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Abstract
We present software package for classifying protein or nucleotide sequences to user-speci-

fied sets of reference sequences. The software trains a model using a multiple sequence

alignment and a phylogenetic tree, both supplied by the user. The latter is used to guide

model construction and as a decision tree to speed up the classification process. The soft-

ware was evaluated on all the 16S rRNA gene sequences of the reference dataset found in

the GreenGenes database. On this dataset, the software was shown to achieve an error

rate of around 1% at genus level. Examples of applications based on the nitrogenase sub-

unit NifH gene and a protein-coding gene found in endospore-forming Firmicutes is also

presented. The programs in the package have a simple, straightforward command-line

interface for the Unix shell, and are free and open-source. The package has minimal depen-

dencies and thus can be easily integrated in command-line based classification pipelines.

Introduction
Reconstructing environmental communities of microorganisms often involves identifying line-
ages from a nucleotide or protein sequence. The identification will typically be sought at some
predetermined taxonomic rank (for example species or genus). Classification then consists of
assigning a given sequence, called the query sequence, to a single taxon, among many of the
chosen rank. The set of taxa among which the query is to be classified are termed the reference
taxa.

According to a recent study by Bazinet and Cummings [1], classification methods fall into
one (rarely two) of the three following categories: similarity-, composition-, and phylogeny-
based. Similarity methods compare the query to a set of references using sequence-level simi-
larity measures (for example with BLAST [2] or hidden Markov models), and classify accord-
ing to which OTU(s) is most similar to the query. Examples of pipelines that implement this
classification approach include MEGAN [3], CARMA3 [4] and MG-RAST [5]. Composition
methods use machine-learning techniques to classify queries based on properties of the
sequences, such as frequencies of fixed-length words (k-mers). The Ribosomal Database Proj-
ect (RDP) classifier [6] as well as SCIMM [7] and TACOA [8] belong to this category. Finally,
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phylogeny-based methods classify by placing the query in a phylogenetic tree along with refer-
ences and examining its relatives. To this class belong, among others, EPA [9] and pplacer
[10].

Still according to Bazinet and Cummings [1], there are caveats to each approach. Similarity
methods were found to be generally accurate, but may be slow when the reference database is
large. Composition methods incur an overhead for building the model, but then are typically
faster than similarity methods. Phylogenetic methods are able to assign queries not only to the
leaves of the tree but to higher ranks as well, although they tend to use CPU-intensive methods.

Besides the scope and classifying method, the criteria that a regular user might consider
while selecting any of the aforementioned classification tools include the type of sequencing
project (amplicon versus shotgun sequencing) or the targeted gene(s). In addition, criteria like
interface (graphical or command-line, local or web-based) may guide the selection of a soft-
ware tool.

In our research projects, we needed to classify relatively short (200 amino acids or less) pro-
tein sequences from essentially unknown environmental samples. The choices for classification
are thus restricted to a few options. One alternative is to use a similarity-based method such as
BLAST on a customized database of references. Another is to train a gene-specific classifier on
the gene of interest. The latter is the case of the RDP, which is commonly used for classifying
16S rRNA genes. However, for the RDP, classification based on amino acid sequences was not
possible when tried in our project, which is an issue for protein-coding genes. We therefore
designed and implemented a classification program, MLgsc, with the following properties:

• it classifies both protein and nucleic acid sequences;

• it is intended for targeted classification (e.g. amplicon sequencing);

• it builds a model using a multiple sequence alignment of reference sequences from the classi-
fying region, and a phylogenetic tree of the references;

• it uses position-specific weight matrices (PWM) to measure a query’s similarity to a set of
references (therefore, it falls in Bazinet and Cummings’ “similarity” category);

• it uses a phylogeny to avoid comparing the query to all models of individual references (and
therefore arguably belongs in the “phylogeny” category as well);

• it has minimal dependencies, in the sense that it does not call other analysis programs or
functions;

• it has a simple interface: training the model and using it to classify sequences are each per-
formed as a single shell command involving at most a few arguments and options. This
makes it straightforward to include in shell-based classification (or other) pipelines.

Interface
The MLgsc package consists of three programs: mlgsc_xval, mlgsc_train, and mlgsc, which per-
form cross-validation, training, and classifying, respectively (see Table 1).

Procedure
Classifying using MLgsc involves the following steps:

1. selecting the scope, classifying region, and molecule type
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2. obtaining a multiple alignment of reference sequences and a phylogeny of the reference
taxa.

