis was performed to evaluate whether
all genes corresponding to individual CpG sites could be
used as independent prognostic factors for patient’s survival.
p < 0.05 indicates statistical significance. ROC analysis
was used to validate the predictive accuracy of potential
epigenetic biomarkers, which were remarkably methylated in the
multivariable Cox regression model. The area under the curve
(AUC) was calculated to measure the quality of the classifier with
R package “pROC”.

Development and Evaluation of Prognostic
Model
The genes with significant p-values by multivariate Cox
regression were selected to develop a prognostic model. The risk
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FIGURE 2 | Enrichment analysis of DMGs and intersection of methylated CpGs in different regions. (A) Subontology of biological process (BP). (B) Subontology of

molecular function (MF). (C) Subontology of cellular components (CC). (A–C) The x-axis indicates the log p-value. The y-axis is the enriched terms. (D) Venn plot for

DMGs under BP terms based on different CpG methylation regions. The numbers on the diagram represent the DMG numbers in a specific region or multiple regions.

The regions is as indicated.

score was calculated with regression coefficients multiplied by
methylation levels. The median risk score was set as the cutoff
value, by which 307 ccRCC patients from the TCGA database
were divided into the high-risk group and the low-risk group.
Clinical traits were used as an independent variable and the

overall survival (OS) as the dependent variable to calculate the
hazard ratio (HR). ROC curve was plotted with the R package
“survivalROC” to confirm the predictive power of the 12-gene
prognostic model and assess the probability of 1, 3, and 5-year
OS for ccRCC patients.
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FIGURE 3 | Characterization of intersected DMGs. (A) Grouping of intersected genes by methylation levels. Down-hyper represents downregulated hyper-methylated

genes. Up-hypo represents upregulated hypo-methylated genes. Up-hyper represents upregulated hyper-methylated genes. Down-hypo represents downregulated

hypo-methylated genes. The y-axis is the number of genes and the x-axis indicates different groups. (B) Grouping of intersected genes by CpG methylation regions.

The y-axis is the number of intersected genes. The x-axis labels different gene regions: TSS1500, TSS200, 5′UTR, 1stExon, body, and 3′UTR. (C) Subontology of

biological process (BP) for intersected genes. (D) Subontology of molecular function (MF) for intersected genes. (C,D) The x-axis indicates the log p-value. The y-axis

is the enriched terms.

RESULTS

Identification of DMGs in Metastatic
ccRCC
To identify potential DMG biomarkers for prognosis of ccRCC,

we performed a DNA methylation profiling on 150 tumor

tissues. All the relevant clinical data were collected from the
GEO datasets: GSE113501 (including 28 metastatic ccRCC
tissues and 87 non-metastatic ccRCC tissues) and GSE105260

(including 26 metastatic ccRCC tissues and 9 non-metastatic
ccRCC tissues). In total, 237 CpG sites in GSE113501 and 462
CpG sites in GSE105260 were identified to have differential
methylations (Supplementary Tables 1, 2), which corresponded
to 198 and 355 genes, respectively (Supplementary Tables 3, 4).
GO analysis showed that 552 DMGs were linked to the
biological pathways that involved in transcriptional regulation
of cancers, cell cycle and metabolism, such as bladder cancer
(Supplementary Table 5).

With the DNA methylation annotation file (GPL13534),
we examined CpG methylation in different regions:
TSS1500, TSS200, 5′UTR, 1stExon, body, and 3′UTR.
Over 80 methylated CpG sites located in the body region
(Figure 1A, GSE113501 and Figure 1B, GSE105260).
Totally, more than 200 differentially methylated CpG sites
located in the TSS1500 and body region (Figure 1C).
By contrast, <25 methylated CpG sites appeared at
3′UTR region.

DMGs Involved in Transcriptional
Regulation
GO analysis revealed that most DMGs were annotated to
biological process (BP) and molecular function (MF) terms
indicating transcriptional regulation: positive or negative
regulation of transcription for various BPs (Figure 2A and
Supplementary Table 6) and transcription factor bindings
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(Figure 2B). In addition, the ontology of cell component
(CC) pointed to key cellular structures responsible for cell-
cell interaction and cell activities (Figure 2C). Venn diagram
showed that genes representing top BP terms were mostly
methylated in the regions of body, 5′UTR, and TSS1500
(Figure 2D).