3. validating the alignment and tree for classification

4. building a classifier

5. using the classifier

Scope and Classifying Region
The first step is the selection of the scope of the classifier, that is, the set of taxa the classifier
will recognize from the query sequences. This can be a relatively small clade like the Firmicutes
at species level, or it can be more encompassing, such as all prokaryotes at genus level. One
then selects a classifying region—a conserved region that will serve as the basis for classifica-
tion. This can be dictated by experiment design (for example a region targeted by PCR); in any
case the region should be well-enough conserved in all reference taxa so as to yield good-qual-
ity multiple sequence alignments, but should include sufficient variation to distinguish between
them. For protein-coding regions, one has the option of classifying at the nucleotide or the
amino acid level – an MLgsc classifier can classify either type of sequence, but not a combina-
tion of both.

Multiple Alignment and Phylogeny
One then obtains a multiple alignment of reference sequences of the classifying region. This
can be directly downloaded from sites like GreenGenes [11], or it can be computed from refer-
ence sequences using any suitable program such as Muscle [12] or MAFFT [13]. The sequences
should cover the entire classifying region. Each taxon should be represented by at least one ref-
erence sequence. Experiments show that providing more than a dozen sequences per reference
taxon does not increase accuracy, at least at genus level for 16S rRNA. The alignment should be
in gapped FASTA format. The FASTA header should have an ID followed by the taxon name,
separated by white space, for example
>AAJGZX Clostridium
ACTGCTG—-GTA. . .
>AB67CH Butyrivibrio
ACTTGCC—-GCA. . . .

Table 1. The MLgsc programs and their functions, inputs, and outputs.

Program Function Inputs Outputs

mlgsc_xval cross-validation multiple alignment(a), phylogeny (b) predictions(c)

mlgsc_train training classifier(d) multiple alignment(a), phylogeny(b) classifier(e)

Mlgsc classification(d) query sequences(f), classifier(g) predictions(h)

(a) A multiple alignment provided by the user of known sequences from the gene or protein of interest, in Fasta format.

(b) A phylogeny of the reference taxa provided by the user in Newick format.

(c) A text output, containing (among others) the actual and predicted taxon names, thus enabling the detection of classification errors.

(d) This step is conditioned on a successful cross-validation (mlgsc_xval).

(e) This is a binary file, to save space and to save reading and parsing time

(f) A Fasta file containing the sequences to be classified, usually unaligned.

(g) The output of mlgsc_train.

(h) A text file that contains the predicted assignment to reference taxa for each query sequence (among other information).

doi:10.1371/journal.pone.0129384.t001
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In this example, the taxon names are Clostridium and Butyrivibrio. The IDs are not part of
the model, but they are useful in the validation step (see below), for identifying any problematic
sequences.

Finally, one needs a phylogenetic tree of the references, in Newick format [14]. This can be
computed directly from the alignment using any tree-building software such as PhyML [15] or
RaxML [16]. Alternatively it can be derived or extracted from external sources, for example
NCBI’s taxonomy [17] or the All-species Living Tree [18]. The tree’s leaf labels should be the
same reference names as in the alignment. Below is an example tree in Newick format:
((Bacillus,Paenibacillus)Bacillaceae,(Clostridium,(Butyrivibrio,
Marvinbryantia)Lachnospiraceae)Clostridiales)Firmicutes;

Inner node labels, that is, names of clades above the level of the reference taxon (e.g. Bacilla-
ceae in the above example) are allowed and in fact recommended, as they allow a more detailed
output. MLgsc deliberately does not include functionalities to compute multiple alignments or
phylogenetic trees. This gives the user complete freedom in selecting state-of-the-art sources or
tools to perform these steps prior to classification.

Validation
To verify that a classifier based on the data obtained above will be accurate enough, the user
can perform a cross-validation. The program mlgsc_xval (“mlgsc cross-validate”) performs
one particular form of cross-validation called leave-one-out: one sequence is drawn at random,
without replacement (i.e., is left out), from the input alignment, and the classifier is built with
all the remaining sequences. The single, left-out sequence is then used as a query, and the pre-
diction is considered correct if the sequence's predicted taxon matches its actual one. Taxa rep-
resented by only one reference sequence cannot be used in this way, since the query taxon
must also be represented in the classifier. By default, only taxa with three or more reference
sequences are considered suitable.

The procedure is repeated a number of times, (by default, 100, or every sequence if there are
less than 100 suitable sequences), and the number of errors divided by the number of trials is
an estimate of the error rate of the classifier.

Cross-validation is performed by a command like the following:
$ mlgsc_xval Prot alignment.msa phylogeny.nw

in which Prot specifies that the classifier is for proteins, and alignment.msa and phylogeny.
nw are the names of the alignment and phylogenetic tree files obtained in the previous step,
respectively. This command produces output like the following:
ZQBXK1 Bacillus-> Bacilli (71); Bacillaceae (101); Bacillus (83)
AAJGZX Clostridium-> Clostridia (116); Clostridiales (163); Clostridium
(153)
AB56K Dorea-> Clostridia (132); Clostridiales (21); Clostridium (9)

The number in parentheses after the node name is a confidence measure. It is the logarithm
base 10 of the evidence ratio of the best-scoring position-specific weight matrix (PWM) to the
next-best, i.e. the ratio of their likelihoods given the aligned query sequence. Mis-classified
sequences often have a low confidence measure for at least one node in their predicted classifi-
cation (such as the value of 9 above for Clostridium) In this example, Dorea is very confidently
(and correctly) classified in the Clostridia, less confidently (but still correctly) in the Clostri-
diales, and not confidently (and wrongly) in Clostridium.

The confidence measure can be used to detect sequences for which MLgsc cannot find a
confident prediction. This is similar to the bootstrap-based confidence values provided by RDP
[6].
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In the example above, each line corresponds to a leave-one-out trial, with a new sequence
drawn at random and a new classifier trained from all the others. The last line shows a misclas-
sification (Dorea wrongly classified as Clostridium). mlgsc_xval has an option (-x) that causes
it to print only wrong classifications.

Training
Once the user is satisfied that the classifier is sufficiently accurate, a classifier is trained and
saved in a file. This is done as in the following command:
$ mlgsc_train–o taxon.mod Prot alignment.msa phylogeny.nw

where–o taxon.mod specifies the name of the output file, Prot specifies that the sequences
are proteins, alignment.msa is the multiple alignment and phylogeny.nw is the phylogenetic
tree. The output file is the classifier itself.

Classification
Finally, the classifier built in the previous step can be used to classify query sequences as in the
following example:
$ mlgsc queries.fasta taxon.mod

where queries.fasta is a FASTA file containing the sequences to classify (there are no partic-
ular requirements other than that they be in FASTA format) and taxon.mod is the model file,
produced as shown above. The output is a TAB-separated plain text file with query ID, pre-
dicted reference, path and confidence measure at each level in the decision tree:
A0RIG4_BACAH-> Bacilli (71); Bacillaceae (101); Bacillus (83)
A0Q0B0_CLONN-> Clostridia (116); Clostridiales (163); Clostridium (153)
A5Z6L5_9FIRM-> Clostridia (132); Clostridiales (�); Clostridium (9)
. . .

In the example above we see that A0RIG4_BACAH is classified as a Bacillus, while
A0Q0B0_CLONN and A5Z6L5_9FIRM are classified as Clostridium, the latter with lower con-
fidence regarding the genus (confidence measure 9 versus 153). An unlabeled node in the tree
appears as unnamed in the classifier output. When an evidence ratio is very large (logarithm
greater than 1000), it is represented by an asterisk (�).

Algorithm

Training the Model
MLgsc constructs a tree of position-specific weight matrices (PWMs) using a multiple align-
ment of sequences from the classifying region and a phylogenetic tree of the reference taxa
(Fig 1). The tree of PWMs has the same topology as the phylogeny of the taxa, and a matrix in
the PWM tree models a clade in the phylogeny: a matrix at a tip of the tree models a single
taxon, while a matrix in an internal tree node models a clade of two or more taxa. Column i in
a matrix contains the relative frequencies of residues at position i, computed over all reference
sequences belonging to the clade modeled by the matrix. It therefore represents a maximum-
likelihood estimate of the true frequencies in the wild. Gaps in the alignment are simply consid-
ered an additional character, so the matrix models the probability of occurrence of a deletion
with respect to the alignment.