Overlapping Genes in DMGs and DEGs
We identified 51 genes overlapping between DEGs
from GSE105261 and DMGs from GSE105260
(Supplementary Figure 1 and Supplementary Table 7), which
were classified into four types according to their methylation

and expression levels, namely downregulated hypermethylated
or hypomethylated, and upregulated hypermethylated or
hypomethylated. Noticeably, downregulated hypomethylated
genes accounted for a much lower proportion (Figure 3A). The
CpG methylation of these genes mainly took place in the body
and TSS1500 regions (Figure 3B). GO analysis also revealed that
they were related to transcriptional factor assembly and receptor-
mediated signaling (Figure 3C), and key protein bindings
(Figure 3D). Moreover, 10 genes were screened against the
TCGA-KIRC database, which showed a significant correlation
between methylation level and expression level in ccRCC
patients (Supplementary Figure 2).

FIGURE 4 | Enrichment analysis of DMGs in all regions. (A) Subontology of biological process (BP). (B) Subontology of cellular components (CC). (C) Subontology of

molecular function (MF). (A–C) The x-axis indicates the log p-value. The y-axis is the enriched terms.

Frontiers in Oncology | www.frontiersin.org 6 October 2020 | Volume 10 | Article 556018

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qian et al. 12 Metastatic ccRCC-Specific Signature Genes

Identification of DMGs Associated With
Metastatic ccRCC Throughout the Genome
Further, we measured all CpG methylations throughout
the genome and identified 6,300 genes from GSE113501
(Supplementary Table 8) and 799 genes from GSE105260

(Supplementary Table 9), respectively. Three hundred and

fourteen genes were overlapped between the two subsets

(Supplementary Figure 3). As previously, these genes were

annotated to BPs relating to protein folding and transportation

(Figure 4A and Supplementary Table 10) and CCs to

FIGURE 5 | Weighted gene co-expression network analysis (WGCNA). (A) Sample dendrogram and trait heatmap. (B) Analysis of the scale-free fit index and the

mean connectivity for various soft-thresholding powers (β). (C) Heatmap of correlation between module eigengenes and clinical information. (D) Module membership

in the turquoise module. (E,F) The correlation between each module and clinical characteristic pathological stage was demonstrated based on Eigen gene. Blue

represents a negative correlation, while red represents a positive correlation.
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components in nucleus (Figure 4B), as well as MFs to key
element bindings (Figure 4C). When comparing the 314
DMGs with 3,002 DEGs filtered from GSE105261, we found
44 genes were overlapped (Supplementary Figures 4 and
Supplementary Table 11). Most of them were downregulated-
hypermethylated genes (Supplementary Figure 5), indicating
their domination in the progress of ccRCC. The TCGA-KIRC
dataset and Spearman test were applied for correlation analysis,
which identified top 10 genes with significant correlation
between methylation and expression (Supplementary Table 12

and Supplementary Figure 6).

Identification of Hub DMGs
Next, we performed the WGCNA analysis to identify potential
molecularmodules that could characterize the pathological stages
of ccRCC. The WGCNA network was constructed with 308
DMGs screened out by methylation level changes in all CpG
island regions. The DMGs irrelevant to ccRCC clinical features
were removed (Supplementary Table 13). The dendrogram and
traits of all samples were illustrated (Figure 5A) and the soft
threshold power was set as five to ensure a scale-free network
(Figure 5B). Three WCGNA modules were identified as blue,
turquoise, and gray (Figure 5C). The blue module showed to
be negatively correlated with pathological stages while turquoise
module was positively. The turquoise module harboring 79 genes
was selected for further analysis as it was the most relevant to
clinical traits (Supplementary Tables 14 and Data Sheet 2). The
correlation coefficients with p-values, as well as heatmap of each
module were calculated, respectively (Figures 5D–F) and the 79
relevant genes were considered as hub DMGs.

Identification of 12 Signature DMGs
Among the 79 hub DMGs, 43 CpG sites were further identified
as potential DNA methylation biomarkers for prediction
of overall survival of ccRCC patients by univariate Cox
regression analysis. The genes such as TGDS, TCTE3,
TOPBP1, SNX14, and PHIP showed their expression were
strongly associated with the overall survival in ccRCC patients
(Supplementary Data Sheet 1). By contrast, the multivariate
cox analysis revealed 12 DMGs (CETN3, DCAF7, GPX4,
HNRNPA0, NUP54, SERPINB1, STARD5, TRIM52, C4orf3,
C12orf51, C17orf65, and C21orf45) significantly affected overall
survival of ccRCC patients (Table 1). The module’ risk score
was significant (Figure 6A) and survival analysis exhibited
hypermethylation signature of the 12 genes significantly
correlated with poor prognosis (p < 0.001) (Figure 6B).
Moreover, we examined methylation levels of the 12 genes
in normal kidney tissues. The results showed that there was
no significant difference between normal kidney tissues and
non-metastatic ccRCC kidney tissues, but for metastatic renal
cancer. Above all, all the analyses suggested that the multi-gene
methylation signature may be associated with ccRCC metastasis
(Supplementary Data Sheet 3).

Next, the ROC AUC was used to evaluate predictive powers
of the prognostic models constructed with single signature
gene or multiple signature genes. The ROC curves indicated
that C17orf65, HNRNPA0, and STARD5 exhibited better

TABLE 1 | The results of multivariate cox regression analysis.

Variables Overall Survival

HR (95% CI) P

Clinical parameters

Gender 1.577 (0.62598–1.19) 0.369

Age, year 1.044 (1.01861–1.046) 2.73e−06***

Race 9.396 (0.03915–2.076) 0.215

Tumor purity 0.1471 (0.27283–2.591) 0.763

Pathologic stage 0.1484 (0.24456–0.491) 2.53e−09***

Analysis parameters

CETN3 7.82E+35 (5.835e+07–1.049e+64) 0.012380*

DCAF7 1.42E+150 (9.363e+04–2.149e+295) 0.042654*

GPX4 6.37E−40 (1.197e−67–3.385e−12) 0.005592**

HNRNPA0 2.89E−38 (2.574e−65–3.255e−11) 0.006532**

NUP54 2.18E+57 (1.668e+15–2.838e+99) 0.007622**

SERPINB1 2.36E+08 (5.448e+02–1.022e+14) 0.003598**

STARD5 1.32E+16 (1.019e+00–1.704e+32) 0.049886*

TRIM52 4.91E+45 (4.245e+13–5.684e+77) 0.005222**

C4orf3 2.85E+68 (2.846e+11–2.856e+125) 0.018582*

C12orf51 1.60E−39 (6.178e−73–4.167e−06) 0.022873*

C17orf65(ASB16) 4.40E−59 (3.745e−89–5.165e−29) 0.000143***

C21orf45 2.47E−91 (2.804e−181–2.182e−01) 0.048339*

*p < 0.05, **p < 0.01, ***p < 0.001.

diagnostic accuracy for differentiating metastatic and non-
metastatic ccRCC cases in GSE105260 as the AUC value was
>70% (Supplementary Data Sheet 4). By contrast, C12orf51,
C17orf65, SERPINBI, and TRIM52 demonstrated better
diagnostic accuracy for differentiation of cases in GSE113501
(Supplementary Data Sheet 5). The ROC curve validated
that the 12 signature genes as a whole had better diagnostic
accuracy than individual signature genes in GSE105260
(Figure 7A). Also, the 12-gene signature could effectively
diagnose the patients with metastatic ccRCC case in GSE113501
(Figure 7B).

The prediction powers for 1-, 3-, and 5-year overall survival
were 0.87, 0.84, and 0.81, respectively, indicating that the
prognostic model with the 12 signature genes had high
sensitivity and specificity (Figure 7C). The values for predicting
the 3- and 5-year survival were lower than that for 1-
year, suggesting that the model was more accurate for short-
term prediction than for long-term prediction. Additionally,
as shown in Figure 7D, the 12-gene prognostic model was
more powerful in the prediction than other model based on
pathological stages.

DISCUSSION

ccRCC is the most common type of renal carcinoma in the world.
Although the treatment strategies for ccRCC have been improved
during the last decades, the management of metastatic ccRCC
still remain challenging due to lack of eligible molecular targets.
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FIGURE 6 | Evaluation of the 12-gene model. (A) Evaluation of hazard ratios by clinical traits. (B) Time–dependent ROC curve for high risk and low risk.

Therefore, discovery of specific markers for early diagnosis is
essential for control of ccRCC progress. DNA methylation is
an important driver of many of the distinct stages of cancer, to
study the molecular mechanisms underlying the pathogenesis
of ccRCC may be helpful for its diagnosis and treatment. To

the best of our knowledge, there is no applicable markers for
differentiating clinical stages of ccRCC. In the present study, we
used the clinical data from GSE113501 and GSE105260 to profile
genes associated with non-metastatic and metastatic ccRCC.
Through WGCNA and ROC analysis, 12 genes were finally
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FIGURE 7 | ROC curves of 12-gene signature. (A) ROC curves of the 12-gene signature in GSE105260 (AUC = 0.95). (B) ROC curves of the 12-gene signature in

GSE105260 (AUC = 0.89). (C) Time–dependent ROC curve for OS, the AUC was assessed at 1, 3, and 5 year (AUC = 0.87, 0.84, and 0.81). (D) Time-dependent

ROC curve analysis evaluates the accuracy of the 12-gene model.
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identified in the signature module associated with the clinical
traits of ccRCC.