Probability and Score of a Sequence given a Matrix
Given a matrixM of length l, denoting fi(r) the frequency of residue r at position i inM, and
under the assumption of independence of the columns of M, the probability of a sequence

r1r2. . .rl given M is p ¼ Ql
i¼1 fiðriÞ. It is impractical to use probabilities directly, because they
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tend to be so close to zero as to cause underflow. A common solution to this problem is to use
logarithms of probabilities: this avoids numbers very close to zero, and also replaces multiplica-
tions by sums, which are usually faster. MLgsc also rounds the logarithms, which enables it to
use integer arithmetic, which is faster than its floating-point counterpart. The value thus com-

puted is called the score of a sequence given a matrix: score ¼
Xl

i¼1
bk logðfiðriÞÞc (where k is a

scaling constant). A PWM assigns a score to any sequence of the same length as itself. In our
case, the score is an estimate of the probability P(s|M) of the sequence given the matrix, under
the assumption that the probabilities of any two residues in the sequence are independent – an
assumption that is false in general but useful in practice. Naive Bayesian classifiers such as RDP
[6] make a similar assumption, from which their name is derived.

Considered as a function ofM and keeping the query sequence s fixed, P(s|M) is the likeli-
hood of a matrix, and MLgsc reports the reference whose associated matrix maximizes this
function. This report includes the entire path through the tree, including confidence measures
at each level (see example of output below).

Bias reduction. To reduce biases due to over-sampling of the same sequence in an OTU,
and over-representation of some OTUs with respect to others, the following step is taken:

Before constructing the PWMs, the aligned sequences are weighted according to Henikoff
and Henikoff [19]: the Henikoff weight of each sequence is computed, each weight is divided
by the smallest of the weights and rounded up to the nearest integer, yielding an adjusted

Fig 1. Training the Model. A tree of position-specific weight matrices (bottom) constructed from a phylogeny
(top left) and a multiple alignment (top right). Each taxon in the tree is represented by at least one (preferably
more) sequence(s) in the alignment. Column i in a taxon matrix contains the relative frequencies of residues
at position i, computed over all sequences of that taxon. Matrices at inner nodes are averages of the matrices
of the node’s children. The tree need not be bifurcating, but a fully bifurcating tree offers the best speed
performance (see Discussion).

doi:10.1371/journal.pone.0129384.g001
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weight. Each sequence is then repeated as necessary so that its frequency in the weighted align-
ment equals its adjusted weight. No sequence has an adjusted weight smaller than one.

This weighting is performed only on the whole input alignment. We experimented with
weighting every clade separately, but found that it had little effect.

Classifying Queries
The query sequence is first aligned to the PWM at the root of the tree, using semi-global align-
ment (local in the query and global in the PWM). The method uses dynamic programming
similar to Needleman and Wunsch’s algorithm [20], but with match/mismatch scores based on
weights in the PWM instead of being fixed, and gaps disallowed in the PWM. The aligned
query is thus exactly as long as the PWM. The aligned sequence is then scored against the
matrices at the children nodes of the root. The matrix yielding the highest score is selected, and
the sequence is now scored against the children of this matrix, and so on recursively until the
highest-scoring matrix is at a leaf (Fig 2). The corresponding reference is reported as the most
likely, together with the path through the tree. At each node, the logarithm base 10 of the evi-
dence ratio between the best-scoring and next-best scoring PWM is shown, which serves as a
measure of confidence in the decision taken regarding classification at each step. In this case,
the evidence ratio is simply the ratio of likelihoods between two PWMs.

Performance and Comparisons
Using leave-one-out cross-validation with mlgsc_xval on a set of 16S rRNA gene sequences
obtained from the GreenGenes database release 13 (11954 sequences of 585 bacterial genera)
and a bacterial phylogeny downloaded from NCBI, the error rate of MLgsc was estimated at
around 1%.

We compared MLgsc's speed and accuracy with other classifiers, as summarized in the
tables below. All tests but one were carried out on a single core of a 2.30 GHz Intel Core i7-
4712MQ with 16 GB RAM running Ubuntu Linux 14.04. The exception was suffix tree search,
which was carried out on 2 Intel Xeon E5-2260 (16 cores, 2.20 GHz) and 128 GB RAM running
Scientific Linux release 6.