We first screened 237 differentially methylated CpG sites from
the GSE113501 dataset and 462 CpG sites from the GSE105260
dataset, which were mapped to 552 genes. We examined the
methylation patterns in specific regions: TSS1500, TSS200,
5′UTR, 1stExon, body, and 3′UTR, of which TSS1500 and body
region showed remarkable methylation changes. GO analysis
showed these DMGs were annotated to transcription landscape.
In fact, DNAmethylation and transcription factors (TFs) binding
represent two components of the regulatory architecture and
their interplay would underlie the clinical outcome of cancer
development (26–33). By the WGCNA analysis, we screened
314 intersected DMGs between metastatic and non-metastatic
ccRCC, which were associated with the biological processes
and functions that underlined cancer metastasis and invasion.
For example, dysregulation of cell cycle was also reported to
associate with cancer progress and prognosis in the number
of previous studies (33–38). In view of MFs, these DMGs
involved in protein binding, peptidyl-prolyl cis-trans isomerase
activity, identical protein binding and poly (A) RNA binding,
etc. For example, the etiology of early-onset CRC was linked
to ploy (A) RNA binding endorsed by a set of hub genes
(39) and the metastasis of breast cancer resulted from LSD1
demethylation (40).

From GSE105261 and GSE105260, we further screened 44
intersected genes between DEGs (in GSE105261) and DMGs
(in GSE105260). We classified these intersected genes into two
categories: negatively and positively correlated between their
methylation and expression levels. The majority of intersected
genes fell into the negative correlation category, including
downregulated-hypermethylated genes and upregulated-
hypomethylated genes. Among these intersected genes, the
methylation changes in 10 genes were the most significantly
associated to the phenotypes of ccRCC when searching
against the TCGA-KIRC dataset. However, some of them have
been found to associate with other cancers via diversified
mechanisms, for example, nuclear LDHA promoted HPV-
induced cervical cancer development using a mechanism of
H3K79 hypermethylation (41–44).

Finally, univariate and multivariate Cox regression analysis
identified 43 CpG sites and 12 DMGs (CETN3, DCAF7, GPX4,
HNRNPA0, NUP54, SERPINB1, STARD5, TRIM52, C4orf3,
C12orf51, C17orf65, and C21orf45) that were highly correlated
to patients’ survival. Indeed, some genes are reported to
contribute to the occurrence and progress of cancers. For
example, GPX4 negatively correlated with prognosis of pan-
cancer patients as the low methylation level at the upstream
site leads to its higher expression in cancer tissues (45). On the
contrary, hypermethylation of SERPINB1 promoter resulted in
enhanced neutrophil elastase (NE) activity, which was associated
with poor outcome in prostate cancer (46). Other genes like
HNRNPA0, DCAF7, and TRIM52 functioned in diverse ways
including abnormal changes in alternative splicing or activation
of canonical signal pathways in relation with cancer progression
(47–50).

Until recently, two research groups also screened signature
genes for prognosis in ccRCC patients based on TCGA database.
One group constructed a prognosticmodel with 7 signature genes
(IFI30, WNT5A, IRF9, AGER, PLAUR, TEK, and BID), which
were all immunity-related genes (IAGs) (50). The other group
built the model with 5 lncRNAs (51). While in present study, we
screened the signature genes from the standpoint of methylation
alteration. Our model with 12 DMGs has the AUC value of
0.81 for 5-year survival prediction compared to the IGA-based
model (0.751) and the lncRNA-based model (0.91). Our model
could distinguish metastatic and non-metastatic pathologies,
which could accompany traditional pathological tissue typing
and provide more precise diagnosis and prognosis of ccRCC
patients. Meanwhile, it is necessary to validate our model with
more clinical data and the mechanisms by these signature DMGs
in ccRCC.

CONCLUSION

Taken together, we performed an integrative DNA methylation
profiling and constructed a 12-gene model that signed in
metastatic ccRCC. The model could be used for prognosis
of patients with ccRCC and diagnosis of non-metastatic
ccRCC and metastatic ccRCC. Aberrant methylation of the 12
genes would leave patients with ccRCC at higher risk of a
poor prognosis.
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