Fig 2. Classifying. The aligned query sequence (a) is first scored by the matrices at the root’s direct children
nodes, in this example the matrix for taxa 1 and 2 (b) and the one for taxa 3 and 4 (c). Matrix (b) is found to
yield the better score (solid arrow). Therefore, the query is now scored against matrix (b)’s children, namely
taxa 1 and 2. The former is found to yield the better score, and OTU 1 is reported as the most likely (d). The
shaded parts of the tree (matrices for taxa 3 and 4) are never tested. In a balanced, fully bifurcating tree of n
nodes, only 2log2(n) matrices are tested.

doi:10.1371/journal.pone.0129384.g002
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16S rRNA genes
The test set consisted of the same 11,954 16S rRNA sequences from GreenGenes 13 (See Accu-
racy, above) MLgsc was compared with several classifying methods implemented in Mothur
version 1.34.4 [21] using GreenGenes for reference (Table 2). Mlgsc was itself trained on
GreenGenes v. 13, using a phylogeny derived from NCBI Taxonomy.

In all cases the query sequences were aligned prior to classification (i.e. the input to the clas-
sifiers was a multiple alignment) because this is required by Mothur.

NifH
As an example of classification at the protein level, we chose the nitrogenase iron protein 1
(NifH). This protein is involved in nitrogen fixation and is found in a wide variety of Archaea
and Bacteria. MLgsc was compared with the FunGene Pipeline's FrameBot component [22],
which performs protein-coding gene classification (Table 3).

We downloaded all sequences from the European Nucleotide Archive (ENA) [23] that met
the following criteria: “Coding” section, prokaryote (PRO) division, “nifH” gene name, and
sequence length no greater than 1000 bp. This yielded 5,825 sequences. We further excluded
all sequences whose description contained the word 'partial', yielding 444 sequences with a
median length of 882 bp. The nucleotide sequences were (a) classified directly by FrameBot;
and (b) translated then classified with MLgsc. ORFs shorter than 800 bp were discarded, and
when a sequence yielded more than one ORF of sufficient size, only the best one was classified.
The best ORF was defined as the one yielding the highest score when compared to the reference
NifH protein sequences by global pairwise alignment with EMBOSS's needleall program. The
final set of translated ORFs contained 383 sequences.

Table 2. Comparison of speed and accuracy of MLgsc versus classifyingmethods implemented in Mothur for the 16S rRNA gene.

Method Run Time [s] Classified (a) % Classified Wrong Error rate [%]

Mothur (RDP)(b) 5,590 11,935 99.84 382 3.2

Mothur (KNN, k-mer)(c) 396 8,165 68.3 0 0

Mothur (KNN, BLASTN)(d) 17,162 8,432 70.54 4 0.047

Mothur (KNN, suffix tree)(e) 3,543 7,995 66.88 0 0

Mlgsc (no ER cutoff)(a,f) 35 11,954 100 297 2.5

MLgsc (ER cutoff 10)(a,f) 35 11,247 94.09 65 0.58

MLgsc (ER cutoff 20) (a,f) 35 10,041 84 15 0.15

(a) For the Mothur methods, a query was considered not classifiable if the corresponding output line did not indicate a genus (g__ prefix). For MLgsc, a

query was considered not classifiable if any node in the corresponding output line had an evidence ratio (ER) below the cutoff. The use of evidence ratio

do detect sequences that are not confidently classified is described in section Procedure, subsection Validation.

(b) Mothur command: classify.seqs(fasta = aln, template = gg_13_8_99.fasta, taxonomy = gg_13_8_99.gg.tax, iters = 1000, method = wang, ksize = 8,

processors = 1)

(c) Mothur command: classify.seqs(fasta = aln1, template = gg_13_8_99.fasta, taxonomy = gg_13_8_99.gg.tax, iters = 1000, method = knn,

numwanted = 10, search = kmer, ksize = 8, processors = 1)

(d) Mothur command: classify.seqs(fasta = aln2, template = gg_13_8_99.fasta, taxonomy = gg_13_8_99.gg.tax, iters = 1000, method = knn,

numwanted = 10, search = blast, processors = 1)

(e) Mothur command: classify.seqs(fasta = aln3, template = gg_13_8_99.fasta, taxonomy = gg_13_8_99.gg.tax, iters = 1000, method = knn,

numwanted = 10, search = suffix, processors = 16)

(f) MLgsc command: mlgsc-A 16S.fasta 16S_classifier.bcls

doi:10.1371/journal.pone.0129384.t002
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Example of an Application
MLgsc was also tested on a set of amplicon sequences obtained for the spo0A gene. This molec-
ular marker has been demonstrated to be specific to endospore-forming bacteria [24] and was
used to study the diversity of this bacterial group in environmental samples [25]. A sediment
sample from Lake Geneva (46° 27.03 N, 6° 42.52 E, at 284 m depth) was collected during a
research campaign with the MIR manned submersibles in June 2011. A 602-bp sequence of the
spo0A gene was amplified as previously described [26]. PCR reactions were done in quintuplets
that were pooled and purified with a MultiScreen PCRμ96 plate (Merck Millipore) and after-
wards eluted in 20 μl molecular grade sterile water. The purified samples were loaded onto a
1% agarose gel and electrophoresis run for 40 min at 80 V. The bands of the correct size (602
bp) were excised and purified with a QiaQuick Gel extraction kit (QIAGEN). Purified ampli-
cons were then sent to Eurofins MWGOperon for barcode amplicon sequencing with Roche
GS FLX+. A set of 1,174 sequence reads was obtained, of which 81% was retained after quality
control.

For quality control, the nucleotide sequences were translated to their amino acid sequences,
using the EMBOSS [27] package’s transeq utility. The amino acid sequences were then aligned
and compared to a Gribskov-style protein profile [28] of Spo0A sequences that was built based
on 27 known Spo0A sequences as described elsewhere [26]. True positives were identified
using a linear function of match length and score, using shuffled sequences as negative con-
trols. Nucleotide sequences that did not yield a positive profile hit were discarded.

The remaining nucleotide sequences were clustered at the 97% sequence identity threshold
using Uclust [29]. The centroid of each cluster was then retrieved and classified (i) by MLgsc,
and (ii) according to the best BLASTX hit against a BLAST database made with the same refer-
ence sequences as were used to build the model. In this example, the size of the input dataset
was reduced through clustering, but this is not a prerequisite for classification (for example,
none of the runs described under “Performance and Comparisons” involve clustering). Since
all members of a cluster are assumed to belong to the same OTU, it is therefore only necessary
to classify one member of each cluster.

The community composition was determined to genus level, where possible (S1 Table). In
the BLAST-based classification, members affiliated to Paenibacillus (over 50% of the commu-
nity), Bacillus, Clostridium, Desmospora, and Brevibacillus dominated the community. In com-
parison, the community composition based on MLgsc was largely dominated by Clostridium

Table 3. Comparison of speed and accuracy of MLgsc versus FrameBot for the nitrogenase gene nifH.

Method Run Time [s] Classified (a) % Classified Wrong(b) Error rate [%]

FrameBot 100.87 422 100 103 24.41

MLgsc (no ER cutoff) 4.9 383 100 52 13.58

MLgsc (ER cutoff 10) 4.9 318 83.03 8 2.52

(a) For MLgsc, a query was considered not classifiable if any node in the corresponding output line had an evidence ratio (ER) below the cutoff. The use

of evidence ratio do detect sequences that are not confidently classified is described in section Procedure, subsection Validation.

(b) A FrameBot classification was evaluated by examining the lines starting by STATS in the *framebot.txt output file:, which contains the predicted genus

name and the test sequence's ID, for example in

STATS 454423|B|1|1594_2487_L23514 Nostoc_commune_UTEX_584_nitrogen_fixation_protein_nifUAAA21838

the predicted genus is Nostoc and the query ID is AAA21838. Using the ID to look up the genus in the reference file, we consider the prediction correct if

the two genera match.

(c) FrameBot command: java-jar dist/FrameBot.jar framebot-N-o test_nifH refset/nifh_prot_ref.fasta ENA_nifH_full_cleanHdr.dna

(d) MLgsc command: mlgsc ENA_nifH_full_cleanHdr_orf800_bestORF.pep NifH_ref_clean_train.bcls

doi:10.1371/journal.pone.0129384.t003
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(73.87%), followed by Paenibacillus, and Bacillus. Applying an evidence ratio cutoff of 10
(see section Procedure, subsection Validation), 14.05% of the sequences were considered
unclassified.

The results of these two classification methods were after compared with a distribution of
Firmicutes in the sample, according to a classification of 16S rRNA amplicons. The first obvi-
ous difference between the two datasets is the fraction of unclassified sequences, which was
more than 60% in the 16S rRNA gene data and 14% in spo0A-MLgsc, and only 3% in spo0A-
BLAST data. Among the identified groups, the genera Paenibacillus, Bacillus, Clostridium,
Geobacillus, Alicyclobacillus, Anoxybacillus, Desulfotomaculum and Sporosarcina were found in
the 16S rRNA and spo0A gene datasets. For these genera, important differences in their relative
abundances were obtained in the RDP-BLAST comparison for all but Bacillus. In the
RDP-MLgsc comparison, the relative abundances were for the most part consistent, in particu-
lar concerning the dominance of Clostridium. It is worth mentioning that since the classifica-
tion with MLgsc was made on protein sequences, a third of the amplicons were filtered out
after translation and comparing the ORFs with the Spo0A profile.

Discussion
Alignment of the query sequence to a PWM takes time proportional to the product of the
lengths of the matrix and the sequence. Composition-based methods such as RDP's are typi-
cally faster, as k-mers can be counted in time proportional to the length of the sequence only.
This disadvantage of MLgsc is partially offset by the use of decision tree: firstly, the sequence is
aligned only once (to the matrix at the root of the tree); secondly, in a balanced, bifurcating
tree of n OTUs, only 2 log2(n) scorings need to be performed. For the 585 OTUs of the 16S
rRNA example, that means only about 20 scorings. The advantage of the divide-and-conquer
strategy will be stronger as the number of OTUs grows.

Contrary to phylogeny-based methods like EPA [9], MLgsc does not perform full place-
ment: queries are always assigned to a leaf of the tree (that is, a reference taxon). This has the
drawback of potentially “forcing” a query to a taxon of which it is a relative and not a member,
but it also avoids the more costly task of estimating the likelihood or posterior probabilities of a
tree for each candidate query placement. The use of evidence ratio cutoffs can help determine
to which node the classification can be made with confidence.

With default parameters (i.e., no ER cutoff), Mlgsc's accuracy and rate of classification are
closest to Mothur with RDP: MLgsc classifies all sequences with an error rate of 2.5%, Mothur-
RDP classifies virtually all sequences (99.8%) with an error rate of 3.2%. With an ER cutoff of
20, MLgsc classifies 84% of the queries with an error rate of 0.15%, which approaches the per-
formance of Mothur's KNN method with BLAST search, which classifies 70.54% of the queries
with 0.047% error rate. The two other KNN methods of Mothur achieve an error rate of zero,
albeit at the cost of failing to classify up to one third of the queries.

In all cases, MLgsc is faster than the Mothur methods. It must be said, however, that all the
Mothur methods classify to species level, while for the examples shown here MLgsc was trained
to genus level. The Mothur methods may have shorter run times if limited to genus level.

For the NifH protein, both Mlgsc and FrameBot have large error rates. This may be due to
the fact that NifH is found in both Archaea and Bacteria, which can conceivably make it more
difficult to produce good alignments. In this case, MLgsc was also faster and more accurate
than FrameBot.

In an example of application we classified Spo0A sequences from one of our research stud-
ies. Classification of environmental sequences is complex, since the true nature of the commu-
nity composition is unknown. Indeed, large differences were obtained when MLgsc was
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compared to BLAST. Sequencing and classification of the 16S rRNA were also performed in
the same sample. It is clear that the community composition deduced from these two markers
(16S rRNA and spo0A genes) cannot be compared directly as independent amplification and
sequencing biases are another source of inaccuracy. However, it is reassuring that MLgsc pro-
duced results that were more compatible with the 16S rRNA gene approach.

Like any classification method, MLgsc is dependent on the quality and comprehensiveness
of the references. The fact that many Spo0A sequences yield scores much lower than the refer-
ences yet higher than negative controls (shuffled sequences, S1 Fig) suggests that much of the
diversity of Spo0A has yet to be recovered from the environment. As new reference sequences
become available, the proportion of unclassifiable sequences should fall.

Conclusion
MLgsc is a general, maximum-likelihood sequence classifier that uses phylogenetic information
to guide classification. It can classify protein as well as nucleic acid sequences, and is not spe-
cialized to any particular taxon, nor to any specific gene or protein. It can achieve accuracy
rates comparable to RDP’s with shorter run times. It has a simple, straightforward interface
and can be easily integrated in bioinformatics pipelines.

Supporting Information
S1 Fig. Box-plots of MLgsc on Spo0A training and sample sets. The score of classification
from original sequences was compared with permutated versions of the same. From left to
right, training set (green); shuffled training set (red); environmental sample (blue); shuffled
environmental sample (violet).
(TIFF)

S1 Table. Comparison of genus distribution derived from 16S rRNA gene and spo0A
sequence datasets from Lake Geneva. Values are given in sequence counts per genus. The two
classification methods used for spo0A assignment (BLAST and MLgsc) are indicated.
(DOCX)
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